

Imperial College London

The Branch-and-Sandwich Algorithm for Mixed-Integer Nonlinear Bilevel Problems

Polyxeni-M. Kleniati and Claire S. Adjiman

MINLP Workshop

June 2, 2014, CMU

Funding Bodies EPSRC & LEVERHULME TRUST

OUTLINE

INTRODUCTION

- PROPOSED METHOD
- **3** BOUNDING PROBLEMS: INITIAL NODE
- BRANCHING & BOUNDING ON SUBDOMAINS
- **5** NUMERICAL RESULTS

6 CONCLUSIONS

OUTLINE

INTRODUCTION

- PROPOSED METHOD
- **3** BOUNDING PROBLEMS: INITIAL NODE
- BRANCHING & BOUNDING ON SUBDOMAINS
- 5 NUMERICAL RESULTS

6 CONCLUSIONS

BILEVEL OPTIMISATION PROBLEM PROBLEM FORMULATION

- A two-person, non-cooperative game in which the play is sequential
- The Mixed-Integer Nonlinear Bilevel Problem is

$$\min_{\substack{x_i, x_c, y_i, y_c \\ \text{s.t.}}} F(x_i, x_c, y_i, y_c) \\ \text{s.t.} G(x_i, x_c, y_i, y_c) \le 0 \\ (y_i, y_c) \in \arg_{y_i \in Y_I, y_c \in Y_C} \{f(x_i, x_c, y_i, y_c) \text{ s.t. } g(x_i, x_c, y_i, y_c) \le 0\} \\ x_i \in X_I \subset \mathbb{Z}^{n_1}, x_c \in X_C \subset \mathbb{R}^{n-n_1} \\ y_i \in Y_I \subset \mathbb{Z}^{m_1}, y_c \in Y_C \subset \mathbb{R}^{m-m_1}$$

- Subscripts *i* and *c* stand for *integer* and *continuous*, respectively
- Typical assumptions apply, such as
 - continuity of all functions and compactness of the host sets
- Assume also twice differentiability of the continuous relaxations of the functions
- No special class or convexity assumptions are made

OPTIMAL VALUE EQUIVALENT REFORMULATION

• Define the inner optimal value function

 $w(x_i, x_c) = \min_{y_i, y_c} \{ f(x_i, x_c, y_i, y_c) \text{ s.t. } g(x_i, x_c, y_i, y_c) \le 0, y_i \in Y_I, y_c \in Y_C \}$

• Then problem (e.g. Dempe and Zemkoho, 2011):

$$\begin{array}{ll} \min_{x_i,x_c,y_i,y_c} & F(x_i,x_c,y_i,y_c) \\ \text{s.t.} & G(x_i,x_c,y_i,y_c) \leq 0 \\ & g(x_i,x_c,y_i,y_c) \leq 0 \\ f(x_i,x_c,y_i,y_c) \leq w(x_i,x_c) \\ & x_i \in X_I, x_c \in X_C \\ & y_i \in Y_I, y_c \in Y_C \end{array}$$

is equivalent to MINBP without any convexity assumptions whatsoever

USEFUL PROPERTY

A restriction of the inner problem yields a relaxation of the overall problem and vice versa (Mitsos and Barton, 2006)

OPTIMAL VALUE EQUIVALENT REFORMULATION

• Define the inner optimal value function

$$w(x_i, x_c) = \min_{y_i, y_c} \{ f(x_i, x_c, y_i, y_c) \text{ s.t. } g(x_i, x_c, y_i, y_c) \le 0, y_i \in Y_I, y_c \in Y_C \}$$

• Then problem (e.g. Dempe and Zemkoho, 2011):

$$\min_{\substack{x_i, x_c, y_i, y_c \\ \text{s.t.}}} F(x_i, x_c, y_i, y_c) \\ \text{s.t.} G(x_i, x_c, y_i, y_c) \leq 0 \\ g(x_i, x_c, y_i, y_c) \leq 0 \\ f(x_i, x_c, y_i, y_c) \leq w(x_i, x_c) \\ x_i \in X_I, x_c \in X_C \\ y_i \in Y_I, y_c \in Y_C \\ \end{array}$$

is equivalent to MINBP without any convexity assumptions whatsoever

USEFUL PROPERTY

A restriction of the inner problem yields a relaxation of the overall problem and vice versa (Mitsos and Barton, 2006)

PROPOSED APPROACHES FOR DISCRETE BILEVEL PROGRAMMING

- INFLUENTIAL WORKS BY BARD ET AL., DEMPE ET AL. AND VICENTE ET AL., e.g.
 - The Mixed Integer Linear Bilevel Programming Problem, Moore & Bard (1990)
 - An Algorithm for the Mixed-Integer Nonlinear Bilevel Program. Prob., Edmunds & Bard (1992)
 - In the Discrete Linear Bilevel Programming Problem, Vicente, Savard & Judice (1996)
 - Practical Bilevel Optimization, Bard (1998)
 - Soundations of Bilevel Programming, Dempe (2002)
 - Discrete Bilevel Programming, Dempe, Kalashnikov & Ríos-Mercado (2005)
 - *Bilevel programming with discrete lower level problems*, Fanghänel & Dempe (2009)
- Advances on More General Classes
 - Global Optimization of Mixed-Integer Bilevel Program. Prob., Gümüş and Floudas (2005)
 - Global Solution of Nonlinear Mixed-Integer Bilevel Programs, Mitsos (2010)

CHALLENGES : ILLUSTRATIVE EXAMPLE (MOORE AND BARD, 1990)

CHALLENGES : ILLUSTRATIVE EXAMPLE (MOORE AND BARD, 1990)

CHALLENGE 1 : CONSTRUCTING A CONVERGENT LOWER BOUNDING PROBLEM

$$\begin{array}{ll} \min_{x,y} & -x - 10y \\ \text{s.t.} & y \in Y(x) \\ x \in [0,8], y \in [0,4] \\ x, y \in \mathbb{Z} \end{array}$$

CHALLENGE 2 : PARTITIONING THE INNER REGION

OUTLINE

INTRODUCTION

2 PROPOSED METHOD

- **3** BOUNDING PROBLEMS: INITIAL NODE
- BRANCHING & BOUNDING ON SUBDOMAINS
- 5 NUMERICAL RESULTS

6 CONCLUSIONS

BRANCH-AND-SANDWICH ALGORITHM^{1,2}

CONNECTION TO EARLIER WORK

- A deterministic global optimisation algorithm for bilevel programs with
 - twice continuously differentiable functions
 - 2 continuous decision variables
 - nonconvex inner problem satisfying regularity
- The Branch-and-Sandwich algorithm was proved to be ε -convergent based on
 - exhaustiveness and the general convergence theory (Horst and Tuy, 1996)
- Branch-and-Sandwich was tested on 33 small problems with promising numerical results

¹Kleniati, P. M. and Adjiman, C. S., 2011, Proceedings of the 21st European Symposium on Computer-Aided Process Engineering, Computer-Aided Chemical Engineering, 29, 602 – 606.

_____, 2014, Parts I & II, JOGO, DOI 10.1007/s10898-013-0121-7; DOI 10.1007/s10898-013-0120-8

WE EXTEND THE BRANCH-AND-SANDWICH ALGORITHM

TO TACKLE MIXED-INTEGER NONLINEAR BILEVEL PROBLEMS

CONVERGENT LOWER BOUNDING PROBLEM

- Employ the optimal value reformulation and replace the inner optimal value function $w(x_i, x_c)$ by a constant upper bound
 - the relaxed problem has one constraint (cut) only
 - the right hand side of the cut is updated when appropriate

PARTITIONING THE INNER REGION

• Branching scheme that allows branching on the inner variables

consider all inner subregions where (inner) global optima may lie

SUMMARY OF FEATURES

- Generation of two sets of upper and lower bounds for the inner and outer objective values
 - the resulting bounding problems are MINLPs
- Tree management with auxiliary lists of nodes as well as inner and outer fathoming rules
 - exploration of two decision spaces using a single branch-and-bound tree

OUTLINE

INTRODUCTION

PROPOSED METHOD

3 BOUNDING PROBLEMS: INITIAL NODE

BRANCHING & BOUNDING ON SUBDOMAINS

5 NUMERICAL RESULTS

6 CONCLUSIONS

INNER PROBLEM BOUNDING SCHEME

Inner lower bound – Consider no branching yet

- The inner bounding scheme is based on finding valid lower and upper bounds on $w(x_i, x_c)$ for all values of the outer vector variable (x_i, x_c)
- The inner lower bounding problem is

$$f^{L} = \min_{\substack{x_{i}, x_{c}, y_{i}, y_{c} \\ \text{s.t.}}} f(x_{i}, x_{c}, y_{i}, y_{c}) \\ g(x_{i}, x_{c}, y_{i}, y_{c}) \leq 0 \\ x_{i} \in X_{I}, x_{c} \in X_{C}, y_{i} \in Y_{I}, y_{c} \in Y_{C}$$

- A convex relaxation can be derived for problem class considered
 - use of techniques suitable for MINLPs, e.g. Adjiman et al. (2000), Tawarmalani and Sahinidis (2004)

$$\underline{f} = \min_{\substack{x_i, x_c, y_i, y_c \\ \text{s.t.}}} \quad \begin{array}{c} \check{f}(x_i, x_c, y_i, y_c) \\ \check{g}(x_i, x_c, y_i, y_c) \leq 0 \\ x_i \in X_I, x_c \in X_C, y_i \in Y_I, y_c \in Y_C \end{array}$$

INNER PROBLEM BOUNDING SCHEME

INNER UPPER BOUND – CONSIDER NO BRANCHING YET

- The inner bounding scheme is based on finding valid lower and upper bounds on $w(x_i, x_c)$ for all values of the outer vector variable (x_i, x_c)
- The inner upper bounding problem is the *robust counterpart* of the inner problem

$$\begin{aligned} f^{\mathrm{U}} &= \min_{\substack{y_i, y_c, t \\ \mathrm{s.t.}}} & t \\ \mathrm{s.t.} & f(x_i, x_c, y_i, y_c) \leq t \quad \forall (x_i, x_c) \in X_I \times X_C \\ & g(x_i, x_c, y_i, y_c) \leq 0 \quad \forall (x_i, x_c) \in X_I \times X_C \\ & y_i \in Y_I, y_c \in Y_C \end{aligned}$$

• An upper bound can be derived by using SIP techniques, e.g. Bhattacharjee et al. (2005), & interval arithmetic extended to mixed-integer problems, e.g. Apt and Zoeteweij (2007), Berger and Granvilliers (2009)

$$\bar{f} = \min_{\substack{y_i, y_c, t \\ \text{s.t.}}} t$$

$$\bar{f}(X_I, X_C, y_i, y_c) \le t$$

$$\bar{g}(X_I, X_C, y_i, y_c) \le 0$$

$$y_i \in Y_I, y_c \in Y_C$$

INNER PROBLEM BOUNDING SCHEME (CONT.)

MOTIVATION: WE MUST HAVE VALID INNER BOUNDS OVER THE CURRENT SUBDOMAIN

FIGURE: Inner lower bound

FIGURE: Inner upper bound

OUTER PROBLEM BOUNDING SCHEME

CONSIDER NO BRANCHING YET

• The proposed lower bounding problem is

$\min_{x_i, x_c, y_i, y_c}$	$F(x_i, x_c, y_i, y_c)$
s.t.	$G(x_i, x_c, y_i, y_c) \leq 0$
	$g(x_i, x_c, y_i, y_c) \leq 0$
	$f(x_i, x_c, y_i, y_c) \leq \overline{f}$
	$x_i \in X_I, x_c \in X_C, y_i \in Y_I, y_c \in Y_C$

- to tighten, add the inner KKT conditions with respect to the continuous inner variables y_c
 - based on regularity being satisfied for all the parameter values
- ► any feasible solution in the (MINBP) is feasible in the proposed relaxation

• For $(x_i, x_c) = (\bar{x}_i, \bar{x}_c)$, the upper bounding problem is (Mitsos et al., 2008)

- any feasible solution in the upper bounding problem is feasible in the (MINBP) IIR
 - set $F^{\text{UB}} := \min\{\overline{F}, \infty\}$ to express the incumbent

OUTER PROBLEM BOUNDING SCHEME

CONSIDER NO BRANCHING YET

• The proposed lower bounding problem is

$\min_{x_i, x_c, y_i, y_c}$	$F(x_i, x_c, y_i, y_c)$
s.t.	$G(x_i, x_c, y_i, y_c) \leq 0$
	$g(x_i, x_c, y_i, y_c) \leq 0$
	$f(x_i, x_c, y_i, y_c) \leq \overline{f}$
	$x_i \in X_I, x_c \in X_C, y_i \in Y_I, y_c \in Y_C$

- to tighten, add the inner KKT conditions with respect to the continuous inner variables y_c
 - based on regularity being satisfied for all the parameter values
- any feasible solution in the (MINBP) is feasible in the proposed relaxation
- For $(x_i, x_c) = (\bar{x}_i, \bar{x}_c)$, the upper bounding problem is (Mitsos et al., 2008)

```
 \begin{array}{ll} \min_{y_i,y_c} & F(\bar{x}_i,\bar{x}_c,y_i,y_c) \\ \text{s.t.} & G(\bar{x}_i,\bar{x}_c,y_i,y_c) \leq 0 \\ & g(\bar{x}_i,\bar{x}_c,y_i,y_c) \leq 0 \\ & f(\bar{x}_i,\bar{x}_c,y_i,y_c) \leq w(\bar{x}_i,\bar{x}_c) + \varepsilon_f \\ & y_i \in Y_I, y_c \in Y_C \end{array}
```

- any feasible solution in the upper bounding problem is feasible in the (MINBP)
- set $F^{\text{UB}} := \min\{\overline{F}, \infty\}$ to express the incumbent

OUTLINE

INTRODUCTION

- **2** PROPOSED METHOD
- **BOUNDING PROBLEMS: INITIAL NODE**
- BRANCHING & BOUNDING ON SUBDOMAINS
- 5 NUMERICAL RESULTS

6 CONCLUSIONS

LIST MANAGEMENT

AUXILIARY LISTS

- \mathcal{L} : is the classical list of 'open' nodes, corresponding to the outer problem
- \mathcal{L}^{I} : is the list of exclusively inner 'open' nodes
- \mathcal{L}_{X_p} : is the list of (outer & inner) nodes that cover the whole *Y* for a subdomain \mathcal{X}_p of *X*, $1 \le p \le n_p$
- Number n_p equals the number of partition sets $\mathcal{X}_p \subseteq X$ s.t. :
 - for each subdomain \mathcal{X}_p , the "whole" Y is maintained
- Two lists $\mathcal{L}_{\mathcal{X}_{p_1}}, \mathcal{L}_{\mathcal{X}_{p_2}}$ are called independent if $\mathcal{L}_{\mathcal{X}_{p_1}} \cap \mathcal{L}_{\mathcal{X}_{p_2}} = \emptyset$
 - ► two lists with common nodes, e.g. $S^1_{X_p}$ and $S^2_{X_p}$, are sublists of \mathcal{L}_{X_p}

• For each *p*, best inner upper bound lowest over *Y*, but largest over \mathcal{X}_p :

$$f_{\mathcal{X}_p}^{\mathrm{UB}} = \max\{\min_{j\in\mathcal{S}_{\mathcal{X}_p}^{\mathrm{I}}}\{\bar{f}^{(j)}\},\ldots,\min_{j\in\mathcal{S}_{\mathcal{X}_p}^{\mathrm{s}}}\{\bar{f}^{(j)}\}\}.$$

 $F^{(k)}$

MODIFIED BOUNDING PROBLEMS

ALLOW BRANCHING & CONSIDER A NODE $k \in \mathcal{L}_{\mathcal{X}_p}$

OUTER UPPER BOUND

$$k' := \underset{j \in \mathcal{L}_{\mathcal{X}_p}}{\operatorname{arg\,min}} w^{(j)}(\bar{x}_i, \bar{x}_c)$$

$$\begin{split} \bar{F}^{(k')} = & \min_{y_i, y_c} \quad F(\bar{x}_i, \bar{x}_c, y_i, y_c) \\ \text{s.t.} \quad G(\bar{x}_i, \bar{x}_c, y_i, y_c) \leq 0 \\ & g(\bar{x}_i, \bar{x}_c, y_i, y_c) \leq 0 \\ & f(\bar{x}_i, \bar{x}_c, y_i, y_c) \leq w^{(k')}(\bar{x}_i, \bar{x}_c) + \varepsilon_f \\ & y_i \in Y_I^{(k')}, y_c \in Y_C^{(k')} \end{split}$$

INNER LOWER BOUND

$$\underline{f}^{(k)} = \min_{\substack{x_i, x_c, y_i, y_c \\ \text{s.t.}}} \quad \underbrace{\check{f}^{(k)}(x_i, x_c, y_i, y_c)}_{\substack{x_i \in X_I^{(k)}, x_c \in X_C^{(k)} \\ y_i \in Y_I^{(k)}, y_c \in Y_C^{(k)} }$$

OUTER LOWER BOUND

$$= \min_{\substack{x_i, x_c, y_i, y_c \\ \text{s.t.}}} F(x_i, x_c, y_i, y_c)$$

$$= G(x_i, x_c, y_i, y_c) \le 0$$

$$g(x_i, x_c, y_i, y_c) \le 0$$

$$f(x_i, x_c, y_i, y_c) \le f_{\mathcal{X}_p}^{\text{UB}}$$

$$x_i \in X_I^{(k)}, x_c \in X_C^{(k)}$$

$$y_i \in Y_I^{(k)}, y_c \in Y_C^{(k)}$$
ER UPPER BOUND

$$\bar{f}^{(k)} = \min_{\substack{y_i, y_c, t \\ \text{s.t.}}} t \\ \text{s.t.} \quad \bar{f}(X_I^{(k)}, X_C^{(k)}, y_i, y_c) \le t \\ \bar{g}(X_I^{(k)}, X_C^{(k)}, y_i, y_c) \le 0 \\ y_i \in Y_I^{(k)}, y_c \in Y_C^{(k)}$$

NODE FATHOMING RULES NODE $k \in \mathcal{L} \cap \mathcal{L}_{\mathcal{X}_p}$

INNER FATHOMING RULES

F **1**
$$\underline{f}^{(k)} = \infty$$
 or
2 $\underline{f}^{(k)} > f_{\mathcal{X}_p}^{\text{UB}}$

then fathom, i.e. delete from \mathcal{L} (or \mathcal{L}^{I}) and $\mathcal{L}_{\mathcal{X}_{p}}$.

OUTER FATHOMING RULES

$$\begin{array}{ll} \text{IF} & \textcircled{I} & \underline{F}^{(k)} = \infty \text{ or} \\ & \textcircled{I} & \underline{F}^{(k)} \ge F^{\text{UB}} - \varepsilon_F \end{array}$$

then OUTER FATHOM, i.e. move from \mathcal{L} to \mathcal{L}^{I} . Hence, $k \in \mathcal{L}^{I} \cap \mathcal{L}_{\mathcal{X}_{p}}$.

NODE FATHOMING RULES NODE $k \in \mathcal{L} \cap \mathcal{L}_{\mathcal{X}_p}$

OUTLINE

INTRODUCTION

- **2** PROPOSED METHOD
- **3** BOUNDING PROBLEMS: INITIAL NODE
- BRANCHING & BOUNDING ON SUBDOMAINS
- **5** NUMERICAL RESULTS

6 CONCLUSIONS

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION $\min_{x \in [0,8]} \{-x - 10y \text{ s.t. } x \in \mathbb{Z}, y \in \underset{y \in [0,4]}{\operatorname{result}} \{y \text{ s.t. } y \in Y(x), y \in \mathbb{Z}\} \} \text{ with } F^* = -22 \text{ at } (x^*, y^*) = (2, 2)$

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION $\min_{x \in [0,8]} \{-x - 10y \text{ s.t. } x \in \mathbb{Z}, y \in \underset{y \in [0,4]}{\operatorname{arg}} \min\{y \text{ s.t. } y \in Y(x), y \in \mathbb{Z}\}\} \text{ with } F^* = -22 \text{ AT } (x^*, y^*) = (2,2)$

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION $\min_{x \in [0,8]} \{-x - 10y \text{ s.t. } x \in \mathbb{Z}, y \in \underset{y \in [0,4]}{\operatorname{arg}} \min\{y \text{ s.t. } y \in Y(x), y \in \mathbb{Z}\}\} \text{ with } F^* = -22 \text{ AT } (x^*, y^*) = (2, 2)$

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION $\min_{x \in [0,8]} \{-x - 10y \text{ s.t. } x \in \mathbb{Z}, y \in \underset{y \in [0,4]}{\operatorname{arg}} \min\{y \text{ s.t. } y \in Y(x), y \in \mathbb{Z}\}\} \text{ with } F^* = -22 \text{ AT } (x^*, y^*) = (2,2)$

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION $\min_{x \in [0,8]} \{-x - 10y \text{ s.t. } x \in \mathbb{Z}, y \in \underset{y \in [0,4]}{\operatorname{arg}} \min\{y \text{ s.t. } y \in Y(x), y \in \mathbb{Z}\}\} \text{ with } F^* = -22 \text{ AT } (x^*, y^*) = (2, 2)$

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION $\min_{x \in [0,8]} \{-x - 10y \text{ s.t. } x \in \mathbb{Z}, y \in \underset{y \in [0,4]}{\operatorname{arg}} \min\{y \text{ s.t. } y \in Y(x), y \in \mathbb{Z}\}\} \text{ with } F^* = -22 \text{ AT } (x^*, y^*) = (2,2)$

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION $\min_{x \in [0,8]} \{-x - 10y \text{ s.t. } x \in \mathbb{Z}, y \in \underset{y \in [0,4]}{\operatorname{arg}} \min\{y \text{ s.t. } y \in Y(x), y \in \mathbb{Z}\}\} \text{ with } F^* = -22 \text{ AT } (x^*, y^*) = (2, 2)$

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION $\min_{x \in [0,8]} \{-x - 10y \text{ s.t. } x \in \mathbb{Z}, y \in \underset{y \in [0,4]}{\operatorname{arg}} \min\{y \text{ s.t. } y \in Y(x), y \in \mathbb{Z}\}\} \text{ with } F^* = -22 \text{ AT } (x^*, y^*) = (2,2)$

Preliminary numerical results with $\varepsilon_f = 10^{-5}$ and $\varepsilon_F = 10^{-3}$

		Number of variables								
No.	Source	Problem	x _i	x _c	y _i	Уc	FUB	Nodes		
1	Moore & Bard (1990)	Example 1	1	0	1	0	-22	7		
2	Moore & Bard (1990)	Example 2	1	0	1	0	5	13		
3	Edmunds & Bard (1992)	Equation 3	0	1	1	0	$\frac{4}{9}$	1		
4	Sahin & Ciric (1998)	Example 4	0	2	2	0	-400	1		
5	Dempe (2002)	Equation 8.11	0	2	2	0	-10.4	3		
6	Mitsos (2010)	am_1_0_0_1_01	0	1	1	0	-1	1		
7	Mitsos (2010)	am_1_1_1_0_01	1	1	0	1	0.5	11		
8	Mitsos (2010)	am_1_1_1_1_01	1	1	1	1	-1	13		
9	Mitsos (2010)	am_1_1_1_1_02	1	1	1	1	0.209	1		
10	Mitsos (2010)	am_3_3_3_3_01	3	3	3	3	-2.5	1		

OUTLINE

INTRODUCTION

- **2** PROPOSED METHOD
- **3** BOUNDING PROBLEMS: INITIAL NODE
- BRANCHING & BOUNDING ON SUBDOMAINS
- **5** NUMERICAL RESULTS

CONCLUDING REMARKS

- Branch-and-Sandwich is a deterministic global optimisation algorithm
 - that can be applied to mixed-integer nonlinear bilevel problems
- Key features :
 - encompasses implicitly two branch-and-bound trees
 - introduces simple bounding problems, always obtained from the bounding problems of the parent node
 - allows branch-and-bound with respect to x and y, but at the same time it keeps track of the partitioning of Y for successively refined subdomains of X
- Performance is linked to the tightness of the inner upper bounds $f_{\chi_n}^{UB}$
- Numerical results appear promising
- Implementation & computational experience to investigate
 - alternative choices in the way each step of the proposed algorithm is performed
 - different branching strategies

ACKNOWLEDGMENTS

PROBLEM FORMULATION : CONTINUOUS CASE

- The optimistic bilevel problem is a LEADER-follower game
- The leader (outer) problem is:

$$\min_{x,y} F(x,y) \text{ s.t. } G(x,y) \le 0, \ (x,y) \in X \times Y, \ y \in \mathcal{Y}(x)$$
(BPP)

• $\mathcal{Y}(x)$ is the global optimal solution set of the follower *(inner)* problem:

$$\mathcal{Y}(x) = \underset{y \in Y}{\arg\min} f(x, y) \mid g(x, y) \le 0$$

- Common assumptions should apply, such as continuity of all functions and compactness of *X* and *Y*
- Assume also twice differentiability of all functions
- For the inner problem, assume constraint qualifications
- No convexity assumption is made

CONSTRAINT QUALIFICATION FOR THE INNER PROBLEM Recall the inner problem $\min_{y \in Y} \{f(x, y) \mid g(x, y) \le 0\}$

- Assume that a constraint qualification holds for all values of *x*
- Regularity ensures that the KKT conditions can be employed and are necessary
- If we replace $y \in Y$ by the corresponding bound constraints

$$y^{L} \leq y \leq y^{U},$$

the KKT conditions of the inner problem define the set below:

$$\Omega_{\text{KKT}} = \left\{ (x, y, \mu, \lambda, \nu) \middle| \begin{array}{l} \nabla_{y} f(x, y) + \mu \nabla_{y} g(x, y) - \lambda + \nu = 0, \\ \mu^{\text{T}} g(x, y) = 0, \ \mu \ge 0, \\ \lambda^{\text{T}} (y^{\text{L}} - y) = 0, \ \lambda \ge 0, \\ \nu^{\text{T}} (y - y^{\text{U}}) = 0, \ \nu \ge 0. \end{array} \right\}.$$

- Ω_{KKT} contains all points satisfying the KKT conditions of the inner problem
- If the inner problem is convex with a unique optimal solution for all values of x
 - the KKT conditions are also sufficient

MOTIVATING EXAMPLE (MITSOS AND BARTON, 2010)

$$\min_{y \in [-1,1]} y \text{ s.t. } y \in \operatorname*{arg\,min}_{y \in [-1,1]} 16y^4 + 2y^3 - 8y^2 - 3/2y + 1/2$$

INNER PROBLEM BOUNDING SCHEME Consider no branching yet

• The auxiliary relaxed inner problem is:

$$f^{\mathrm{L}} = \min_{x \in X, y \in Y} f(x, y) \text{ s.t. } g(x, y) \le 0$$

• The auxiliary restricted inner problem is:

$$f^{\mathrm{U}} = \max_{x \in X} \min_{y \in Y} f(x, y) \text{ s.t. } g(x, y) \le 0$$

INNER PROBLEM BOUNDING SCHEME (CONT.) Consider no branching yet

• The auxiliary relaxed inner problem is:

$$\underline{f} = \min_{x \in X, y \in Y} \breve{f}_{x,y}(x, y) \text{ s.t. } \breve{g}_{x,y}(x, y) \le 0$$

- Relaxation using convex underestimators $\check{f}_{x,y}(x, y)$ and $\check{g}_{x,y}(x, y)$ (e.g. Floudas, 2000, Tawarmalani and Sahinidis, 2002)
- The auxiliary restricted inner problem is:

$$\begin{aligned} f &= \max_{\substack{x_0, x, y, \mu, \lambda, \nu \\ \textbf{s.t.}}} & x_0, \\ \text{s.t.} & x_0 - f(x, y) \leq 0, \\ g(x, y) \leq 0, \\ (x, y) \in X \times Y, \\ (x, y, \mu, \lambda, \nu) \in \Omega_{\text{KKT}}. \end{aligned}$$

Relaxation using the KKT-approach (Still, 2004, Stein and Still, 2002)

OUTER PROBLEM BOUNDING SCHEME

CONSIDER NO BRANCHING YET

• The proposed lower bounding problem is:

$$\begin{split} \underline{F} = & \min_{x,y,\mu,\lambda,\nu} & F(x,y), \\ & \text{s.t.} & G(x,y) \leq 0, \\ & g(x,y) \leq 0, \\ & f(x,y) \leq \overline{f}, \\ & (x,y) \in X \times Y, \\ & (x,y,\mu,\lambda,\nu) \in \Omega_{\text{KKT}}, \end{split}$$

- ► any feasible solution in the BPP is feasible in the proposed relaxation
- need to solve to global optimality
- For $x = \bar{x}$, the upper bounding problem is (Mitsos et al., 2008):

$$\bar{F} = \min_{y \in Y} F(\bar{x}, y) \text{ s.t. } G(\bar{x}, y) \le 0, \quad g(\bar{x}, y) \le 0, \quad f(\bar{x}, y) \le \underline{w}(\bar{x}) + \varepsilon_f$$

• In this work,

$$\underline{w}(\overline{x}) = \min_{y \in Y} \breve{f}_y(\overline{x}, y) \text{ s.t. } \breve{g}_y(\overline{x}, y) \le 0$$

• Any feasible solution \bar{y} in the restricted problem is feasible in the BPP:

$$f(\bar{x}, \bar{y}) - \varepsilon_f \leq \underline{w}(\bar{x}) \leq w(\bar{x}) \leq f(\bar{x}, \bar{y}) + \varepsilon_f$$

OUTER UPPER BOUNDING PROBLEM Requires partitioning of the inner space *Y*

- Convexifying the inner problem for fixed x requires some form of refinement of Y
 - ▶ in order to compute tighter and tighter approximations of the inner problem over refined subregions of *Y*
- Subdivision of *Y* is usually applied to semi-infinite programs, but no branching with respect to *y*
 - the whole Y is always considered in subproblems
 - e.g. Bhattacharjee et al. (2005a;b), Floudas and Stein (2007), Mitsos et al. (2008a)
- We use partitioning of Y
 - no distinction between the inner and outer decision spaces during branching
 - ▶ possible to consider only some subregions of *Y* and eliminate others via fathoming
 - ▶ all *Y* subregions where global optima may lie are considered

AFTER FATHOMING : A USEFUL PRELIMINARY THEORETICAL RESULT

- Every independent list L_{X_p}, p ∈ {1,..., n_p}, still contains all promising subregions of Y where global optimal solutions may lie for any x ∈ X_p
- Define the set of fathomed *Y* domains for \mathcal{X}_p as follows:

$$\mathcal{F}_{\mathcal{X}_p} := \{ \bigcup_d Y^{(d)} \mid Y^{(d)} \subset Y \text{ deleted for all } x \in \mathcal{X}_p \}.$$

• Then, we prove by contradiction that

$$\mathcal{Y}(x) \cap \mathcal{F}_{\mathcal{X}_p} = \emptyset \; \forall x \in \mathcal{X}_p$$

• The sets $\mathcal{F}_{\mathcal{X}_p}$, $p = 1, \ldots, n_p$, are *infeasible* in the BPP

The Branch-and-Sandwich algorithm is ε -convergent

At termination, an ε -optimal solution of the bilevel problem is computed

PRELIMINARY NUMERICAL RESULTS WITH $\varepsilon_f = 10^{-5}$ and $\varepsilon_F = 10^{-3}$ for all problems, except No. 20 where $\varepsilon_F = 10^{-1}$

No.	NC Inner	n	m	r	FUB	Nodes	No.	NC Inner	n	m	r	F^{UB}	
1	Yes	0	1	0	-1	1	18	Yes	1	1	0	-2	
2	No	0	1	0	1	1	19	Yes	1	1	0	0.1875	
3	No	0	1	0	∞	1	20	Yes	1	1	0	-0.25	
1	Yes	0	1	1	-1	3	21	Yes	1	1	0	-0.258	
5	Yes	0	1	0	1	1	22	Yes	1	1	0	0.3125	
5	Yes	0	1	0	0.5	11	23	Yes	1	1	0	0.2095	
,	Yes	0	1	0	-1	3	24	Yes	1	1	1	0.2095	
3	No	0	1	0	∞	1	25	Yes	1	1	0	-1.755	
)	No	1	1	0	0	1	26	Yes	1	1	0	0	
0	Yes	1	1	0	-1	3	27	No	1	1	3	17	
1	Yes	1	1	0	0.5	11	28	No	1	1	3	22.5	
12	Yes	1	1	0	-0.8	1	29	Yes	1	2	2	0.193616	
3	Yes	1	1	0	0	11	30	No	2	2	3	1.75	
14	Yes	1	1	0	-1	27	31	No	2	3	3	29.2	
15	Yes	1	1	0	-1	23	32	Yes	2	3	0	-2.35	
6	Yes	1	1	0	0.25	15	33	Yes	5	5	1	-10	
17	Yes	1	1	0	0	13							

BRANCH-AND-BOUND TREE FOR PROBLEM NO. 11

