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BILEVEL OPTIMISATION PROBLEM
PROBLEM FORMULATION

A two-person, non-cooperative game in which the play is sequential

The Mixed-Integer Nonlinear Bilevel Problem is

min
xi,xc,yi,yc

F(xi, xc, yi, yc)

s.t. G(xi, xc, yi, yc) ≤ 0
(yi, yc) ∈ arg min

yi∈YI ,yc∈YC

{f (xi, xc, yi, yc) s.t. g(xi, xc, yi, yc) ≤ 0}

xi ∈ XI ⊂ ZZn1 , xc ∈ XC ⊂ IRn−n1

yi ∈ YI ⊂ ZZm1 , yc ∈ YC ⊂ IRm−m1

(MINBP)

Subscripts i and c stand for integer and continuous, respectively
Typical assumptions apply, such as

I continuity of all functions and compactness of the host sets

Assume also twice differentiability of the continuous relaxations of the functions

No special class or convexity assumptions are made
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OPTIMAL VALUE EQUIVALENT REFORMULATION

Define the inner optimal value function

w(xi, xc) = min
yi,yc
{f (xi, xc, yi, yc) s.t. g(xi, xc, yi, yc) ≤ 0, yi ∈ YI , yc ∈ YC}

Then problem (e.g. Dempe and Zemkoho, 2011):

min
xi,xc,yi,yc

F(xi, xc, yi, yc)

s.t. G(xi, xc, yi, yc) ≤ 0
g(xi, xc, yi, yc) ≤ 0

f (xi, xc, yi, yc) ≤ w(xi, xc)
xi ∈ XI , xc ∈ XC

yi ∈ YI , yc ∈ YC

is equivalent to MINBP without any convexity assumptions whatsoever

USEFUL PROPERTY

A restriction of the inner problem yields a relaxation of the overall problem and vice versa
(Mitsos and Barton, 2006)
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PROPOSED APPROACHES FOR DISCRETE BILEVEL PROGRAMMING

INFLUENTIAL WORKS BY BARD ET AL., DEMPE ET AL. AND VICENTE ET AL., e.g.
1 The Mixed Integer Linear Bilevel Programming Problem, Moore & Bard (1990)

2 An Algorithm for the Mixed-Integer Nonlinear Bilevel Program. Prob., Edmunds & Bard (1992)

3 The Discrete Linear Bilevel Programming Problem, Vicente, Savard & Judice (1996)

4 Practical Bilevel Optimization, Bard (1998)

5 Foundations of Bilevel Programming, Dempe (2002)

6 Discrete Bilevel Programming, Dempe, Kalashnikov & Rı́os-Mercado (2005)

7 Bilevel programming with discrete lower level problems, Fanghänel & Dempe (2009)

ADVANCES ON MORE GENERAL CLASSES

1 Global Optimization of Mixed-Integer Bilevel Program. Prob., Gümüş and Floudas (2005)

2 Global Solution of Nonlinear Mixed-Integer Bilevel Programs, Mitsos (2010)
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CHALLENGES : ILLUSTRATIVE EXAMPLE (MOORE AND BARD, 1990)

min
x∈[0,8]

−x− 10y

s.t. x ∈ ZZ
y ∈ arg min

y∈[0,4]
{y s.t. y ∈ Y(x), y ∈ ZZ}

0 1 2 3 4 5 6 7 8
0

1

2

3

4

x

y

Y(x) : Inner Feasible Region

(2,−21) (2,−22)

(1,−13) (1,−14) (1,−15) (1,−16) (1,−17) (1,−18)

−25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

−2x− 10y ≤ −15

←
(f(x,y),F(x,y))
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CHALLENGE 1 : CONSTRUCTING A CONVERGENT LOWER BOUNDING PROBLEM

min
x,y

−x− 10y

s.t. y ∈ Y(x)
x ∈ [0, 8], y ∈ [0, 4]

x, y ∈ ZZ

0 1 2 3 4 5 6 7 8
0

1
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3

4

x

y

Y(x) : Inner Feasible Region

(2,−21) (2,−22)

(3,−32)

(4,−42)

(1,−13)

(2,−23)

(3,−33)

(1,−14)

(2,−24)

(3,−34)

(1,−15)

(2,−25)

(1,−16)

(2,−26)

(1,−17) (1,−18)

−25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

−2x− 10y ≤ −15

←
(f(x,y),F(x,y))
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CHALLENGE 2 : PARTITIONING THE INNER REGION

min
x∈[0,8]

−x− 10y

s.t. x ∈ ZZ
y ∈ arg min

y∈[0,1]
{y s.t. y ∈ Y(x), y ∈ ZZ}

min
x∈[0,8]

−x− 10y

s.t. x ∈ ZZ
y ∈ arg min

y∈[2,4]
{y s.t. y ∈ Y(x), y ∈ ZZ}

0 1 2 3 4 5 6 7 8
0

1

2

3

4

x

y

Y(x) : Inner Feasible Region

(2,−21) (2,−22)

(1,−13)

(2,−23)

(1,−14)

(2,−24)

(1,−15)

(2,−25)

(1,−16)

(2,−26)

(1,−17) (1,−18)

−25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15−2x− 10y ≤ −15

y ≥ 2

y ≤ 1

←
(f(x,y),F(x,y))
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BRANCH-AND-SANDWICH ALGORITHM1,2

CONNECTION TO EARLIER WORK

A deterministic global optimisation algorithm for bilevel programs with
1 twice continuously differentiable functions
2 continuous decision variables
3 nonconvex inner problem satisfying regularity

The Branch-and-Sandwich algorithm was proved to be ε-convergent based on
I exhaustiveness and the general convergence theory (Horst and Tuy, 1996)

Branch-and-Sandwich was tested on 33 small problems with promising numerical results

1Kleniati, P. M. and Adjiman, C. S., 2011, Proceedings of the 21st European Symposium on Computer-Aided Process
Engineering, Computer-Aided Chemical Engineering, 29, 602 – 606.

2 , 2014, Parts I & II, JOGO, DOI 10.1007/s10898-013-0121-7; DOI 10.1007/s10898-013-0120-8
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WE EXTEND THE BRANCH-AND-SANDWICH ALGORITHM
TO TACKLE MIXED-INTEGER NONLINEAR BILEVEL PROBLEMS

CONVERGENT LOWER BOUNDING PROBLEM

Employ the optimal value reformulation and replace the inner optimal value function w(xi, xc) by a
constant upper bound

I the relaxed problem has one constraint (cut) only
I the right hand side of the cut is updated when appropriate

PARTITIONING THE INNER REGION

Branching scheme that allows branching on the inner variables
I consider all inner subregions where (inner) global optima may lie

SUMMARY OF FEATURES

Generation of two sets of upper and lower bounds for the inner and outer objective values
I the resulting bounding problems are MINLPs

Tree management with auxiliary lists of nodes as well as inner and outer fathoming rules
I exploration of two decision spaces using a single branch-and-bound tree

IMPERIAL COLLEGE LONDON BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 8 / 19



INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS CONCLUSIONS

OUTLINE

1 INTRODUCTION

2 PROPOSED METHOD

3 BOUNDING PROBLEMS: INITIAL NODE

4 BRANCHING & BOUNDING ON SUBDOMAINS

5 NUMERICAL RESULTS

6 CONCLUSIONS

IMPERIAL COLLEGE LONDON BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 8 / 19



INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS CONCLUSIONS

INNER PROBLEM BOUNDING SCHEME
INNER LOWER BOUND – CONSIDER NO BRANCHING YET

The inner bounding scheme is based on finding valid lower and upper bounds on w(xi, xc)
for all values of the outer vector variable (xi, xc)

The inner lower bounding problem is

f L = min
xi,xc,yi,yc

f (xi, xc, yi, yc)

s.t. g(xi, xc, yi, yc) ≤ 0
xi ∈ XI , xc ∈ XC, yi ∈ YI , yc ∈ YC

A convex relaxation can be derived for problem class considered
I use of techniques suitable for MINLPs, e.g. Adjiman et al. (2000), Tawarmalani and Sahinidis

(2004)

f = min
xi,xc,yi,yc

f̆ (xi, xc, yi, yc)

s.t. ğ(xi, xc, yi, yc) ≤ 0
xi ∈ XI , xc ∈ XC, yi ∈ YI , yc ∈ YC

IMPERIAL COLLEGE LONDON BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 9 / 19



INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS CONCLUSIONS

INNER PROBLEM BOUNDING SCHEME
INNER UPPER BOUND – CONSIDER NO BRANCHING YET

The inner bounding scheme is based on finding valid lower and upper bounds on w(xi, xc)
for all values of the outer vector variable (xi, xc)

The inner upper bounding problem is the robust counterpart of the inner problem

f U = min
yi,yc,t

t

s.t. f (xi, xc, yi, yc) ≤ t ∀(xi, xc) ∈ XI × XC

g(xi, xc, yi, yc) ≤ 0 ∀(xi, xc) ∈ XI × XC

yi ∈ YI , yc ∈ YC

An upper bound can be derived by using SIP techniques, e.g. Bhattacharjee et al. (2005),
& interval arithmetic extended to mixed-integer problems, e.g. Apt and Zoeteweij (2007),
Berger and Granvilliers (2009)

f̄ = min
yi,yc,t

t

s.t. f̄ (XI ,XC, yi, yc) ≤ t
ḡ(XI ,XC, yi, yc) ≤ 0

yi ∈ YI , yc ∈ YC
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INNER PROBLEM BOUNDING SCHEME (CONT.)
MOTIVATION : WE MUST HAVE VALID INNER BOUNDS OVER THE CURRENT SUBDOMAIN

FIGURE: Inner lower bound
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FIGURE: Inner upper bound
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OUTER PROBLEM BOUNDING SCHEME
CONSIDER NO BRANCHING YET

The proposed lower bounding problem is

min
xi,xc,yi,yc

F(xi, xc, yi, yc)

s.t. G(xi, xc, yi, yc) ≤ 0
g(xi, xc, yi, yc) ≤ 0
f (xi, xc, yi, yc) ≤ f̄

xi ∈ XI , xc ∈ XC, yi ∈ YI , yc ∈ YC

I to tighten, add the inner KKT conditions with respect to the continuous inner variables yc
F based on regularity being satisfied for all the parameter values

I any feasible solution in the (MINBP) is feasible in the proposed relaxation
For (xi, xc) = (x̄i, x̄c), the upper bounding problem is (Mitsos et al., 2008)

min
yi,yc

F(x̄i, x̄c, yi, yc)

s.t. G(x̄i, x̄c, yi, yc) ≤ 0
g(x̄i, x̄c, yi, yc) ≤ 0

f (x̄i, x̄c, yi, yc) ≤ w(x̄i, x̄c) + εf

yi ∈ YI , yc ∈ YC

I any feasible solution in the upper bounding problem is feasible in the (MINBP)
I set FUB := min{F̄,∞} to express the incumbent

IMPERIAL COLLEGE LONDON BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 12 / 19



INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS CONCLUSIONS

OUTER PROBLEM BOUNDING SCHEME
CONSIDER NO BRANCHING YET

The proposed lower bounding problem is

min
xi,xc,yi,yc

F(xi, xc, yi, yc)

s.t. G(xi, xc, yi, yc) ≤ 0
g(xi, xc, yi, yc) ≤ 0
f (xi, xc, yi, yc) ≤ f̄

xi ∈ XI , xc ∈ XC, yi ∈ YI , yc ∈ YC

I to tighten, add the inner KKT conditions with respect to the continuous inner variables yc
F based on regularity being satisfied for all the parameter values

I any feasible solution in the (MINBP) is feasible in the proposed relaxation
For (xi, xc) = (x̄i, x̄c), the upper bounding problem is (Mitsos et al., 2008)

min
yi,yc

F(x̄i, x̄c, yi, yc)

s.t. G(x̄i, x̄c, yi, yc) ≤ 0
g(x̄i, x̄c, yi, yc) ≤ 0

f (x̄i, x̄c, yi, yc) ≤ w(x̄i, x̄c) + εf

yi ∈ YI , yc ∈ YC

I any feasible solution in the upper bounding problem is feasible in the (MINBP)
I set FUB := min{F̄,∞} to express the incumbent

IMPERIAL COLLEGE LONDON BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 12 / 19



INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS CONCLUSIONS

OUTLINE

1 INTRODUCTION

2 PROPOSED METHOD

3 BOUNDING PROBLEMS: INITIAL NODE

4 BRANCHING & BOUNDING ON SUBDOMAINS

5 NUMERICAL RESULTS

6 CONCLUSIONS

IMPERIAL COLLEGE LONDON BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 12 / 19



INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS CONCLUSIONS

LIST MANAGEMENT
AUXILIARY LISTS

L: is the classical list of ‘open’ nodes, corresponding to the outer problem
LI: is the list of exclusively inner ‘open’ nodes
LXp : is the list of (outer & inner) nodes that cover the whole Y for a subdomain Xp

of X, 1 ≤ p ≤ np

Number np equals the number of partition sets Xp ⊆ X s.t. :
I for each subdomain Xp, the “whole” Y is maintained

Two lists LXp1
, LXp2

are called independent if LXp1
∩ LXp2

= ∅
I two lists with common nodes, e.g. S1

Xp
and S2

Xp
, are sublists of LXp

−1

Y

1

−1

X

1

1A 1B

(a) L[−1,1]

−1

Y

10

−1

X 0

1

1B

1C

1A

(b) L[−1,1]

−1

Y

10−0.5

−1

X 0

1
1D 1C

1B
1A

(c) L[−1,1]

−1

Y

10−0.5

−1

X 0

1
2A 2B 2C

1A 1B

(d) L[−1,0],L[0,1]

For each p, best inner upper bound lowest over Y , but largest over Xp:

f UB
Xp = max{ min

j∈S1
Xp

{f̄ (j)}, . . . , min
j∈Ss
Xp

{f̄ (j)}}.
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MODIFIED BOUNDING PROBLEMS
ALLOW BRANCHING & CONSIDER A NODE k ∈ LXp

OUTER UPPER BOUND
k′ := arg min

j∈ LXp

w(j)(x̄i, x̄c)

F̄(k′) = min
yi,yc

F(x̄i, x̄c, yi, yc)

s.t. G(x̄i, x̄c, yi, yc) ≤ 0
g(x̄i, x̄c, yi, yc) ≤ 0
f (x̄i, x̄c, yi, yc) ≤ w(k′)(x̄i, x̄c) + εf

yi ∈ Y(k′)
I , yc ∈ Y(k′)

C

INNER LOWER BOUND

f (k) = min
xi,xc,yi,yc

f̆ (k)(xi, xc, yi, yc)

s.t. ğ(k)(xi, xc, yi, yc) ≤ 0
xi ∈ X(k)

I , xc ∈ X(k)
C

yi ∈ Y(k)
I , yc ∈ Y(k)

C

OUTER LOWER BOUND

F(k) = min
xi,xc,yi,yc

F(xi, xc, yi, yc)

s.t. G(xi, xc, yi, yc) ≤ 0
g(xi, xc, yi, yc) ≤ 0

f (xi, xc, yi, yc) ≤ f UB
Xp

xi ∈ X(k)
I , xc ∈ X(k)

C
yi ∈ Y(k)

I , yc ∈ Y(k)
C

INNER UPPER BOUND

f̄ (k) = min
yi,yc,t

t

s.t. f̄ (X(k)
I ,X(k)

C , yi, yc) ≤ t
ḡ(X(k)

I ,X(k)
C , yi, yc) ≤ 0

yi ∈ Y(k)
I , yc ∈ Y(k)

C
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NODE FATHOMING RULES
NODE k ∈ L ∩ LXp

INNER FATHOMING RULES

IF 1 f (k) =∞ or
2 f (k) > f UB

Xp

then fathom, i.e. delete from L (or LI) and LXp .

OUTER FATHOMING RULES

IF 1 F(k) =∞ or
2 F(k) ≥ FUB − εF

then OUTER FATHOM, i.e. move from L to LI. Hence, k ∈ LI ∩ LXp .
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ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION
min

x∈[0,8]
{−x− 10y s.t. x ∈ ZZ, y ∈ arg min

y∈[0,4]
{y s.t. y ∈ Y(x), y ∈ ZZ}} WITH F∗ = −22 AT (x∗, y∗) = (2, 2)

0 4
0

8

1 X

Y

1
f (1)=1, f̄ (1)=4,

F(1)=−42, x̄(1)=2,
w(̄x)=2, F̄(1)=−22

IMPERIAL COLLEGE LONDON BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 16 / 19



INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS CONCLUSIONS

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION
min
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PRELIMINARY NUMERICAL RESULTS WITH εf = 10−5 AND εF = 10−3

Number of variables

No. Source Problem xi xc yi yc FUB Nodes

1 Moore & Bard (1990) Example 1 1 0 1 0 −22 7

2 Moore & Bard (1990) Example 2 1 0 1 0 5 13

3 Edmunds & Bard (1992) Equation 3 0 1 1 0 4
9 1

4 Sahin & Ciric (1998) Example 4 0 2 2 0 −400 1

5 Dempe (2002) Equation 8.11 0 2 2 0 −10.4 3

6 Mitsos (2010) am 1 0 0 1 01 0 1 1 0 −1 1

7 Mitsos (2010) am 1 1 1 0 01 1 1 0 1 0.5 11

8 Mitsos (2010) am 1 1 1 1 01 1 1 1 1 −1 13

9 Mitsos (2010) am 1 1 1 1 02 1 1 1 1 0.209 1

10 Mitsos (2010) am 3 3 3 3 01 3 3 3 3 −2.5 1
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CONCLUDING REMARKS

Branch-and-Sandwich is a deterministic global optimisation algorithm
I that can be applied to mixed-integer nonlinear bilevel problems

Key features :
1 encompasses implicitly two branch-and-bound trees
2 introduces simple bounding problems, always obtained from the bounding problems of the

parent node
3 allows branch-and-bound with respect to x and y, but at the same time it keeps track of the

partitioning of Y for successively refined subdomains of X

Performance is linked to the tightness of the inner upper bounds f UB
Xp

Numerical results appear promising

Implementation & computational experience to investigate
I alternative choices in the way each step of the proposed algorithm is performed
I different branching strategies
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INTRODUCTION BOUNDING SCHEME: INITIAL NODE CONVERGENCE NUMERICAL RESULTS

PROBLEM FORMULATION : CONTINUOUS CASE

The optimistic bilevel problem is a LEADER-follower game

The leader (outer) problem is:

min
x,y

F(x, y) s.t. G(x, y) ≤ 0, (x, y) ∈ X × Y, y ∈ Y(x) (BPP)

Y(x) is the global optimal solution set of the follower (inner) problem:

Y(x) = arg min
y∈Y

f (x, y) | g(x, y) ≤ 0

Common assumptions should apply, such as continuity of all functions and compactness of
X and Y

Assume also twice differentiability of all functions

For the inner problem, assume constraint qualifications

No convexity assumption is made
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CONSTRAINT QUALIFICATION FOR THE INNER PROBLEM
RECALL THE INNER PROBLEM min

y∈Y
{f (x, y) | g(x, y) ≤ 0}

Assume that a constraint qualification holds for all values of x

Regularity ensures that the KKT conditions can be employed and are necessary

If we replace y ∈ Y by the corresponding bound constraints

yL ≤ y ≤ yU,

the KKT conditions of the inner problem define the set below:

ΩKKT =

(x, y, µ, λ, ν)

∣∣∣∣∣∣∣∣
∇yf (x, y) + µ∇yg(x, y)− λ+ ν = 0,

µTg(x, y) = 0, µ ≥ 0,
λT(yL − y) = 0, λ ≥ 0,
νT(y− yU) = 0, ν ≥ 0.

 .

ΩKKT contains all points satisfying the KKT conditions of the inner problem

If the inner problem is convex with a unique optimal solution for all values of x
I the KKT conditions are also sufficient
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MOTIVATING EXAMPLE (MITSOS AND BARTON, 2010)

min
y∈[−1,1]

y s.t. y ∈ arg min
y∈[−1,1]

16y4 + 2y3 − 8y2 − 3/2y + 1/2
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Plot of f(y) = 16y 4 + 2y3 − 8y2 − 3/2y + 1/2

(e) −1 ≤ y ≤ 0
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Plot of f(y) = 16y 4 + 2y3 − 8y2 − 3/2y + 1/2

(f) 0 ≤ y ≤ 1
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INNER PROBLEM BOUNDING SCHEME
CONSIDER NO BRANCHING YET

The auxiliary relaxed inner problem is:

f L = min
x∈X,y∈Y

f (x, y) s.t. g(x, y) ≤ 0

The auxiliary restricted inner problem is:

f U = max
x∈X

min
y∈Y

f (x, y) s.t. g(x, y) ≤ 0
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INNER PROBLEM BOUNDING SCHEME (CONT.)
CONSIDER NO BRANCHING YET

The auxiliary relaxed inner problem is:

f = min
x∈X,y∈Y

f̆x,y(x, y) s.t. ğx,y(x, y) ≤ 0

I Relaxation using convex underestimators f̆x,y(x, y) and ğx,y(x, y) (e.g. Floudas, 2000,
Tawarmalani and Sahinidis, 2002)

The auxiliary restricted inner problem is:

f̄ = max
x0,x,y,µ,λ,ν

x0,

s.t. x0 − f (x, y) ≤ 0,
g(x, y) ≤ 0,
(x, y) ∈ X × Y,
(x, y, µ, λ, ν) ∈ ΩKKT.

I Relaxation using the KKT-approach (Still, 2004, Stein and Still, 2002)
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OUTER PROBLEM BOUNDING SCHEME
CONSIDER NO BRANCHING YET

The proposed lower bounding problem is:

F = min
x,y,µ,λ,ν

F(x, y),

s.t. G(x, y) ≤ 0,
g(x, y) ≤ 0,
f (x, y) ≤ f̄ ,
(x, y) ∈ X × Y,
(x, y, µ, λ, ν) ∈ ΩKKT,

I any feasible solution in the BPP is feasible in the proposed relaxation
I need to solve to global optimality

For x = x̄, the upper bounding problem is (Mitsos et al., 2008):

F̄ = min
y∈Y

F(x̄, y) s.t. G(x̄, y) ≤ 0, g(x̄, y) ≤ 0 , f (x̄, y) ≤ w(x̄) + εf

In this work,
w(x̄) = min

y∈Y
f̆y(x̄, y) s.t. ğy(x̄, y) ≤ 0

Any feasible solution ȳ in the restricted problem is feasible in the BPP:

f (x̄, ȳ)− εf ≤ w(x̄) ≤ w(x̄) ≤ f (x̄, ȳ) + εf
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OUTER UPPER BOUNDING PROBLEM
REQUIRES PARTITIONING OF THE INNER SPACE Y

Convexifying the inner problem for fixed x requires some form of refinement of Y
I in order to compute tighter and tighter approximations of the inner problem over refined

subregions of Y

Subdivision of Y is usually applied to semi-infinite programs, but no branching with
respect to y

I the whole Y is always considered in subproblems
I e.g. Bhattacharjee et al. (2005a;b), Floudas and Stein (2007), Mitsos et al. (2008a)

We use partitioning of Y
I no distinction between the inner and outer decision spaces during branching
I possible to consider only some subregions of Y and eliminate others via fathoming
I all Y subregions where global optima may lie are considered
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AFTER FATHOMING : A USEFUL PRELIMINARY THEORETICAL RESULT

Every independent list LXp , p ∈ {1, . . . , np}, still contains all promising subregions of Y
where global optimal solutions may lie for any x ∈ Xp

Define the set of fathomed Y domains for Xp as follows:

FXp := {
⋃

d

Y(d) | Y(d) ⊂ Y deleted for all x ∈ Xp}.

Then, we prove by contradiction that

Y(x) ∩ FXp = ∅ ∀x ∈ Xp

The sets FXp , p = 1, . . . , np, are infeasible in the BPP

Y (d)

Xp
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THE BRANCH-AND-SANDWICH ALGORITHM IS ε-CONVERGENT
AT TERMINATION, AN ε-OPTIMAL SOLUTION OF THE BILEVEL PROBLEM IS COMPUTED

Convergent best inner upper bound
limq→∞ f UB

Xpq
= minj∈Sx̄{f̄ (j)}

= minj∈Sx̄ miny∈Y(j){f (x̄, y) s.t. g(x̄, y) ≤ 0}
= w(x̄)

εf -finite Convergent
inner B-&-B scheme

Certain-in-the-limit fathoming by outer infeasibility rule
f (x̄, ȳ) ≤ f UB

Xpq

|f UB
Xpq
− w(x̄)| ≤ εf ∀ q ≥ q′

}
⇒ f (x̄, ȳ) ≤ w(x̄) + εf

ȳ /∈ Yεf (x̄) ⇒ f (x̄, ȳ) > w(x̄) + εf

Consistent bounding scheme: F(kq)

and F̄(kq) are identical in the limit
Bound-improving selection operation

The Branch-and-Sandwich algorithm
is ε-convergent by Horst and Tuy (1996)
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PRELIMINARY NUMERICAL RESULTS WITH εf = 10−5 AND εF = 10−3

FOR ALL PROBLEMS, EXCEPT NO. 20 WHERE εF = 10−1

No. NC Inner n m r FUB Nodes

1 Yes 0 1 0 −1 1

2 No 0 1 0 1 1

3 No 0 1 0 ∞ 1

4 Yes 0 1 1 −1 3

5 Yes 0 1 0 1 1

6 Yes 0 1 0 0.5 11

7 Yes 0 1 0 −1 3

8 No 0 1 0 ∞ 1

9 No 1 1 0 0 1

10 Yes 1 1 0 −1 3

11 Yes 1 1 0 0.5 11

12 Yes 1 1 0 −0.8 1

13 Yes 1 1 0 0 11

14 Yes 1 1 0 −1 27

15 Yes 1 1 0 −1 23

16 Yes 1 1 0 0.25 15

17 Yes 1 1 0 0 13

No. NC Inner n m r FUB Nodes

18 Yes 1 1 0 −2 19

19 Yes 1 1 0 0.1875 47

20 Yes 1 1 0 −0.25 49

21 Yes 1 1 0 −0.258 27

22 Yes 1 1 0 0.3125 39

23 Yes 1 1 0 0.2095 31

24 Yes 1 1 1 0.2095 31

25 Yes 1 1 0 −1.755 11

26 Yes 1 1 0 0 1

27 No 1 1 3 17 1

28 No 1 1 3 22.5 1

29 Yes 1 2 2 0.193616 3

30 No 2 2 3 1.75 1

31 No 2 3 3 29.2 1

32 Yes 2 3 0 −2.35 1

33 Yes 5 5 1 −10 3
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BRANCH-AND-BOUND TREE FOR PROBLEM NO. 11

1

2

6

x∈[0.1,0.55]

7

10

y∈[−1,−0.5]

11

y∈[−0.5,0]

x∈[0.55,1]

y∈[−1,0]

3

4

x∈[0.1,0.55]

5

8

y∈[0,0.5]

9

y∈[0.5,1]

x∈[0.55,1]

y∈[0,1]

f (1)=−52.50, f UB
[0.1,1]=0.57, F(1)=−0.50, F̄(1)=∞

f (2)=−24, f̄ (2)=0.57, F(2)=∞ f (3)=−22.60, f UB
[0.1,1]=−0.10,

F(3)=0.50, F̄(3)=∞

f (4)=−14.20,

f̄ (4)=−0.10,
F(4)=0.50,
F̄(4)=−

f (6)=−14.50,

f̄ (6)=0.31

f (5)=−15.40,

f UB
[0.55,1]=−0.55,

F(5)=0.50,
F̄(5)=∞

f (7)=−16,

f̄ (7)=0.57

f (8)=−2,

f̄ (8)=−0.55,
F(8)=0.50,
FUB=0.50

f (9)=−4.70,

f̄ (9)=−0.55,
F(9)=0.50,
F̄(9)=0.50

f (10)=−4.60,

f̄ (10)=0

f (11)=−1.70,

f̄ (11)=0.57
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