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BILEVEL OPTIMISATION PROBLEM
PROBLEM FORMULATION

@ A two-person, non-cooperative game in which the play is sequential

o The Mixed-Integer Nonlinear Bilevel Problem is

min F(xi,Xe, Yi, Ye)
XisXesYisYe
s.t. G(xi,%e, yirye) <0
(i, ¥e) € argmin {f(x;, xc,yi,¥e) 8-t g(xi, Xe, yi, ye) < 0} (MINBP)
Yi€Yye€Yce

X €EX; CZ" ,x. € Xc CR"™
€Y, CZ" ) y. € Yc CR"™

Subscripts i and c¢ stand for integer and continuous, respectively

Typical assumptions apply, such as
> continuity of all functions and compactness of the host sets

Assume also twice differentiability of the continuous relaxations of the functions

No special class or convexity assumptions are made
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OPTIMAL VALUE EQUIVALENT REFORMULATION

@ Define the inner optimal value function

W(xi7x6) = gr_liyn{f(xivxcayiayc) s.t. g(xivxcayiayﬂ') < Ovyi €Y,y € YC}

@ Then problem (e.g. Dempe and Zemkoho, 2011):

min F(xi, X, yi, Ye)
XisXesYisYe
s.t. G(xi,xe,yi,yc) <0

g(xhxt‘:yhyt‘) S 0
S (i xe, yiy ye) < wixi, xe)
Xi € X1,x. € Xc
yi € Y1,y € Yc

is equivalent to MINBP without any convexity assumptions whatsoever
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OPTIMAL VALUE EQUIVALENT REFORMULATION

@ Define the inner optimal value function

w(xi, xc) = min{f (x;, Xc, yi, ye) s.t. g(xi, Xe, vi, ye) < 0,yi € Yi,y. € Yc}

YisYe

@ Then problem (e.g. Dempe and Zemkoho, 2011):

min F(xi, Xe, Yi, Ye)
XisXesYisYe
s.t. G(xi, xe,yi,yc) <0

g(xi7x87yi7y0) S 0
S, xe, yi, ye) < wixi, xe)
xi € X1,x. € Xc
yi € Yi,yc € Yc

is equivalent to MINBP without any convexity assumptions whatsoever

USEFUL PROPERTY

A restriction of the inner problem yields a relaxation of the overall problem and vice versa
(Mitsos and Barton, 2006)
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PROPOSED APPROACHES FOR DISCRETE BILEVEL PROGRAMMING

@ INFLUENTIAL WORKS BY BARD ET AL., DEMPE ET AL. AND VICENTE ET AL., e.g.
@ The Mixed Integer Linear Bilevel Programming Problem, Moore & Bard (1990)
@ An Algorithm for the Mixed-Integer Nonlinear Bilevel Program. Prob., Edmunds & Bard (1992)
@ The Discrete Linear Bilevel Programming Problem, Vicente, Savard & Judice (1996)
@ Practical Bilevel Optimization, Bard (1998)
@ Foundations of Bilevel Programming, Dempe (2002)
@ Discrete Bilevel Programming, Dempe, Kalashnikov & Rios-Mercado (2005)
@ Bilevel programming with discrete lower level problems, Fanghinel & Dempe (2009)

@ ADVANCES ON MORE GENERAL CLASSES
@ Global Optimization of Mixed-Integer Bilevel Program. Prob., Giimiis and Floudas (2005)
@ Global Solution of Nonlinear Mixed-Integer Bilevel Programs, Mitsos (2010)
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CHALLENGES : ILLUSTRATIVE EXAMPLE (MOORE AND BARD, 1990)

min —x — 10y
x€[0,8]
s.t. xXeEZ
y € argmin{ys.t.y € Y(x),y € Z}

y€[0,4]

Y(x) : Inner Feasible Region
T T

.
—252 + 20y < 30

ny = = X
(2,-21) (2.-22) .
(N Fo)
s a a ® ® ®
(1,-13) (1,-14) (1,-15) (1,-16) (1,-17) 8)
20 —y<15
. . , . , , ]
3 T 2 s i 5 s 7 3
M
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CHALLENGES : ILLUSTRATIVE EXAMPLE (MOORE AND BARD, 1990)

min —x — 10y
x€[0,8]
s.t. xXeEZ
y € argmin{ys.t.y € Y(x),y € Z}
y€[0,4]

Y(x) : Inner Feasible Region

.
—252 + 20y < 30

= ® x x x \ 4
(2,-21) (2.-22) .
(9 Fxy) \

AN
1 ® " ® ® @
(1-13) (1.-14) (1-15) (1-16) (1-17) wfie
20—y <15
. , \ . \ \ I
() 1 2 3 4 5 5 7 [
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CHALLENGE 1 : CONSTRUCTING A CONVERGENT LOWER BOUNDING PROBLEM

min —x — 10y
xy
s.t. y € Y(x)
x€[0,8],y€[0,4]
X,y €EZ

Y(x) : Inner Feasible Region
T T T

—25x + 20y < 30

® ®
(3-32) (3,-33)

® =
(2-22) (2,-23)
") Fxy)

®
(2-21)

® ®
(1,-16) 1-17) 1,-18)

20—y <15
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CHALLENGE 2 : PARTITIONING THE INNER REGION

min —x — 10y min —x — 10y
x€[0,8] x€[0,8]
s.t. XEZL s.t. xXEZ
y € argmin{ys.t.y € Y(x),y € Z} y € argmin{ys.t.y € Y(x),y € Z}
yE[,1] yE[2,4]

() : Inner Feasible Region
T T T T

—252 + 20y < 30

= 1] B B =
(2,-21) (2-22) (2,-23) (2,-24) (2,-25) (2,-26)
() Foxy)

@-13) (1-14) (1-15) (1,-16) (-17) 1,-18)

20—y <15

IMPERIAL C O BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 6/19



INTRODUCTIC DING PROBL

OUTLINE

© PROPOSED METHOD

MINLP WORKSHOP 6/19



INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS CoNCLU

BRANCH-AND-SANDWICH ALGORITHM! -2
CONNECTION TO EARLIER WORK

@ A deterministic global optimisation algorithm for bilevel programs with

@ twice continuously differentiable functions
@ continuous decision variables
© nonconvex inner problem satisfying regularity

o The Branch-and-Sandwich algorithm was proved to be e-convergent based on

> exhaustiveness and the general convergence theory (Horst and Tuy, 1996)

@ Branch-and-Sandwich was tested on 33 small problems with promising numerical results

'Kleniati, P. M. and Adjiman, C. S., 2011, Proceedings of the 21* European Symposium on Computer-Aided Process
Engmeermg, Computer-Aided Chemical Engineering, 29, 602 — 606.
, 2014, Parts I & 11, JOGO, DOI 10.1007/s10898-013-0121-7; DOI 10.1007/s10898-013-0120-8
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BRANCHING & BOUNDING

INTRODUCTION BOUNDING PROBLEMS

WE EXTEND THE BRANCH-AND-SANDWICH ALGORITHM

TO TACKLE MIXED-INTEGER NONLINEAR BILEVEL PROBLEMS

CONVERGENT LOWER BOUNDING PROBLEM
@ Employ the optimal value reformulation and replace the inner optimal value function w(x;, x.) by a

constant upper bound
the relaxed problem has one constraint (cut) only

the right hand side of the cut is updated when appropriate

v

PARTITIONING THE INNER REGION
@ Branching scheme that allows branching on the inner variables
consider all inner subregions where (inner) global optima may lie

SUMMARY OF FEATURES
@ Generation of two sets of upper and lower bounds for the inner and outer objective values

the resulting bounding problems are MINLPs
@ Tree management with auxiliary lists of nodes as well as inner and outer fathoming rules

exploration of two decision spaces using a single branch-and-bound tree

MINLP WORKSHOP 8/19
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INNER PROBLEM BOUNDING SCHEME
INNER LOWER BOUND — CONSIDER NO BRANCHING YET

@ The inner bounding scheme is based on finding valid lower and upper bounds on w(x;, x.)
for all values of the outer vector variable (x;, x)

@ The inner lower bounding problem is

L .
fr= . Ixmyr_ly S, Xe, yi, ye)
s.t. 8(xi, xe, yi,ye) <0

Xi EX],XC GXc,y,' S Y],yc € Ye

@ A convex relaxation can be derived for problem class considered
» use of techniques suitable for MINLPs, e.g. Adjiman et al. (2000), Tawarmalani and Sahinidis

(2004)
f = min f(xiyxcayiayt)
XisXesVisYe
s.t. 8(xi, xe,yi,9e) <0

xi € X1,x. € Xc,yi € Y1,y € Yo
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INNER PROBLEM BOUNDING SCHEME
INNER UPPER BOUND — CONSIDER NO BRANCHING YET

@ The inner bounding scheme is based on finding valid lower and upper bounds on w(x;, x.)
for all values of the outer vector variable (x;, x)

@ The inner upper bounding problem is the robust counterpart of the inner problem

Y= min t
YisYest
st f(xiyxe, yi,ye) <t V(xi,xe) € X1 x X¢
g(xhxcayi)yc) SO v(xth) € X; X Xc

yi € Y1,y. € Yc

@ An upper bound can be derived by using SIP techniques, e.g. Bhattacharjee et al. (2005),
& interval arithmetic extended to mixed-integer problems, e.g. Apt and Zoeteweij (2007),
Berger and Granvilliers (2009)

f= min t
YisYeot

s.t. f(Xn, Xe,yi,ye) <t
g(X1, Xc,yi,ye) <0
Yi € YlyyC S YC

IMPERIAL COLLEGE LONDON BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 10/19



INTRODUCTION

PROPOSED METHOD

BRANCHING & BOUNDING O

DOMAINS NUMERICAL

INNER PROBLEM BOUNDING SCHEME (CONT.)

MOTIVATION : WE MUST HAVE VALID INNER BOUNDS OVER THE CURRENT SUBDOMAIN

f(xy)

FIGURE: Inner lower bound

Plot of f(x,y) = xzy +sin(y)

FIGURE: Inner upper bound

Plot of f(x,y) = y2/x

T T 16 T T
X:gs x=1,F=3
x=0.! _ . B
-1 i 14 x=2,F =6
x=4,F =18
12 4
10 b

«y)= (o.ﬁy
N 1

f(x.y)

2 3 4 5 6

IMPERIAL C

wl
w
@
IS

25

MINLP WORKSHOP 11/19



NUMERICAL RESULTS Con

INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS

OUTER PROBLEM BOUNDING SCHEME

CONSIDER NO BRANCHING YET
@ The proposed lower bounding problem is

min F(xi, Xc, yiy Ye)
XisXe ) VisYe
s.t. G(xi, X, yi,ye) < 0
g(xi7x87yi7yf) SQ
f(xi,-xmyiyyc) Sf
X € X[,Xc S Xc,y,- S Y;,yc € Ye

> to tighten, add the inner KKT conditions with respect to the continuous inner variables y.
* based on regularity being satisfied for all the parameter values
> any feasible solution in the (MINBP) is feasible in the proposed relaxation

> any feasible solution in the upper bounding problem is feasible in the (MINBP)

> set FUB := min{F, co} to express the incumbent
BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 12/19
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OUTER PROBLEM BOUNDING SCHEME

CONSIDER NO BRANCHING YET
@ The proposed lower bounding problem is

min F(xi, Xc, yiy Ye)
XisXe ) VisYe
s.t. G(xi, X, yi,ye) < 0
g(xi7x87yi7yf) SQ
f(xiaxcayiyyc) Sf
X € X[,Xc S Xc,y,- S Y;,yc € Ye

> to tighten, add the inner KKT conditions with respect to the continuous inner variables y.
* based on regularity being satisfied for all the parameter values
> any feasible solution in the (MINBP) is feasible in the proposed relaxation

@ For (x;, x.) = (X, X ), the upper bounding problem is (Mitsos et al., 2008)

{vn;n F()_€i7)_fc,yi:y0)
s.t. G(Xi, Xe, yi,ye) <0

g(xhxc’yi»yc‘) S 0
S (X, Xe, yis ye) < w(Xi, %) + &f
yi € Yi,y. € Yc

> any feasible solution in the upper bounding problem is feasible in the (MINBP)

FYB .= min{F, oo} to express the incumbent
BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 12/19
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LIST MANAGEMENT
AUXILIARY LISTS
L: is the classical list of ‘open’ nodes, corresponding to the outer problem
£ is the list of exclusively inner ‘open’ nodes
Lx,: is the list of (outer & inner) nodes that cover the whole Y for a subdomain X,
of X,1<p<mn

@ Number 7, equals the number of partition sets &, C X s.t. :
» for each subdomain X}, the “whole” Y is maintained
e Two lists L, , Lx,, are called independent if Lx, N Lx,, = 0

> two lists with common nodes, e.g. S/IYP and Sgcp , are sublists of £ X,

-1 1 -1 0 1 -1 —0.5 0 1 -1 —0.5 0 1

1 1 1 1
1 Ip | lc 247\ 2B 2c

X 4 15 X 0 15 X0 15 X 0
14 14 1a 1p

-1 -1 -1 -1

Y Y Y Y

(@ Li—11 ®) L1, © Li—1 @ Li—1,0, Lpo,1

@ For each p, best inner upper bound lowest over Y, but largest over X),:

f(%? = max{ min {f9},..., min {f9}}.
jesk, J€SY,

IMPERIAL COLLEGE L y BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 13/19
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MODIFIED BOUNDING PROBLEMS
ALLOW BRANCHING & CONSIDER A NODE k € @

OUTER UPPER BOUND
kK = arg min W(l) (Xiaxc)
je
— ’ . - =
F&) — min F(Xi, Xc, Yis Ye)
s.t. G, X, yi,yc) <0
8% Xe, yirye) <0
f(xi75€c:l}’i7y6) < Wk(,k ) (5, %) + &f
yi € Yy e vd)

INNER LOWER BOUND

f<l‘) = min f(k) (Xi, %c, Yis Ye)
= XisXcsYiYe

sto 30 (g, xe, yiye) <0

X € Xl(k)yxc € X(k)

yi € Yl(k)yyc € Y§)

IMPERIAL COLLEGE

BRANCH-AND-SANDWICH ALGORITHM

OUTER LOWER BOUND
min F(xi, X, Yis ye)
XisXesYisYe

s.t. G(xi, Xe,yirye) <0
8(xi, xe, yi,ye) <0

S (xiy Xe, yis ye) <

X € Xl(k)axc € X(k)

E(k) —

yier® yerd
<
INNER UPPER BOUND
f(k) = min ¢
YisYest B . .
S.L. f(XI( ),Xé),yi,yc) <t
_ k k
g(x! ):kX((;);yi»)’cz <0
yi€ ¥y e vl
MINLP WORKSHOP 14/19
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NODE FATHOMING RULES
NODEk € LN EXF

INNER FATHOMING RULES
Ir @ f(k) = oo or
(%) UB
o f >pr

then fathom, i.e. delete from £ (or £') and Lx,.

v
OUTER FATHOMING RULES
IF @ F ® = o0 or
@ FY > F® — ¢
then OUTER FATHOM, i.e. move from £ to £'. Hence, k € £' N Lx,.
V.
IMPERIAL C | O BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 15/19
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NODE FATHOMING RULES
NODEk € LN EXF

INNER FATHOMING RULES
Ir @ f(k) = 00 or
>} [(k) >f,%],3

then fathom, i.e. delete from £ (or £) and Lx,.

OUTER FATHOMING RULES

,J
o O & O
IF OF(k):ooor

@ FV > F" — ¢ . -

then OUTER FATHOM, i.e. move from £ to £'. Hence, k € £' N Lx,.
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INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION
min {—x — 10ys.t.x € Z, y € argmin{ys.t.y € Y(x),y € Z}} WITHF™ = =22 AT (x",y") = (2,2)

x€10,8] ye[0,4]
' . FO=1, 70 =4,

@ FD =42, 5D =,

0l ) w(@)=2, F(D=—22
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INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION
min {—x — 10ys.t.x € Z, y € argmin{ys.t.y € Y(x),y € Z}} WITHF™ = =22 AT (x",y") = (2,2)

x€10,8] ye[0,4]

8
D=1, fB=4,
FD=——4 FUB—_2

=

FD =1, 7@ =4, FO =2 7@ =4, FG) =_a2,
FO=_18 3 =2, w® (%)=2 (lowest), F®) =—22
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BOUNDING PROBLEMS

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION
min {—x — 10ys.t.x € Z, y € argmin{ys.t.y € Y(x),y € Z}} WITHF™ = =22 AT (x",y") = (2,2)

x€[0,8]

8

IMPERIAL C

ye[0,4]

=1, (P =a,
FD=_g2 FUB=_2

>2

2)
FD =1, 7@ =4, F® =2, 7O =4, FG) =_ua2,
FO—_18 i3 =2, w® @)=2 (owesy), F® =—22
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INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION
min {—x — 10ys.t.x € Z, y € argmin{ys.t.y € Y(x),y € Z}} WITHF™ = =22 AT (x",y") = (2,2)
ye[0,4]

x€[0,8]

D=1, 78 =1 f9=2, 79 =4 [O=2> 13

MINLP WORKSHOP 16/19

BRANCH-AND-SANDWICH ALGORITHM

IMPERIAL C



BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS CONCLUSIONS

INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS

ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION
min {—x — 10ys.t.x € Z, y € argmin{ys.t.y € Y(x),y € Z}} WITHF™ = =22 AT (x",y") = (2,2)
ye[0,4]

x€[0,8]

D=1, ffB=4,
FD=_42 FUB=_2

=

)y 7@ _4
() UB_ f S f s (5)_ UB
V=1 fa, =1 FO—_a =2> 0%,
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ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION

ghl)n]{ —x—10ys.t.x € Z, y € argmin{ys.t.y € Y(x),y € Z}} WITH F" = =22 AT (x",y") = (2,2)
X ye[0,4]

=1, P8 =a,
FO=_g FUB=_2

>2

IN‘

\ (5>71

\
x <1 \
0= s (Ot

(10) _ (ny_y 701y _ !
19 =c0 =1, 7D =4 FO_ ) FO_

(5)—yp < (UB
[=2>rx,
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ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION

ghl)n]{ —x—10ys.t.x € Z, y € argmin{ys.t.y € Y(x),y € Z}} WITH F" = =22 AT (x",y") = (2,2)
X yE([0,4]
B I . f(l)zl,/}JB:4,
z EEE B I I 5(1)2_42, FUB__ 9y
) - _
o 1 >2
?
x<3
6 fO=i
k<1 x>0 ® s
fO=2> P
i\ 9,
_ ®) = =2, fB=
(10) _ (ny_y (1) _ ! f x
£09 —co F=1, 700 =4 FO_ 1 T 5
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ILLUSTRATIVE EXAMPLE REVISITED : EXTENDED-TREE VERSION

ghl)n]{ —x—10ys.t.x € Z, y € argmin{ys.t.y € Y(x),y € Z}} WITH F" = =22 AT (x",y") = (2,2)
X yE([0,4]
N I . f(l)zl,f}(m:4,
z N 5(1)2_42, FUB__ 9y
(',- _
o 1 >2
2
x<3
6 fO=i
k<1 x>2

[(7):171"(%1;:1 [(5):2 >f(%‘;

8 9) _n (UB_
F®=2 1O =2, /P =2,
F® =_2; FO=_»

£00) Zog D 70 g
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PRELIMINARY NUMERICAL RESULTS WITH &7 = 107> AND erp =10~ 3

Number of variables

No. Source Problem X X¢ Yi Ye FUB Nodes
1 Moore & Bard (1990) Example 1 1 0 1 0 —22 7
2 Moore & Bard (1990) Example 2 1 0 1 0 5 13
3 Edmunds & Bard (1992)  Equation 3 0 1 1 0 g 1
4 Sahin & Ciric (1998) Example 4 0 2 2 0 —400 1
5 Dempe (2002) Equation 8.11 0 2 2 0 —10.4 3
6 Mitsos (2010) am.1.0.0.1.01 0 1 1 0 —1 1
7 Mitsos (2010) 1 1 0 1 0.5 11
8 Mitsos (2010) am_1.1.1.1.01 1 1 1 1 —1 13
9 Mitsos (2010) am.1.1.1.1.02 1 1 1 1 0.209 1
10 Mitsos (2010) am_3.3.33.01 3 3 3 3 —2.5 1
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INTRODUCTION PROPOSED METHOD BOUNDING PROBLEMS BRANCHING & BOUNDING ON SUBDOMAINS NUMERICAL RESULTS

CONCLUDING REMARKS

@ Branch-and-Sandwich is a deterministic global optimisation algorithm
> that can be applied to mixed-integer nonlinear bilevel problems

Key features :
@ encompasses implicitly two branch-and-bound trees
@ introduces simple bounding problems, always obtained from the bounding problems of the
parent node
@ allows branch-and-bound with respect to x and y, but at the same time it keeps track of the
partitioning of Y for successively refined subdomains of X

Performance is linked to the tightness of the inner upper bounds f,%]?

Numerical results appear promising

Implementation & computational experience to investigate

» alternative choices in the way each step of the proposed algorithm is performed
» different branching strategies
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INTRODUCTION BOUNDING SCHEME: INITIAL NODE CONVERGENCE NUMERICAL RESULTS

PROBLEM FORMULATION : CONTINUOUS CASE

@ The optimistic bilevel problem is a LEADER-follower game

@ The leader (outer) problem is:

min F(x,y) s.t. G(x,y) <0, (x,y) €X XY, y € Y(x) (BPP)
X,y

@ Y(x) is the global optimal solution set of the follower (inner) problem:

Y(x) = argminf(x,y) | g(x,y) <0

yeyYy

o Common assumptions should apply, such as continuity of all functions and compactness of
Xand Y
o Assume also twice differentiability of all functions

o For the inner problem, assume constraint qualifications

@ No convexity assumption is made
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INTRODUCTION BOUNDING SCHEME: INITIAL NODE CONVERGENCE NUMERICAL RESULTS

CONSTRAINT QUALIFICATION FOR THE INNER PROBLEM
RECALL THE INNER PROBLEM meiryx{f(x,y) | g(x,y) <0}

@ Assume that a constraint qualification holds for all values of x
@ Regularity ensures that the KKT conditions can be employed and are necessary
o If we replace y € Y by the corresponding bound constraints
» <y <y
the KKT conditions of the inner problem define the set below:
Vi (5,3) + uVyg(x,y) = A+v =0,
pog(x,y) =0, p >0,

A=y =0,1>0,
Viy—y)=0,v>0.

o Qxyr contains all points satisfying the KKT conditions of the inner problem

Qxrr = S (x5, 14, A, )

o If the inner problem is convex with a unique optimal solution for all values of x
» the KKT conditions are also sufficient
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INTRODUCTIC BOUNDING SCHEME: INITIAL NODE CONVERGENCE NUMERICAL RE!

MOTIVATING EXAMPLE (MITSOS AND BARTON, 2010)

min_ys.t.y € argmin 16y* + 2y’ — 8y* — 3/2y +1/2
ye[=1,1 ye[=1,1]

Plot of f(y) = 16y * + 2y® - 8y? - 3/2y + 1/2 Plot of f(y) = 16y ¢ + 2y® - 8y? - 3/2y + 1/2

fy)

(e —1<y<0 Ho<y<lI

IMPERIAL ] _ BRANCH-AND-SANDWICH ALGORITHM MINLP WORKSHOP 19/19



INTRODUCTION B CONVERGENCE NUMERICAL RESULT:

INNER PROBLEM BOUNDING SCHEME
CONSIDER NO BRANCHING YET

o The auxiliary relaxed inner problem is:

fL = min f(x,y)s.t.g(x,y) <0

xEX,yeyY’

o The auxiliary restricted inner problem is:

U .
= .t. <
f7 = maxminf(x,y) s.t. g(x,y) <0
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INTRODUCTION

CONVERGENCE NUMERICAL RESU

INNER PROBLEM BOUNDING SCHEME (CONT.)

CONSIDER NO BRANCHING YET

o The auxiliary relaxed inner problem is:

f= XGI}(nneyﬁc,y(x y) .t &y, y) <0

> Relaxation using convex underestimators fx.y(x, y) and gy, (x,y) (e.g. Floudas, 2000,
Tawarmalani and Sahinidis, 2002)

@ The auxiliary restricted inner problem is:

7= max X0,
X053, s A sV
s.t. x0 —f(x,y) <0,
g(x,y) <0,
(x,y) €X XY,

(%, 9, 1, A, v) € Qxxr-

> Relaxation using the KKT-approach (Still, 2004, Stein and Still, 2002)
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INTRODUCTION

CONVERGENCE NUMERICAL RESULTS

OUTER PROBLEM BOUNDING SCHEME

CONSIDER NO BRANCHING YET

@ The proposed lower bounding problem is:

F= min  F(xy),
X,y A,V
s.t. G(x,y) <0,
g(x,y) <0,
flxy) <f,
(xr,y) eX XY,

(%, 3, iy A, v) € Qs

> any feasible solution in the BPP is feasible in the proposed relaxation
> need to solve to global optimality

@ For x = X, the upper bounding problem is (Mitsos et al., 2008):
F=minF(x,y)s.t. G(x,y) <0, g(x,y) <0, f(%y) <w() +¢&
y

@ In this work,
w(X) = minfy(x,y) s.t. &(%,y) <0

@ Any feasible solution y in the restricted problem is feasible in the BPP:

f&Y) —g <w@®) < wx) <fx))+e
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INTRODUCTION BOUNDING SCHEME: I . CONVERGENCE NUMERICAL RE!

OUTER UPPER BOUNDING PROBLEM
REQUIRES PARTITIONING OF THE INNER SPACE Y

@ Convexifying the inner problem for fixed x requires some form of refinement of Y
> in order to compute tighter and tighter approximations of the inner problem over refined
subregions of Y

o Subdivision of Y is usually applied to semi-infinite programs, but no branching with
respect to y

> the whole Y is always considered in subproblems
> e.g. Bhattacharjee et al. (2005a;b), Floudas and Stein (2007), Mitsos et al. (2008a)

@ We use partitioning of ¥
> no distinction between the inner and outer decision spaces during branching
> possible to consider only some subregions of Y and eliminate others via fathoming
» all Y subregions where global optima may lie are considered
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INTRODUCTION BOUNDING SCHEME: INITIAL NODE C /ERG NUMERICAL RESULTS

AFTER FATHOMING : A USEFUL PRELIMINARY THEORETICAL RESULT

o Every independent list Lx,, p € {1,...,n,}, still contains all promising subregions of ¥
where global optimal solutions may lie for any x € &),

o Define the set of fathomed ¥ domains for &), as follows:

Fx, ={{JY' | Y C ¥ deleted for all x € X, }.
d

@ Then, we prove by contradiction that
Yx)NFx, =0Vx € X,

@ The sets Fx,,p = 1,...,n, are infeasible in the BPP

p

y(d)
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INTRODUCTION BOUNDING SCHEME: INITIAL NODE CONVERGENCE NUMERICAL RESU

THE BRANCH-AND-SANDWICH ALGORITHM IS e-CONVERGENT

AT TERMINATION, AN £-OPTIMAL SOLUTION OF THE BILEVEL PROBLEM IS COMPUTED

Convergent best inner upper bound

limg— 00 f)lgz = minjes, {fV} ef-finite Convergent
= minjes, minyey(i) {f(x,y) s.t. g(%,y) <0} inner B-&-B scheme
=w(x)

¥

Certain-in-the-limit fathoming by outer infeasibility rule
f&3) <fxy

z a = f®%y) <w®) +e
P w@ <gVed f@3) S wim) +e

Y& Ve (%) = f(xY) > wE) +ef

Consistent bounding scheme: F o) [Bound—im roving selection o eration]
and F) are identical in the limit o = o

~_

The Branch-and-Sandwich algorithm
is e-convergent by Horst and Tuy (1996)
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INTRODUCTION

PRELIMINARY NUMERICAL RESULTS WITH &7 = 107> AND erp =10~ 3

FOR ALL PROBLEMS, EXCEPT NO. 20 WHERE e = 10~

No. NC Inner n m r FUB Nodes No. NC Inner n m r FUB Nodes
1 Yes 0 1 0 —1 1 18 Yes 1 1 0 -2 19
2 No 0 1 0 1 1 19 Yes 1 1 0 0.1875 47
3 No 0 1 0 oo 1 20 Yes 1 1 0 —0.25 49
4 Yes 0 1 1 —1 3 21 Yes 1 1 0 —0.258 27
5 Yes 0 1 0 1 1 22 Yes 1 1 0 0.3125 39
6 Yes 0 1 0 0.5 11 23 Yes 1 1 0 0.2095 31
7 Yes 0 1 0 —1 3 24 Yes 1 1 1 0.2095 31
8 No 0 1 0 oo 1 25 Yes 1 1 0 —1.755 11
9 No 1 1 0 0 1 26 Yes 1 1 0 0 1
10 Yes 1 1 0 —1 3 27 No 1 1 3 17 1
11 Yes 1 1 0 0.5 11 28 No 1 1 3 22.5 1
12 Yes 1 1 0 —0.8 1 29 Yes 1 2 2 0.193616 3
13 Yes 1 1 0 0 11 30 No 2 2 3 1.75 1
14 Yes 1 1 0 —1 27 31 No 2 3 3 29.2 1
15 Yes 1 1 0 -1 23 32 Yes 2 3 0 —2.35 1
16 Yes 1 1 0 0.25 15 33 Yes 5 5 1 —10 3
17 Yes 1 1 0 0 13
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INTRODUCTION BOUNDING SCHEME: INITIAL NODE

CONVERGENCE NUMERICAL R

BRANCH-AND-BOUND TREE FOR PROBLEM NoO. 11

FO==52.50, 7% ;=0.57, F(D=—0.50, F(V =00

@ =-22.60, fol ;) =—0.10,
5(3)—0 50, F®) =00

x€[0.55,1]

W =140, O =—15.40,
r { F®=—0.10, f[%l.gss,l]z_o‘ss’
7N =0.57 & F*) =0.50, F®) =0.50,
FH—_ FO) —o
y€[—1,-0.5] y€[—0.5,0] y€[0,0.5] y€[0.5,1]
10 T ‘Qn 3
10 a1 PO 8 9) O 40
F®=_0.55, 7O =—0.55,
149 =—4.60, _f(”)=—1A7O, F®) —0.50, F® =0.50,
719 =0 70 =0.57 FUB—0.50 FO =0.50
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