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A Motivating Problem

[n]: Set of candidate investment projects
c: Cost vector (of size n)
b: Budget
µi , σ

2
i : Mean and variance of project i return (uncorrelated)

Pick projects to optimize mean-variance criterion:

min



−

∑

i

µixi + λ

√∑

i

σ2
i x2

i : c>x ≤ b, x ∈ {0,1}n




Mean risk combinatorial optimization
[Shen et al ’03, Atamturk’08, Nikolova’10, Baumann et al’13]

Ahmed and Yu Constrained Submodular Polyhedra MINLP 2014 2 / 23



A Motivating Problem

[n]: Set of candidate investment projects
c: Cost vector (of size n)
b: Budget
µi , σ

2
i : Mean and variance of project i return (uncorrelated)

Pick projects to optimize mean-variance criterion:

min



−

∑

i

µixi + λ

√∑

i

σ2
i x2

i : c>x ≤ b, x ∈ {0,1}n




Mean risk combinatorial optimization
[Shen et al ’03, Atamturk’08, Nikolova’10, Baumann et al’13]

Ahmed and Yu Constrained Submodular Polyhedra MINLP 2014 2 / 23



A Motivating Problem

[n]: Set of candidate investment projects
c: Cost vector (of size n)
b: Budget
µi , σ

2
i : Mean and variance of project i return (uncorrelated)

Pick projects to optimize mean-variance criterion:

min



−

∑

i

µixi + λ

√∑

i

σ2
i x2

i : c>x ≤ b, x ∈ {0,1}n




Mean risk combinatorial optimization
[Shen et al ’03, Atamturk’08, Nikolova’10, Baumann et al’13]

Ahmed and Yu Constrained Submodular Polyhedra MINLP 2014 2 / 23



A Motivating Problem

[n]: Set of candidate investment projects
c: Cost vector (of size n)
b: Budget
µi , σ

2
i : Mean and variance of project i return (uncorrelated)

Pick projects to optimize mean-variance criterion:

min



−

∑

i

µixi + λ

√∑

i

σ2
i x2

i : c>x ≤ b, x ∈ {0,1}n




Mean risk combinatorial optimization
[Shen et al ’03, Atamturk’08, Nikolova’10, Baumann et al’13]

Ahmed and Yu Constrained Submodular Polyhedra MINLP 2014 2 / 23



Concave Cost Combinatorial Optimization

min
{

d>x + f (a>x) : x ∈ X ⊆ {0,1}n
}

where f is a univariate concave function

↓

min
{

d>x + w : w ≥ f (a>x), x ∈ X ⊆ {0,1}n
}

Goal:
Polyhedral description/relaxation of conv(P ∩ X ) where

P :=
{

(w , x) ∈ R× {0,1}n : w ≥ f (a>x)
}

Simple case: Cardinality constraint X = {x ∈ [0,1]n : e>x ≤ K}
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Submodular Functions

Definition
A function F : {0,1}n → R is submodular if

F (x + ei)− F (x) ≥ F (y + ei)− F (y) ∀ x ≤ y , s.t. xi = yi = 0

If f is concave and a ∈ Rn
+ then F (x) := f (a>x) is submodular.

{0,0}	   {1,0}	   {0,1}	   {1,1}	  

F (x1, x2) =
p

9x1 + 16x2
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Submodular Polyhedra

P := {(w , x) : w ≥ f (a>x)} is the epigraph of a submodular
function

Separation/Optimization over conv(P) is easy
[Edmonds’71, Lovasz’82]:
Given (w , x):

1 Sort components of x so that x(1) ≥ x(2) · · · ≥ x(n).
2 Let ∂(i) = f (

∑
j≤i a(j))− f (

∑
j<i a(j)),∀i > 0, and ∂0 = f (0).

3 Then (w , x) ∈ conv(P)⇔ ∂0 +
∑

i ∂(i)x(i) ≤ w

Submodular inequalities in MINLP:
Atamturk et al. ’08,’09,’12, Tawarmalani’10, A.+Papageorgiou’13,
Bauman et al.’13 ....
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Cardinality Constrained Submodular Polyhedra

We are interested in conv(P ∩ X ) where X is a cardinality
constraint

General cardinality constrained submodular minimization
min{F (x) : x ∈ X} is strongly NP-hard
However concave cardinality constrained minimization
min{f (a>x) : x ∈ X} is easy (Onn’03)
⇒ Combinatorial separation algorithm

Goal: Extend the submodular inequalities to incorporate
cardinality constraint
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Illustration

w �
p

x2
1 + x2

2
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Illustration

w � ⇢0 + ⇢1x1 + ⇢2x2
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Results

P =
{

(w , x) ∈ R× {0,1}n : w ≥ f (a>x)
}

X = {x ∈ [0,1]n : e>x ≤ K}

Unweighted case (identical ai ’s): Complete description of
conv(P ∩ X )

Weighted case (general ai ): Family of facets/valid inequalities by
lifting

Computational results for mean-risk knapsack
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Unweighted Case

Assume ai = 1 thus f (a>x) = f (|S|) where xi = 1 for all i ∈ S

Let S := {S ⊆ [n] : |S| ≤ K}
(w , x) ∈ conv(P ∩ X )⇔ ρ0 +

∑

i∈[n]

ρixi ≤ w

where ρ is an optimal solution to the (dual) LP:

max ρ0 +
∑

i∈[n]

ρixi

s.t. ρ0 +
∑

i∈S

ρi ≤ f (|S|) ∀ S ∈ S

The primal LP:
min

∑

S∈S

f (|S|)P(S)

s.t.
∑

S∈S:i∈S

P(S) = xi ∀i ∈ [n]

∑

S∈S

P(S) = 1, P(S) ≥ 0 ∀ S ∈ S
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Unweighted Case: Construction

Given x ∈ X , construct a feasible solution to the dual based on
order and values of xi

⇒ Gives a valid inequality

Construct a feasible solution to the primal with equal objective
value

⇒ Proves optimality
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Unweighted Case: Dual Solution

Assume 1 =: x0 ≥ x1 ≥ x2 ≥ · · · ≥ xn (by reindexing)
Let zi := Kxi −

∑K−1
j=i xj for i = 0,1, . . . ,K

Note that zi ≥ zi+1 for all i = 0,1, . . . ,K
Let y :=

∑n
j=K xj

Let i0 := argmax{0 ≤ i ≤ K − 1 : zi ≥ y ≥ zi+1}
The dual solution:

ρi =





f (0) i = 0
f (i)− f (i − 1) 1 ≤ i ≤ i0
f (K )−f (i0)

K−i0
i0 < i ≤ n

Note that ρi = ∂i for i ≤ i0
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Unweighted Case: Validity

Consider any i0 ∈ {0, . . . ,K − 1}
Consider arbitrary S ∈ S
Let S1 = S ∩ {1, . . . , i0} and S2 = S \ S1

Let i1 = |S1| and i2 = |S2|
Need to show:

ρ0 +
∑

i∈S

ρi ≤ f (S) = f (i1 + i2) (?)

The lhs of (?):

∂0 +
∑

i∈S1

∂i +
∑

i∈S2

ρi ≤ f (i1) + i2 ·
f (K )− f (i0)

K − i0

by construction and validity of the usual submodular inequality
corresponding to S1
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Unweighted Case: Validity (contd.)

Sufficient to show that

f (i1) + i2 ·
f (K )− f (i0)

K − i0
≤ f (i1 + i2)

Assume i2 > 0 otherwise we are done
Rearranging

f (K )− f (i0)

K − i0
≤ f (i1 + i2)− f (i1)

i2

The above inequality can be shown using concavity of f (i) and
i1 ≤ i0 ≤ K
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Unweighted Case: Primal Solution

Need to construct P(S) for all S ∈ S := {S ⊆ [n] : |S| ≤ K}

1 2 . . . i0 i0 + 1 . . . n

{1, 2, . . . , i0}
{1, 2, . . . , i0} [ C

;
{1}
{1, 2}

{1, 2, . . . , i0} [ C

...

...
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Unweighted Case: Primal Solution

P(∅) = 1− x1
P({1, . . . , i}) = xi − xi+1 for i = 1, . . . , i0 − 1
P({1, . . . , i0}) =

zi0
−y

K−i0

Key Lemma:
There exists a nonnegative solution to the following linear system∑

C:C∈C Q(C) = xi , i = i0 + 1, . . . ,n where
C = {C ⊂ {i0 + 1, . . . ,n} : |C| = K − i0}

P({1, . . . , i0} ∪ C) = Q(C) for all C ∈ C

The constructed primal solution is feasible and has the same
objective value as that of the dual problem
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Weighted Case: Exact Lifting

Consider a set S ⊆ [n] with |S| = K
The usual submodular inequality ∂0 +

∑
i∈S ∂ixi ≤ w is a facet of

conv(P ∩ {x : xi = 0 ∀ j 6∈ S})
Compute coefficients of variables not in S by (sequence
dependent) lifting
Lifting problem is a concave minimization problem over a
cardinality system .. solvable in O(n3) [Atamturk and
Naraynan’09, Onn’03]
Resulting (facet-defining) lifted inequality (LI):

∂0 +
∑

i∈S

∂ixi +
∑

i 6∈S

λixi ≤ w
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Weighted Case: Approximate Lifting

Sort x1 ≥ x2 ≥ · · · ≥ xn

Let Ti = argmax{a(T ) : T ⊆ [i − 1], |T | = K − 1} for all i > K
Let γi = f (a(Ti ∪ {i}))− f (a(Ti)) for all i = K + 1, . . . ,n
The approximate lifted inequality:

∂0 +
K∑

i=1

∂ixi +
n∑

i=K+1

γixi ≤ w

is valid for conv(P ∩ X )

Proof: 0 ≤ γi ≤ λi for all i > K
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Weighted Case: Remarks on Approximate Lifting

The approximate lifting inequality is a version of the unweighted
inequality corresponding to i0 = K − 1

∂i ≤ γi for all i > K with the inequality being strict when f is strictly
monotone (e.g. square root)

Can be computed in O(n log n) time
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Computations: Instances

Mean-risk Knapsack:

min



−

∑

i

µixi + λ

√∑

i

σ2
i xi : c>x ≤ b, x ∈ {0,1}n





1,080 unweighted and 1,080 weighted instances randomly
generated (n = 50,80,100)

Knapsack to Cardinality: Let c1 ≤ · · · ≤ cn and pick K such that
c1 + · · ·+ cK ≤ b and c1 + · · ·+ cK+1 > b
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Computations: Experiments

Compare branch-and-cut time and nodes for
Mixed Integer SOCP formulation (Replace xi by x2

i ) [SCOP]
SOCP + 5 rounds of usual submodular inequalities [Edmonds]
SOCP + 5 rounds of exact separated inequalities in the unweighted
case, or SOCP + 5 rounds of approximate lifted inequality in the
weighted case [Lifted]

Implemented in Python + Gurobi 5.6
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Computations: Performance profiles (Time)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Computations: Averages

SOCP Edmonds Lifted
Unweighted

Time: 703 528 295
Nodes: 221,111 135,444 75,811

Weighted
Time: 208 132 122

Nodes: 59,779 34,366 27,928
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Concluding Remarks

P =
{

(w , x) ∈ R× {0,1}n : w ≥ f (a>x)
}

X = {x ∈ [0,1]n : e>x ≤ K}

Summary:
Unweighted case (identical ai ’s): Complete description of
conv(P ∩ X )
Weighted case (general ai ): Family of facets/valid inequalities by
lifting
Computational results for mean-risk knapsack

Some open issues:
Handle correlations

√
x>Σx by introducing new variables for cross

terms
Mixed integer setting
“Submodular relaxations” of other classes of MINLP
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