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A Motivating Problem

@ [n]: Set of candidate investment projects

@ c: Cost vector (of size n)

@ b: Budget

@ Lj, a;?: Mean and variance of project i return (uncorrelated)
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A Motivating Problem

@ [n]: Set of candidate investment projects

@ c: Cost vector (of size n)

@ b: Budget

@ Lj, a;?: Mean and variance of project i return (uncorrelated)

Pick projects to optimize mean-variance criterion:

min —Z,u,'x,'—i—)\ Zo;?x,. - c¢'x<b, xe{0,1
i \

Mean risk combinatorial optimization
[Shen et al '03, Atamturk’08, Nikolova'10, Baumann et al’13]

Ahmed and Yu Constrained Submodular Polyhedra MINLP 2014 2/23



Concave Cost Combinatorial Optimization

min {de v fa'x): xeXc{o, 1}”}

where f is a univariate concave function
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Concave Cost Combinatorial Optimization

min {de v fa'x): xeXc{o, 1}”}
where f is a univariate concave function

!

min {de+ w: w>f(a'x), xeXC {0,1}”}
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Concave Cost Combinatorial Optimization

min {de +f(a'x): xeXc{o, 1}”}
where f is a univariate concave function
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Polyhedral description/relaxation of conv(? N X) where
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Concave Cost Combinatorial Optimization

min {de +f(a'x): xeXc{o, 1}”}
where f is a univariate concave function
1l

min {de+ w: w>f(a'x), xeXC {0,1}”}

Polyhedral description/relaxation of conv(? N X) where

P = {(W,X) ERx{0,1}": w> f(aTx)}

Simple case: Cardinality constraint X = {x € [0,1]": e'x < K}
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Submodular Functions

Definition
A function F : {0,1}" — R is submodular if

F(x+€)—F(x)>F(y+€)—F(y) Yx<y,stxi=y=0

If f is concave and a € R} then F(x) := f(a' x) is submodular.

F(ay,22) = 921 + 1672
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Submodular Polyhedra

e P:={(w,x): w>f(a'x)} is the epigraph of a submodular
function
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Submodular Polyhedra

e P:={(w,x): w>f(a'x)} is the epigraph of a submodular
function

@ Separation/Optimization over conv(P) is easy
[Edmonds’71, Lovasz’82]:

Given (w, x):
@ Sort components of x so that x(1) > X2 - - - > X(n).
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Submodular Polyhedra

e P:={(w,x): w>f(a'x)} is the epigraph of a submodular
function

@ Separation/Optimization over conv(P) is easy
[Edmonds’71, Lovasz’82]:
Given (w, x):
@ Sort components of x so that x(1) > X2 - - - > X(n).
e Let (9(,') = f(zjgia(j)) — f(ZK,aU)),Vi > 0, and gy = f(O)
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Submodular Polyhedra

e P:={(w,x): w>f(a'x)} is the epigraph of a submodular
function

@ Separation/Optimization over conv(P) is easy
[Edmonds’71, Lovasz’82]:
Given (w, x):
@ Sort components of x so that X(1) > X2)- -+ > X(n)-
e Let (9(,') = f(zjgia(j)) — f(ZK,aU)),Vi > 0,and gy = f(O)
© Then (w,x) € conv(P) & o + >, OiyXi) < W

@ Submodular inequalities in MINLP:
Atamturk et al. '08,09,12, Tawarmalani’10, A.+Papageorgiou’13,
Bauman et al’13 ....
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Cardinality Constrained Submodular Polyhedra

@ We are interested in conv(P N X) where X is a cardinality
constraint
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Cardinality Constrained Submodular Polyhedra

@ We are interested in conv(P N X) where X is a cardinality
constraint

@ General cardinality constrained submodular minimization
min{F(x) : x € X} is strongly NP-hard

@ However concave cardinality constrained minimization
min{f(a'x) : x € X} is easy (Onn’03)
= Combinatorial separation algorithm

@ Goal: Extend the submodular inequalities to incorporate
cardinality constraint
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P={(w.x) eRx{0,1}": w=f(a'x)}

X={xec[0,1]": e'x <K}
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P = {(W,X) eRx{0,1}": w> f(aTx)}

X={xec[0,1]": e'x <K}

@ Unweighted case (identical a;’s): Complete description of
conv(P N X)
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@ Unweighted case (identical a;’s): Complete description of
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@ Weighted case (general a;): Family of facets/valid inequalities by
lifting
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P = {(W,X) eRx{0,1}": w> f(aTx)}

X={xec[0,1]": e'x <K}

@ Unweighted case (identical a;’s): Complete description of
conv(P N X)

@ Weighted case (general a;): Family of facets/valid inequalities by
lifting

@ Computational results for mean-risk knapsack
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Unweighted Case

@ Assume a; = 1 thus f(a' x) = f(|S|) where x;, = 1 foralli € S
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Unweighted Case

@ Assume a; = 1 thus f(a' x) = f(|S|) where x;, = 1 foralli € S
@ LetS:={SC[n: |S <K}
o (w,x)€conv(PNX) & po+ Y pixi<w
ie[n]
where p is an optimal solution to the (dual) LP:

max  po + Zpixi
i€[n]

st. po+ Y pi<f(S) VSeS
ieS
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Unweighted Case

@ Assume a; = 1 thus f(a' x) = f(|S|) where x;, = 1 foralli € S
@ LetS:={SC[n: |S <K}
o (w,x)€conv(PNX) & po+ Y pixi<w
ie[n]
where p is an optimal solution to the (dual) LP:

max po + Zpixi

i€[n]
st. po+ Y pi<f(S) VSeS
ieS
@ The primal LP:
> (IS)P(S)
Ses
st. > P(S)=x Vi e [n]

Ses:ieS

Y P(S)=1,P(S)>0 VSeS

Ses
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Unweighted Case: Construction

@ Given x € X, construct a feasible solution to the dual based on
order and values of x;
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= Gives a valid inequality

@ Construct a feasible solution to the primal with equal objective
value
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Unweighted Case: Construction

@ Given x € X, construct a feasible solution to the dual based on
order and values of x;

= Gives a valid inequality

@ Construct a feasible solution to the primal with equal objective
value

= Proves optimality
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Unweighted Case: Dual Solution
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Unweighted Case: Dual Solution

@ Assume 1 =:xg > Xxq > Xo > --- > Xp (by reindexing)
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Unweighted Case: Dual Solution

@ Assume 1 =:xg > Xxq > Xo > --- > Xp (by reindexing)
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@ Notethatz; > z; ¢ foralli=0,1,...,K
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Unweighted Case: Dual Solution

@ Assume 1 =:xg > Xxq > Xo > --- > Xp (by reindexing)
@ Lotz := Kx— Y[ xfori=01,... K
@ Notethatz; > z; ¢ foralli=0,1,...,K
@ Lety:=>",X
o Letip:=argmax{0<i<K-1:2z>y>2z,}
@ The dual solution:
f(0) i=0
pi=1 f()—fi—1) 1<i<i
f(K}g::‘Oio) b<i<n
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Unweighted Case: Dual Solution

@ Assume 1 =:xg > Xxq > Xo > --- > Xp (by reindexing)
@ Lotz := Kx— Y[ xfori=01,... K
@ Notethatz; > z; ¢ foralli=0,1,...,K
@ Lety:=>",X
o Letip:=argmax{0<i<K-—-1:z >y >z}
@ The dual solution:
f(0) i=0
pi=1 f()—fi—1) 1<i<i
f(K}g::‘Oio) h<i<n

Note that p; = 9; for i < jy
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Unweighted Case: Validity
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Unweighted Case: Validity

@ Considerany ip € {0,...,K — 1}

@ Consider arbitrary S € S

@ LletS;=Sn{1,....p}and S, = S\ S;
@ Letiy =|S1|and ip = | Sy

@ Need to show:

po+ Y pi < f(S) =i+ i2) (%)
ieS
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Unweighted Case: Validity

@ Considerany ip € {0,...,K — 1}

@ Consider arbitrary S € S

@ LletS;=Sn{1,....p}and S, = S\ S;
@ Letiy =|S1|and ip = | Sy

@ Need to show:

po+ Y pi < f(S) =iy +i2) (%)
i€eS
o The Ihs of (x):
. . f(K) — f(i
ao+28;+2p,-sf(n)+lz-w
i€S; €S,

by construction and validity of the usual submodular inequality
corresponding to S;
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Unweighted Case: Validity (contd.)
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Unweighted Case: Validity (contd.)

@ Sufficient to show that

F(ir) + io -

W < f(ih + ko)

o
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Unweighted Case: Validity (contd.)

@ Sufficient to show that

F(ir) + io -

W < f(ih + ko)

o

@ Assume i > 0 otherwise we are done
@ Rearranging

F(K) = f(io) _ f(ix + o) — f(ir)
K — g B I
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Unweighted Case: Validity (contd.)

@ Sufficient to show that

f(iy) + b -

f(K}g — fllo) f(iy + i)

o

@ Assume i > 0 otherwise we are done
@ Rearranging

F(K) = f(io) _ f(ix + o) — f(ir)
K — g B I

@ The above inequality can be shown using concavity of f(i) and
ih<ip<K

Ahmed and Yu Constrained Submodular Polyhedra MINLP 2014 13/23



Unweighted Case: Primal Solution

Need to construct P(S) forall S € S:={S C[n]: |S| < K}

b hd hg
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Unweighted Case: Primal Solution

Need to construct P(S) forall S € S:={S C[n]: |S| < K}

0
{1}
1,2}

{1,2,... i}
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Unweighted Case: Primal Solution

Need to construct P(S) forall S € S:={S C[n]: |S| < K}

0

{1}

{1,2}

{17277Z0}

{1,2,...,ig}UC o o o
{1,2,...,i0}UC e o o

CC{i0+1,...,n}, |C|:K—Z0
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Unweighted Case: Primal Solution
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Unweighted Case: Primal Solution

° P(0)=1-x
P({1, i})—X, X,+1f0ri:1,...,io—1

P({1,....00}) = B
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Unweighted Case: Primal Solution

° P(0)=1-x
P({1, i})—X, X,+1f0ri:1,...,io—1

P({1,....00}) = B

@ Key Lemma:
There exists a nonnegative solution to the following linear system
Yoccee AC)=x;, i=lp+1,....,n where
c={Cc{ip+1,....n}: |C|=K—1ip}
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Unweighted Case: Primal Solution

° P(0)=1-x
P({1, i})—X, X,+1f0ri:1,...,io—1

P({1,....00}) = B

@ Key Lemma:
There exists a nonnegative solution to the following linear system
Yoccee AC)=x;, i=lp+1,....,n where
c={Cc{ip+1,....n}: |C|=K—1ip}

e P({1,....ihk}UC)=Q(C)forall CeC

@ The constructed primal solution is feasible and has the same
objective value as that of the dual problem
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Weighted Case: Exact Lifting
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Weighted Case: Exact Lifting
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@ The usual submodular inequality dy + ;.5 0ix; < w is a facet of
conv(PN{x: x;=0Vj¢&S})
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@ Compute coefficients of variables not in S by (sequence
dependent) lifting
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Weighted Case: Exact Lifting

@ Consider aset S C [n] with |S| = K

@ The usual submodular inequality dy + ;.5 0ix; < w is a facet of
conv(PN{x: x;=0Vj¢&S})

@ Compute coefficients of variables not in S by (sequence
dependent) lifting

@ Lifting problem is a concave minimization problem over a
cardinality system .. solvable in O(n®) [Atamturk and
Naraynan’09, Onn’03]
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Weighted Case: Exact Lifting

@ Consider aset S C [n] with |S| = K

@ The usual submodular inequality dy + ;.5 0ix; < w is a facet of
conv(PN{x: x;=0Vj¢&S})

@ Compute coefficients of variables not in S by (sequence
dependent) lifting

@ Lifting problem is a concave minimization problem over a
cardinality system .. solvable in O(n®) [Atamturk and
Naraynan’09, Onn’03]

@ Resulting (facet-defining) lifted inequality (LI):

do + Za,-x,-+ Z)\,’X/ <w
ieS iZS
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Weighted Case: Approximate Lifting

@ Sortxy >xp>---> Xp
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Weighted Case: Approximate Lifting

@ Sortxy >xp>---> Xp
@ Let T, =argmax{a(T): TC[i—1], |T|=K—-1}foralli>K
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Weighted Case: Approximate Lifting

@ Sortxy >xp>---> Xp
@ Let T, =argmax{a(T): TC[i—1], |T|=K—-1}foralli>K
@ Letn;=f(a(T;u{i}))—f(a(T;)) foralli=K+1,....n
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Weighted Case: Approximate Lifting

@ Sortxy >xp>---> Xp

@ Let T, =argmax{a(T): TC[i—1], |T|=K—-1}foralli>K
@ Lety,=f(a(T;u{i})) —f(a(Ty)) foralli=K+1,...,n

@ The approximate lifted inequality:

00+Zax,+ Z Yixi < W

i=K+1

is valid for conv(P N X)
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Weighted Case: Approximate Lifting

@ Sortxy >xp>---> Xp

@ Let T, =argmax{a(T): TC[i—1], |T|=K—-1}foralli>K
@ Lety,=f(a(T;u{i})) —f(a(Ty)) foralli=K+1,...,n

@ The approximate lifted inequality:

00+Z(9x,+ Z vixi < w

i=K+1

is valid for conv(P N X)
@ Proof: 0 <~; < Ajforalli > K
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Weighted Case: Remarks on Approximate Lifting

@ The approximate lifting inequality is a version of the unweighted
inequality corresponding to jp = K — 1

@ 0; <~ forall i > K with the inequality being strict when f is strictly
monotone (e.g. square root)

@ Can be computed in O(nlog n) time
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Computations: Instances

@ Mean-risk Knapsack:

min {Z,u,-x,-—k)\ /ZU,-QX,-: c'x<b, xe {0,1}n}
i i

@ 1,080 unweighted and 1,080 weighted instances randomly
generated (n = 50, 80, 100)

@ Knapsack to Cardinality: Let ¢; < --- < ¢, and pick K such that
Ci+---+cxk<bandci+---+cCcki1>b
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Computations: Experiments

@ Compare branch-and-cut time and nodes for

e Mixed Integer SOCP formulation (Replace x; by x?) [SCOP]

@ SOCP + 5 rounds of usual submodular inequalities [Edmonds]

o SOCP + 5 rounds of exact separated inequalities in the unweighted
case, or SOCP + 5 rounds of approximate lifted inequality in the
weighted case [Lifted]

@ Implemented in Python + Gurobi 5.6
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Computations: Performance profiles (Time)

1.0 1.0
o /_/——_7 )
0.6 Y
0.4
02 = SOCP
== Edmond g
= Lifted = Lifted
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Computations: Averages

SOCP Edmonds Lifted

Unweighted
Time: 703 528 295
Nodes: 221,111 135,444 75,811

Weighted
Time: 208 132 122

Nodes: 59,779 34,366 27,928
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Concluding Remarks

P={(w,x)eRx{0,1}": w>f(a'x)} X={xe[0,1]": e"x <K}
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P={(w,x)eRx{0,1}": w>f(a'x)} X={xe[0,1]": e"x <K}

@ Summary:
e Unweighted case (identical a;’s): Complete description of
conv(P N X)
o Weighted case (general a;): Family of facets/valid inequalities by
lifting
o Computational results for mean-risk knapsack
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Concluding Remarks

P={(w,x)eRx{0,1}": w>f(a'x)} X={xe[0,1]": e"x <K}

@ Summary:
e Unweighted case (identical a;’s): Complete description of
conv(P N X)
o Weighted case (general a;): Family of facets/valid inequalities by
lifting
o Computational results for mean-risk knapsack

@ Some open issues:

e Handle correlations v/ xT ¥ x by introducing new variables for cross
terms

o Mixed integer setting

e “Submodular relaxations” of other classes of MINLP

Ahmed and Yu Constrained Submodular Polyhedra MINLP 2014 23/28



	Introduction
	Unweighted Case
	Weighted Case
	Computations
	Conclusion

