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The Max-Cut Problem

Given a graph G = (V ,E) with |V | = n and weights wij for all edges
(i , j) ∈ E , find an edge-cut of maximum weight, i.e. find a set S ⊆ V
s.t. the sum of the weights of the edges with one end in S and the
other in V \ S is maximum.

We assume wlog that wii = 0 for all i ∈ V , and that G is complete
(assign wij = 0 if edge ij 6∈ E).
Let x ∈ {−1,+1}n represent any cut in the graph then max-cut
may be formulated as:

zmc := max
n∑

i=1

n∑
j=i+1

wij

(
1−xi xj

2

)
= xT Qx

s.t. x2
i = 1, i = 1, . . . ,n,

where Q = 1
4 (Diag(We)−W ).



The Basic Semidefinite Relaxation of Max-Cut

Consider the change of variable X = xxT , x ∈ {±1}n.
Then Xij = xixj and since xT Qx = 〈Q, xxT 〉, max-cut is equivalent to

max 〈Q,X 〉
s.t. diag(X ) = e

rank(X ) = 1
X � 0.

Removing the rank constraint, we obtain the basic semidefinite
relaxation of max-cut:

zsdp := max 〈Q,X 〉
s.t. diag(X ) = e

X � 0.



The Cut Polytope and the Correlation Matrices

The convex hull of the 2n−1 feasible solutions for max-cut is called the
cut polytope:

CUTn := conv{xxT : x ∈ {−1,1}n}.

Thus Max-Cut can be formulated as

zmc = max{〈Q,X 〉 : X ∈ CUTn}.

CUTn is contained in the set of correlation matrices:

Cn := {X : diag(X ) = e, X � 0}

and therefore

zmc = max{〈Q,X 〉 : X ∈ CUTn} ≤ max{〈Q,X 〉 : X ∈ Cn} = zsdp



The Metric Polytope
Deza, Laurent (1997): Hypermetric Inequalities

Consider x ∈ {−1,1}n, f = (1,1,1,0, . . . ,0)T ⇒ |f T x | ≥ 1.
Results in xT f f T x = 〈ff T , xxT 〉 = 〈ff T ,X 〉 ≥ 1.
Can be applied to any triangle i < j < k .
Nonzeros of f can also be -1.

There are 4
(n

3

)
such triangle inequality constraints.

We collect them in the metric polytope

METn := {X : f T Xf ≥ 1 where f has 3 nonzeros ∈ {−1,1}.}

Barahona, Jünger, Reinelt (1989): computational experiments, LP
relaxation very efficient for sparse graphs.
Pardella, Liers (2008): computations with 2d spinglass problems
of sizes larger than 1000× 1000.
Weak results once density of graph grows.



Other Classes of Inequalities

If f ∈ {−1,0,1} with f T f = t , and t odd, we get odd-clique
inequalities:

{X : f T Xf ≥ 1 where f has t nonzeros ∈ {−1,1}}.

Many other classes of facets of CUTn are known but they are
often difficult to separate, and no substantial computational
experiments available.



Higher-Order Relaxations

There are several hierarchies of relaxations for 0-1 optimization
problems, including:

Sherali-Adams RLT procedure
Lovász-Schrijver liftings
Higher liftings by A. and Wolkowicz (2002) and Lasserre (2002);
also sums-of-squares relaxations by Parrilo (2000).

They attain the integer optimum in n lifting steps, but at each step the
dimension of the problem grows.

Even the first nontrivial lifting step in the SDP hierarchies leads to SDP
problems that are computationally out of reach even for, say, n ≈ 50.

Now: Improved relaxations for which the matrix dimension remains n.



Key Observation

We can take any subset I ⊆ {1,2, . . . ,n} with |I| = k and consider XI ,
the principal submatrix of X indexed by I.

Key Observation
If X ∈ CUTn then XI ∈ CUTk .

This can be expressed as

XI =
∑

j

λj v̄j v̄T
j , λ ≥ 0,

∑
j

λj = 1,

where v̄j ∈ {±1}k runs through the 2k−1 cuts in CUTk .



A New “Hierarchy” of Relaxations

This leads to a new sequence of relaxations for max-cut indexed by k :

zsdp−met−k = max 〈Q,X 〉
s.t. diag(X ) = e

X � 0
triangle inequalities on X
XI ∈ CUTk for all I with |I| = k .

As k approaches n, we get better and better bounds, and
if k = n we get the exact solution.
For k ≤ 4 we have zsdp−met = zsdp−met−k
because METk = CUTk for k ≤ 4.
Smallest interesting case: k = 5.



Illustrative Example (Laurent (2004))

Q =
1
2



0 1 1 1 −2 −1 0
1 0 1 1 −2 0 −1
1 1 0 1 −2 −1 0
1 1 1 0 −2 0 −1

−2 −2 −2 −2 0 1 1
−1 0 −1 0 1 0 −1

0 −1 0 −1 1 −1 0


Relaxation Bound
C7 6.9518
C7 ∩MET7 6.0584
C7 ∩MET7 plus best CUT5: {1,3,5,6,7} 5.9800
C7 ∩MET7 plus best CUT6: {1,2,3,4,5,6} 5.9412
C7 ∩MET7 plus all CUT5s 5.8000
A.-Wolkowicz 5.7075
C7 ∩MET7 plus all CUT6s 5.6667
Lasserre level-2 5.6152
C7 ∩MET7 plus CUT7 5.0000



Related Earlier Work

Previous work using this idea in connection with polyhedral
relaxations:

Using small-dimensional polytopes to improve relaxations is a
well-known idea, see e.g. Applegate et al. (2001).
Also similar to the recent work on target cuts in Buchheim, Liers
and Oswald (2008), and the lifting and separation of Bonato et al.
(2011).
In most earlier work, an outer description of the small polytope is
used to lift local cuts to cuts for the original problem.
We believe that an inner description for the small polytope has
algorithmic advantages.



Additional Observations

This approach works for graph optimization problems with the
property that restriction to node-induced subgraphs results in a
similar optimization problem of smaller dimension.
Other candidate problems include max-stable-set /max-clique and
graph coloring.
For each I we add 2k−1 nonnegative variables and

(k
2

)
new

equations.
Adding the constraints for all I at once is computationally
inefficient, so the challenge is to identify good choices of I.



Selecting the Best Subset I

Given X ∈ Cn ∩METn, we want to identify a subset I with |I| = k such
that XI /∈ CUTk .

The problem of finding I of cardinality k and maximizing the distance of
the corresponding polytope is:

max d
s.t. Ben = ek

Bek ≤ en
B ∈ {0,1}n×k

d =
{

mineTλ=1, λ≥0 || triu
(
BT XB

)
−Qλ||

}
With some manipulations, this problem can be expressed as a 0-1
SOCO problem.



Computational Setup

The relaxation C ∩MET is usually quite accurate on smaller
instances with n up to n ≈ 50, so we consider instances with
60 ≤ n ≤ 100.
We include in each round the best 50 new subsets I with |I| = 5.
The resulting SDP is solved using an interior-point code (SDPT3).
Triangles are separated by complete enumeration.



Computational Setup (ctd)

We focus on the case k = 5.

Start:
• Find optimal solution X ∈ Cn ∩METn
Iteration:
(a) Determine subsets Ir with |Ir | = 5
(b) Resolve with XIr ∈ CUT5 yielding new X
(c) Add triangle inequalities violated by X
(d) Purge inactive triangles
(e) Resolve with new triangles added yielding new X

Note: after (e) the condition X ∈ Cn ∩METn is not guaranteed to hold.
It could be enforced by repeating (c),(d) and (e) until all triangles
inequalities are satisfied again.



Focus on One Instance

We select n = 70 and adjacency matrix with density of 50%, edge
weights are integers between -10 and 10.
At start we get:

zC = 996.1 zC∩MET = 872.3, zmc = 856

round bound min sI # sets I # triangles
1 868.2 0.41 48 670
2 865.9 0.55 94 602
3 864.1 0.54 138 516
4 862.4 0.56 183 509
. . . . .

10 858.3 0.76 344 416



Preliminary Computational Results

Random graphs, density 50 %, edge weights between -10 and 10

n C C ∩M new cut % gap left
70 996.2 872.3 858.3 856 0.14
80 1317.2 1181.6 1162.6 1152 0.36
90 1491.1 1335.6 1307.8 1297 0.28

100 1959.6 1772.2 1745.8 1698 0.64

Random dense graphs, edge weights between 1 and 10

n C C ∩M new cut % gap left
70 6807.1 6725.9 6712.9 6693 0.60
80 8741.6 8639.6 8623.2 8604 0.54
90 11217.8 11109.4 11092.6 11070 0.57

100 13718.9 13593.3 13575.1 13530 0.71



Current and Future Work

• Improve the separation

• Experiment with subsets of larger sizes

• Solve the resulting SDP problems more efficiently

• Apply to other problem classes

• Incorporate into Branch-and-Bound (BiqMac)

Thank you for your attention.
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