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Motivation 
Two-stage Stochastic MINLPs & MILPs 

  

min
x1 ,...,xs , y

wh fh(xh , y
h=1

s

∑ )

s.t. gh(xh , y) ≤ 0, h = 1,...,s
xh ∈Xh , h = 1,...,s

y ∈Y ⊂ {0,1}ny

Oil Refinery	



Natural Gas 
Production System 	



Energy Polygeneration 
Plant	



Pharmaceutical Product Launch	


Pump Network	



PI PII PIII 
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Two Different Decomposition 
Philosophies 

  

min
x1 ,...,xs , y1 ,..., ys

wh fh(xh , yh )
h=1

s

∑
s.t. gh(xh , yh ) ≤ 0, h = 1,...,s

yh = yh+1, h = 1,...,s −1
xh ∈Xh , h = 1,...,s

yh ∈Y ⊂ {0,1}ny

  Benders decomposition/L-shaped method 

      - Linear duality 

  Generalized Benders decomposition 
      - Nonlinear duality 

  Nonconvex Generalized Benders 
decomposition 

  Danzig-Wolfe decomposition 

      - Linear duality 

  Lagrangian relaxation 
      - Nonlinear duality 

  

min
x1 ,...,xs , y

wh fh(xh , y
h=1

s

∑ )

s.t. gh(xh , y) ≤ 0, h = 1,...,s
xh ∈Xh , h = 1,...,s

y ∈Y ⊂ {0,1}ny
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Generalized Benders Decomposition 
Master problem 

  

min
y

φ( y)

s.t. φ( y) = inf
x∈X ,g ( x , y )≤0

f (x, y)

y ∈Y ∩V ,
V = {y :∃x ∈X , g x, y( ) ≤ 0}   

min
y∈Y

φ( y)

s.t. φ( y) = sup
λ≥0

inf
x∈X

f (x, y) + λT g(x, y)

0 ≥ inf
x∈X

µT g(x, y), ∀µ ∈M

Master Problem 	



  

min
x , y

f (x, y)

s.t. g(x, y) ≤ 0
x ∈X , y ∈Y

  

min
y ,η

η

s.t. η ≥ inf
x∈X

f (x, y) + λT g(x, y), ∀λ ≥ 0

0 ≥ inf
x∈X

µT g(x, y), ∀µ ∈M

Optimality cuts 	



Feasibility cuts	



Projection	



Dualization	
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Generalized Benders Decomposition 
Subproblems generated via restriction and relaxation 

Problem 

Master Problem 

Projection and 	


Dualization	



  

min
y ,η

η

s.t. η ≥ inf
x∈X

f (x, y) + λT g(x, y), ∀λ ≥ 0

0 ≥ inf
x∈X

µT g(x, y), ∀µ ∈M

Primal Problem  

Restriction	


- Fixing y	



  

objPrimal
k = min

x
f (x, y(k ) )

s.t. g(x, y(k ) ) ≤ 0
x ∈X

Feasibility 
Problem 

   

objFeas
k = min

x
z

s.t. g(x, y(k ) ) ≤ z,
x ∈X , z ∈Z ⊂ {z ∈m : z ≥ 0}

Relaxed Master 
Problem  

Relaxation	


    - Finite subset of constraints	
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Generalized Benders Decomposition 
Relaxed master problem with separability in x and y 

Relaxed Master 
Problem  

  

min
y ,η

η

s.t. η ≥ objPr imal
j + f2 ( y) − f2 ( y( j ) ) + λ j( )T

g2 ( y) − g2 ( y( j ) )⎡⎣ ⎤⎦ , ∀λ j ∈T k

0 ≥ objFeas
i + µ i( )T

g2 ( y) − g2 ( y( i) )⎡⎣ ⎤⎦ , ∀µ i ∈S k

* A.M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10(4):237–260, 1972.	



Property P!	
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Generalized Benders Decomposition 
Algorithm flowchart 

Update LB	



Initialization	



Primal Feasible?	



LB ≥ UB?	



No	



Yes	



Feasibility Cut	

 Optimality 
Cut	



Relaxed Master 
Problem 	



Yes	



No	



UB, LB	



Optimal solution or 
infeasibility indication	



Feasibility 
Problem	



Primal Problem	



Update UB	
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Generalized Benders Decomposition 
GBD and scenario-based stochastic programs 

But, what if convexity assumption does not hold?	



Relaxed 
master 
problem	



Primal or feasibility 
subproblems	



  

min
x1 ,...,xs , y

wh fh(xh ) + ch
T y( )

h=1

s

∑
s.t. gh(xh ) + Bh y ≤ 0, h = 1,...,s

xh ∈Xh , h = 1,...,s

y ∈Y ⊂ {0,1}ny
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Convex Relaxations of Nonconvex 
Functions 

  Convex Relaxation ≠ Convex Approximation 
  Most practical problems can be relaxed via McCormick’s approach 
    G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I – Convex 

underestimating problems. Mathematical Programming, 10:147–175, 1976. 
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Gaps Due to Dual and Convex Relaxations 

It is very difficult to obtain optimal dual solution for a nonconvex primal!	



Duality gap	



Convex relaxation gap	
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Nonconvex Generalized Benders 
Decomposition: Overview 

The Original Problem 
(Nonconvex MINLP) 

Primal Problem 
(Nonconvex NLP) 

Lower Bounding 
Problem (Convex 
MINLP/MILP) 

Convex relaxation	


- Convexifying nonconvex functions	



Restriction	


- Fixing integer realization	



Master Problem 
(MISIP) 

Primal Bounding 
Problem  

(Convex NLP/LP) 

Feasibility 
Problem 

(Convex NLP/LP) 

Relaxed Master 
Problem  
(MILP) 

Restriction	


- Fixing integer realization	



Projection and 	


Dualization	



Relaxation	


    - Finite subset of constraints	



GBD	
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Nonconvex Generalized Benders 
Decomposition 

Lower bounding problem via convexification 

The Original 
Problem 

(Nonconvex MINLP) 

Lower Bounding 
Problem (Convex 
MINLP/MILP) 

  

min
x1 ,...,xs ,q1 ,...,qs , y

wh u f ,h(xh ,qh ) + ch
T y( )

h=1

s

∑
s.t. ug ,h(xh ,qh ) + Bh y ≤ 0, h = 1,...,s

(xh ,qh ) ∈Dh , h = 1,...,s
y ∈Y

  

min
x1 ,...,xs , y

wh fh(xh , y
h=1

s

∑ )

s.t. gh(xh , y) ≤ 0, h = 1,...,s
xh ∈Xh , h = 1,...,s

y ∈Y ⊂ {0,1}ny

Desired separability can be induced by the process of convex relaxation 	
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Nonconvex Generalized Benders 
Decomposition 

Relaxed master problem 

Relaxed Master 
Problem (MILP) 

   

min
η, y

η

s.t. η ≥ objPBP
( j ) + whch

T + λh
( j )( )T

Bh( )
h=1

s

∑⎛⎝⎜
⎞
⎠⎟

y − y( j )( ), ∀j ∈T k ,

0 ≥ objFP
( i) + µh

( i)( )T
Bh

h=1

s

∑⎛⎝⎜
⎞
⎠⎟

y − y( i)( ), ∀i ∈S k ,

yr
r∈Ξ(1)
∑ − yr

r∈Ξ( 0 )
∑ ≤ |{r : yr

(t ) = 1}| −1, ∀t ∈T k  S k ,

y ∈Y ,η ∈
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Nonconvex Generalized Benders 
Decomposition 

Primal problem 

Primal Problem 
(nonconvex NLP) 

  

objPPh

( l ) = min
xh

wh fh(xh , y( l ) )

s.t. gh(xh , y( l ) ) ≤ 0,

wh fh(xh , y( l ) ) ≤UBDh
( l ) ,

xh ∈Xh

Deterministic global optimization solvers based on continuous 
branch-and-bound (e.g., BARON) can solve many nonconvex 
NLPs & MINLPs of small to medium size in reasonable times. 
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Nonconvex Generalized Benders 
Decomposition 

Algorithm flowchart 

Update LB	



Initialization	

 End	



PBP Feasible?	



LB ≥ 
PBUpper?	



No	



Yes	



Feasibility Cut	

 Optimality 
Cut	

Relaxed Master 

Problem 	


(MILP)	

New Integer 

Realization	



Yes	


Yes	



No	


No	



UB, PBUpper, 
LB	



Global solution or 
infeasibility indication	



Primal 	


Subproblems 

(Nonconvex NLP)	



Update UB, 
PBUpper	



PBUpper ≥ 
UB?	



Feasibility 
Subproblems	



(Convex NLP/LP)	



Primal Bounding 
Subproblems 

(Convex NLP/LP)	



Update 
PBUpper	



Finite convergence to a 
global optimum with a given 
tolerance is guaranteed. 	
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Example 
Sarawak Gas Production System (SGPS) 

  Daily production 
     - 4 billion scf 
  Annual revenue 
     - US $5 billion  
       (4% of Malaysia’s GDP) 
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Infrastructure Expansion of 
SGPS Under Uncertainty 

Goal 
Optimal network design and long-term operation policy to 
  maximize profitability 
  satisfy product-specific constraints for all addressed 

uncertainty scenarios 
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Challenges and Novel 
Formulation 

Challenges Novel Formulation 
  Generalized pooling model 

to track gas flow qualities 
throughout the system 

  Two-stage stochastic 
framework to address 
uncertainty explicitly 

Stochastic pooling problem 
formulation combines 
  generalized pooling model 
  stochastic framework 
  large-scale MINLP 

  Strict specifications on 
gas products: 
H2S, CO2, GHV, etc. 

  Large uncertainty in the 
system 
  quality and capacity 

of reservoirs 
  customer demands 
  etc. 

Traditional deterministic 
linear model is not adequate 
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Stochastic Pooling Problem  

   

min
y ,x1 ,...,xs ,
q1 ,...qs ,
u1 ,...us

c1
T y + c2,h

T xh + c3,h
T qh + c4,h

T uh( )
h=1

s

∑

s.t. uh,l .t = xh,lqh,t , ∀(l,t) ∈Ω, ∀h ∈{1,...,s}
A2,h

(equ)xh + A3,h
(equ)qh + A4,h

(equ)uh = bh
(equ) , ∀h ∈{1,...,s}

A1,h y + A2,hxh + A3,hqh + A4,huh ≤ bh , ∀h ∈{1,...,s}
A2,hxh + A3,hqh + A4,huh ≤ bh , ∀h ∈{1,...,s}

         xh
L ≤ xh ≤ xh

U ,  qh
L ≤ qh ≤ qh

U , ∀h ∈{1,...,s}
         

By ≤ d ,

xh ∈
nx , qh ∈

nq , uh ∈
nu ,∀h ∈{1,...,s}, y ∈{0,1}ny

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

Ω ⊂ {1,...,nx}×{1,...,nq}, nu =|Ω |

Mass balances 

Flow constraints 

Topology constraints 

Economic objective  
Nonconvex bilinear terms 
model gas qualities 
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Computational Study 
Implementation Issues 

Platform	


- CPU 2.83 GHz, Memory 1 GB, Linux, GAMS 22.8.1	



Solvers	


-  LP and MILP solver : CPLEX	



-  Global NLP solver: BARON	


-  Local NLP solver: SNOPT	



Methods for Comparison	


1.  BARON – The state-of-the-art global optimization solver	


2.  NGBD – Nonconvex generalized Benders decomposition	


3.  EI – Naïve integer enumeration 	



Relative Tolerance for Global Optimization	


- 10-2	
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Computational Study  
 SGPS design problem A 

The stochastic problem contains 38 binary variables and 93s continuous variables 
(s represents total number of scenarios).  

Se
co

nd
s	



Number of Scenarios	



5 10 15 20 10 -2 

10 0 

10 2 

10 4 

10 6 
BARON 
NGBD 
EI (Estimated) 

Se
co

nd
s	



Number of Scenarios	



0 200 400 600 800 1000 0 

200 

400 

600 

800 

1000 

(a) Solver times with different methods (b) Solver times with NGBD for more scenarios 

Nonconvex 
MINLP with 
almost  
a hundred 
thousand 
variables 
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Computational Results: MILP 
Recourse 

 With full model, the solution time increases 
drastically with # scenarios 

 With NGBD, the solution time increases linearly 
with # scenarios 

Hardware: 3.2 GHz Intel Xeon CPU with 12 GB RAM on Windows 
Software:   GAMS 23.6 / CPLEX 12.2 
Tolerance: 0.001 (relative) for both full model and NGBD 

log-linear plot 

36 million BVs! 
176 million CVs! 
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Computational Study 
 - Summary of studied nonconvex problems 

 (all solved to global optimality with given tolerances) 

Continuous variable 
/Integer variable 

Time via NGBD 
(Second) Nonconvexity Implementation [1] 

Haverly 21,000/16 93.4 Bilinear (A) 

Gas Network 68,000/19 15,610.7 Bilinear (A) 

SGPS A    93,000/38 978.2 Bilinear (A) 

SGPS B 93,000/38 977.1 Bilinear (A) 

SGPS C 146,410/20 4,234.8 Bilinear, 
quadratic, power (B) 

Software 10,648/8 260.7 Logarithmic  (B) 

Pump 50,578/18 2,794.8 Bilinear, 
quadratic, cubic (B) 

Polygeneration 14,688/70 15,825.0 [2] Bilinear (C) 

Note:  [1] Problems were run with different CPUs, GAMS systems and relative termination tolerances ε: 	


                  (A) CPU 2.83 GHz , GAMS 28.1, ε=10-2 ; (B) CPU 2.83 GHz, GAMS 23.4, ε=10-3; (C) CPU 2.66 GHz, GAMS 23.5, ε=10-2 .	


            [2] Enhanced NGBD with tighter lower bounding problems employed. 	
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Conclusions & Future Work 
  Classical decomposition ideas (GBD) can be 

extended to certain problems with nonconvex 
recourse 
  Algorithm running time tends to grow linearly with no. scenarios 
  Applied to hard nonconvex optimization problems in optimal 

design & operation of energy systems under uncertainty 

  Continuous complicating variables? 
  Multi-stage problems? 
  How to close the relaxation gap? 
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Generalized Benders Decomposition 
Principle of projection 

  

min
x , y

f (x, y)

s.t. g(x, y) ≤ 0
x ∈X , y ∈Y

  

min
y

φ( y)

s.t. φ( y) = inf
x∈X ,g ( x , y )≤0

f (x, y)

y ∈Y ∩V ,
V = {y :∃x ∈X , g x, y( ) ≤ 0}

Mapping	



Optimality	



Feasibility	



* A.M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10(4):237–260, 1972.	
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Generalized Benders Decomposition 
Optimality cuts 

Feasibility	



Optimality	
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Generalized Benders Decomposition 
Optimality 

Convex recourse, Slater’s 
condition holds	



Feasibility	



Optimality	



Mapping	
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Nonconvex Generalized Benders 
Decomposition 

Primal bounding problem and feasibility problem 

Primal Bounding 
Problem (convex NLP) 

Feasibility Problem 
(convex NLP) 

  

objPBPh

(k ) = min
xh ,qh

wh u f ,h(xh ,qh ) + ch
T y(k )( )

s.t. ug ,h(xh ,qh ) + Bh y(k ) ≤ 0,

(xh ,qh ) ∈Xh × Qh

   

objFPh

(k ) = min
xh ,qh ,zh

wh || zh ||

s.t. ug ,h(xh ,qh ) + Bh y(k ) ≤ zh ,

(xh ,qh ) ∈Xh × Qh ,

zh ∈Z ⊂ {z ∈m : z ≥ 0}
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Nonconvex Generalized Benders 
Decomposition 

Master problem 

Master Problem 
(MISIP) 

   

min
η, y

η

s.t. η ≥ whch
T + λh

T Bh( ) y
h=1

s

∑ + inf
( xh ,q

h
)∈X ×Q

whu f ,h(xh ,qh ) + λh
Tug ,h(xh ,qh )⎡⎣ ⎤⎦

h=1

s

∑ ,

∀λ1,...,λs ≥ 0,

0 ≥ µh
T Bh y

h=1

s

∑ + inf
( xh ,q

h
)∈X ×Q

µh
Tug ,h(xh ,qh )

h=1

s

∑ ,

∀µ1,...,µs ∈M ,
y ∈Y ,η ∈
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max    9( p1 + q31) +15( p2 + q32 ) − (6q1 +16q2 +10q3)
s.t.                     q1 + q2 = p1 + p2

                         3q1 + q2 = xs( p1 + p2 )
                         q31 + q32 = q3

                         + linear inequalities

Haverly C. A., “Studies of the behaviour of recursion for the pooling problem”, ACM SIGMAP Bulletin, 25:29-32, 1978.	



Haverly’s Pooling Problem 
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Need for Global Optimization 

Deterministic global optimization solvers based on continuous 
branch-and-bound (e.g., BARON) can solve many nonconvex 

NLPs of small to medium size in reasonable times. 



33 

Global Optimization via Branch-and-Bound 
- Nonconvex optimization 

global minimum 

local minimum 

local maximum 

Standard optimization techniques cannot  
distinguish between suboptimal local minima 
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Global Optimization via Branch-and-Bound 
- Convex Relaxation 

ubd	



lbd	





35 

Global Optimization via Branch-and-Bound 
- Branch 
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Global Optimization via Branch-and-Bound 
- Branch, and bound 

ubd1	



lbd1	



ubd2	



lbd2	
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Global Optimization via Branch-and-Bound 
- Branch, bound and fathom 

ubd1	



lbd1	



ubd2	



lbd2	



FATHOM	
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Two-Stage Stochastic 
Programming Framework 

Probability 1	



Probability 2	



Probability 3	



Probability s	



Scenario 1	



Scenario 2	



Scenario 3	



Scenario s	



Design Decisions 
- Binary variables to 
determine whether to 
develop potential gas 
wells/fields, gas 
platforms and pipelines	



Operational Decisions 
- Continuous variables to 
determine rates of the gas 
flows throughout the network 
in long-term operation	



Realization of 
uncertainty 
-  Reservoir quality 
-  Customer demand 
-  Gas price	



Goal 
- Maximize 
expected 
net present 
value 
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The Different Design Results 

Formulation 3 – Both uncertainty and 
quality addressed 

Formulation 1 – Uncertainty and quality 
not addressed 

Formulation 2 – Only quality addressed 

Superstructure of the problem  

Uncertain CO2 content in gas from M1 
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Computational Study 
 SGPS design problem A 

Convergence of the upper and lower bounds over the iterations	
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Pharmaceutical Business Processes 

Supplier 

Primary 
Production 

Secondary 
Production 

Distribution 
Center 

Retailer 

Customer 
Research and Development (R&D) 

Supply Chain 

PI PII PIII 

drug discovery preclinical trial clinical trials 

new molecular entity 

FDA 
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Pharmaceutical Business Processes 

Supplier 

Integrated 
Production 

Distribution 
Center 

Retailer 

Customer 

PI PII PIII 

drug discovery preclinical trial clinical trials 

new molecular entity 

FDA 

Research and Development (R&D) 

Supply Chain 
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Pharmaceutical Business Processes 

Product launch planning is made under clinical trial uncertainty! 

*Stonebraker, J.S.  How Bayer makes decisions to develop new drugs. Interfaces, 32, 77, 2002. 

PI PII PIII 

new facility? 

capacity expansion? 

how much to produce? 

how much to store? 

drug discovery preclinical trial clinical trials 

product launch planning 
( ~ 5  years* ) 

new molecular entity 

FDA 

demand profile 

Research and Development (R&D) 
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Uncertainty in the Problem 

  The success of each clinical trial is uncertain 
  Each drug can have only 1 out of 4 possible outcomes* 

»  For a drug i, Ωi = {IF, IIF, IIIF, IIIP}; # scenarios = 4|I|  

  We consider a subset of outcomes 
  PI outcomes are known a priori 

»  For a drug i, Ωi = {IIF, IIIF, IIIP}; # scenarios = 3|I| 

*Colvin, M; Maravelias, C.T.  A Stochastic programming approach for clinical trial planning in new drug development. Comput. Chem. 
Eng., 32, 2626-2642, 2008. 

PI outcomes 

PII outcomes 

PIII outcomes 

outcomes of interest in the  
product-launch planning 

IF IP 

IIF IIP 

IIIF IIIP 

IF/IP  PI fail/pass 
IIF/IIP  PII fail/pass 
IIIF/IIIP  PIII fail/pass 
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Proposed Approach 
  Two-stage stochastic programming 

  First stage decisions 
»  When to build a new facility 
»  When to expand an existing facility 

  Second stage decisions 
»  When, where, and how much to produce, store, and supply 

PII PIII FDA 

Supply Chain  Development 

product launch 

(IIF,IIF) 
(IIF,IIIF) 
(IIF,IIIP) 

(IIIP,IIIP) 
(IIIP,IIIF) 

s1 
s2 
s3 

s8 
s9 here-and-now decisions 

(First stage decisions)  
wait-and-see decisions 

(Second stage decisions) 

Problem Description 

Decision Representation 

For 2 products:  # scenarios = 3^2 = 9 
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Model, Size, and Solution Method 

  Mixed-integer linear programming (MILP) 
model 
  First-stage variables binary, recourse problem MILP 

  The model size increases exponentially with 
the number of products 
   # scenarios = 3n, where n is the total number of products 

  When n = 10 products, the model size 
becomes prohibitively large 
  # binary variables > 35 million! 
  # cont. variables > 175 million! 
  # constraints > 150 million! 
  State-of-the-art commercial solvers cannot solve in reasonable time (eg. 

IBM / CPLEX) 
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Gaps Due to Dual and Convex 
Relaxations 

Duality gap	



Convex 
relaxation gap	



It is very difficult to obtain dual 
multipliers for a nonconvex problem!	



Relaxed 
dual gap 1	



Relaxed 
dual gap 2	
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Enhanced NGBD with More Dual Information 

The Original Problem 
(Nonconvex MINLP) 

Primal Problem 
(Nonconvex NLP) 

Master Problem 
(MISIP) 

Primal Bounding 
Problem  

(Convex NLP/LP) 

Feasibility 
Problem 

(Convex NLP/LP) 

Enhanced 
Relaxed Master 

Problem  
(MILP) 

Restriction	


- Fixing integer realization	



Projection and 	


Dualization	



Relaxation	



Convexification	


- Convexifying nonconvex functions	



Restriction	


- Fixing integer realization	



Relaxation	


    - Finite subset of constraints	



Lower Bounding 
Problem (Convex 
MINLP/MILP) 

Relaxed Dual of 
Primal Problem 

(Nonconvex NLP) 

Dualization	



Primal	


Dual	



Information	



Relaxation	
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The Enhanced Decomposition Strategy 
 – Relaxed Dual of Primal Problem 

Relaxed Dual of 
Primal Problem 

(NLP) 

The relaxed dual of the primal problem is usually much more difficult than the primal 
problem 	



: Lagrange multipliers of Problem (PBPh)  

: Lagrange multipliers of Problem (PPh)  
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The Enhanced Decomposition Strategy  
 –Enhanced Relaxed Master Problem 

Enhanced Relaxed Master 
Problem  (MILP) 

: Optimal solution of Problem (DPPh) with : Optimal solution of Problem (DPPh) with 
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The Enhanced Decomposition Strategy  
 –Enhanced Relaxed Master Problem 

Enhanced Relaxed Master 
Problem  (MILP) 

Primal Dual Cuts	



: Optimal solution of Problem (DPPh) with : Optimal solution of Problem (DPPh) with 
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The Enhanced Decomposition Strategy  
 –Enhanced Relaxed Master Problem with Primal Dual Multicuts 

Multicut Enhanced Relaxed Master Problem 
(MILP) 
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The Enhanced Decomposition Strategy  
 –Enhanced Relaxed Master Problem with Primal Dual Multicuts 

Multicut Enhanced Relaxed Master Problem 
(MILP) 

Primal Dual 
Multicuts	
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Enhanced NGBD Algorithm Flowchart 

Update LB	



Initialization	

 End	



PBP Feasible?	



LB ≥ 
PBUpper?	



No	



Yes	



Feasibility Cut	

 Optimality 
Cut	

Enhanced Relaxed 

Master Problem 	


(MILP)	

New Integer 

Realization	



Yes	


Yes	



No	


No	



UB, PBUpper, 
LB	



Global solution or 
infeasibility indication	



Primal 	


Subproblems 

(Nonconvex NLP)	



PBUpper ≥ 
UB?	



Feasibility 
Subproblems	



(Convex NLP/LP)	



Primal Bounding 
Subproblems 

(Convex NLP/LP)	



Update 
PBUpper	



Solve DPP?	



Update UB, 
PBUpper	



Relaxed Dual of 
Primal Problem 	



(Nonconvex NLP)	



No	


Yes	



Optimality Cuts 
from  solving DPP	
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What is polygeneration?  
Polygeneration is a novel conversion process 

   Multiple feedstocks and multiple products 

   Multiple processes with strong synergy in a single plant 

   Flexible product portfolios in response to market conditions 

Coal 

Biomass 

Electricity 

Petroleum 
products  

Chemicals 
Polygeneration 

Systems 
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Process Flowsheet 
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Case Study 

Case 1 Case 2 

Case Study Middle Oil Price 
Middle Carbon Tax 
100% Flexibility 

Middle Oil Price 
Middle Carbon Tax 
100% Flexibility 

Number of Scenarios 8 24 

Explanation of Scenarios Daytime and 
nighttime in 4 seasons 

Daytime and 
nighttime in 12 

months 

Number of Binary Variables 70 70 

Number of Continuous Variables 4896 14688 

Optimization Results ($MM) 1122.95 1124.31 

Problem Sizes and Optimization Results  
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Case 1 Results 

BARON NGBD Enhanced 
NGBD 

Multicut 
Enhanced 

NGBD 

Total Time --- [1] 73004.91 11985.4 3065.11 

Time for PBP 3.02 1.24 0.41 

Time for FP 0.42 0.49 0.23 

Time for RM 87.42 7.6 4.43 

Time for PP 72914.05 9403.55 1299.12 

Time for DPP 2572.52 1760.92 

Integers 
Visited [2] 347/292 108/58 46/9 

[1]   No global solution returned within 48 hours. 	



[2]   Total number of integers visited / Number of integers visited by the primal problem	



Tolerance: 10-2 
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Case 1 Results 

Iteration 

O
bj

ec
tiv

e 

Iteration 

O
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tiv

e 

Iteration 

O
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tiv

e 

NGBD Enhanced 
NGBD 

Multicut 
Enhanced NGBD 

Tolerance: 10-2 
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Case 2 Results 

BARON NGBD Enhanced 
NGBD 

Multicut 
Enhanced 

NGBD 

Total Time --- [1] --- 48430.99 15824.95 

Time for PBP 3.1 1.01 

Time for FP 0.77 0.47 

Time for RM 8.65 10.38 

Time for PP 37571.26 6770.02 

Time for DPP 10847.21 9043.07 

Integers 
Visited [2] 106/55 44/10 

[1]   No global solution returned within 48 hours. 	



[2]   Total number of integers visited / Number of integers visited by the primal problem	



Tolerance: 10-2 
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Case 2 Results 

Iteration 

O
bj

ec
tiv

e 

Iteration 
O

bj
ec

tiv
e 

Enhanced NGBD Multicut Enhanced 
NGBD 

Tolerance: 10-2 
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Case 1 Results 

BARON NGBD Enhanced 
NGBD 

Multicut 
Enhanced 

NGBD 

Total Time --- [1] --- 21323.92 16447.34 

Time for PBP 16.6 4.57 

Time for FP 1.91 2.84 

Time for RM 22.37 7.16 

Time for PP 12853.22 9214.1 

Time for DPP 8429.82 7218.67 

Integers 
Visited [2] 133/87 50/14 

[1]   No global solution returned within 48 hours. 	



[2]   Total number of integers visited / Number of integers visited by the primal problem	



Tolerance: 10-3 
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Case 1 Results 

Iteration 

O
bj

ec
tiv
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Enhanced NGBD Multicut Enhanced 
NGBD 

Iteration 
O

bj
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tiv
e 

Tolerance: 10-3 
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More Case Study Results 

Scenario No. 1 No. 2 No. 3 No. 4 No. 5 
Probability 0.036 0.238 0.451 0.238 0.036 
M1 quality1 1.90 2.62 3.34 4.06 4.78 

Scenarios Addressed in the Stochastic Formulation 

Average 
NPV ($B) 

Satisfaction of the CO2 specification 
for the five scenarios Capital 

Cost ($B) 
LNG 1 LNG 2 LNG 3 

1 34.41 Y/Y/Y/Y/Y2 Y/N/N/N/N Y/N/N/N/N 20.8 

2 29.5 Y/Y/Y/Y/Y Y/Y/Y/Y/Y Y/Y/Y/Y/Y 21.5 

3 32.3 Y/Y/Y/Y/Y Y/Y/Y/Y/Y Y/Y/Y/Y/Y 21.5 

1 Quality means the CO2 mole percentage in gas.  

1 This NPV cannot be achieved in reality because of the violation of the CO2 specification . 
2 ‘Y’ indicates that the CO2 specification is satisfied in one of the five scenarios and ‘N’ otherwise. 

More Results With the Three Formulations 
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Process Flowsheet 
Group 1 Group 2 

Group 3 

Group 4 Group 5 Group 6 Group 7 

Fixed Capacity 


