Nonconvex Generalized Benders Decomposition

Paul I. Barton

Process Systems Engineering Laboratory Massachusetts Institute of Technology

Motivation

Two-stage Stochastic MINLPs & MILPs

Natural Gas Production System

$$\min_{x_1,\dots,x_s,y} \sum_{h=1}^s w_h f_h(x_h, y)$$

s.t. $g_h(x_h, y) \le 0, \quad h = 1,\dots,s$
 $x_h \in X_h, \quad h = 1,\dots,s$
 $y \in Y \subset \{0,1\}^{n_y}$

Energy Polygeneration Plant

Pump Network

Oil Refinery

Pharmaceutical Product Launch

Illii Two Different Decomposition Philosophies

$$\min_{x_1,\dots,x_s,y} \sum_{h=1}^{s} w_h f_h(x_h, y)$$

s.t. $g_h(x_h, y) \le 0, \quad h = 1,\dots,s$
 $x_h \in X_h, \quad h = 1,\dots,s$
 $y \in Y \subset \{0,1\}^{n_y}$

- Benders decomposition/L-shaped method
 - Linear duality
- Generalized Benders decomposition
 - Nonlinear duality
- Nonconvex Generalized Benders decomposition

$$\min_{x_1,...,x_s,y_1,...,y_s} \sum_{h=1}^{s} w_h f_h(x_h, y_h)$$

s.t. $g_h(x_h, y_h) \le 0, \quad h = 1,...,s$
 $y_h = y_{h+1}, \quad h = 1,...,s - 1$
 $x_h \in X_h, \quad h = 1,...,s$
 $y_h \in Y \subset \{0,1\}^{n_y}$

- Danzig-Wolfe decomposition
 - Linear duality
- Lagrangian relaxation
 - Nonlinear duality

Generalized Benders Decomposition

IIIii

Master problem

 $\begin{array}{ll}
\min_{y} \phi(y) & \min_{y \in Y} \phi(y) \\
\text{s.t.} & \phi(y) = \inf_{x \in X, g(x,y) \le 0} f(x,y) & \swarrow & \sum_{y \in Y} \phi(y) \\
& y \in Y \cap V, & & \text{s.t.} & \phi(y) = \sup_{\lambda \ge 0} \inf_{x \in X} f(x,y) + \lambda^T g(x,y) \\
& y \in Y \cap V, & & 0 \ge \inf_{x \in X} \mu^T g(x,y), \quad \forall \mu \in M \\
& V = \{y : \exists x \in X, g(x,y) \le 0\}
\end{array}$

|'|iī

Generalized Benders Decomposition

Subproblems generated via restriction and relaxation

Illii Illii Generalized Benders Decomposition

Relaxed master problem with separability in x and y

Relaxed Master Problem min η v,η s.t. $\eta \ge \inf_{x \in Y} f(x, y) + (\lambda^j)^T g(x, y), \quad \forall \lambda^j \in T^k$ $0 \ge \inf_{x \in V} \left(\mu^i \right)^T g(x, y), \quad \forall \mu^i \in S^k$ **Property P!** $\downarrow \qquad f(x, y) \equiv f_1(x) + f_2(y), \ g(x, y) \equiv g_1(x) + g_2(y) *$ min η y,η s.t. $\eta \ge obj_{\Pr imal}^{j} + f_{2}(y) - f_{2}(y^{(j)}) + (\lambda^{j})^{T} [g_{2}(y) - g_{2}(y^{(j)})], \quad \forall \lambda^{j} \in T^{k}$ $0 \ge obj_{Feas}^{i} + \left(\mu^{i}\right)^{T} \left[g_{2}(y) - g_{2}(y^{(i)})\right], \quad \forall \mu^{i} \in S^{k}$

* A.M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10(4):237–260, 1972.

비i Generalized Benders Decomposition

Algorithm flowchart

Generalized Benders Decomposition

GBD and scenario-based stochastic programs

But, what if convexity assumption does not hold?

Convex Relaxations of Nonconvex Functions

- Convex Relaxation ≠ Convex Approximation
- Most practical problems can be relaxed via McCormick's approach

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I – Convex underestimating problems. *Mathematical Programming*, 10:147–175, 1976.

Gaps Due to Dual and Convex Relaxations

It is very difficult to obtain optimal dual solution for a nonconvex primal!

IVIT Nonconvex Generalized Benders Decomposition: Overview

Image: Nonconvex Generalized BendersImage: Second Seco

Lower bounding problem via convexification

Desired separability can be induced by the process of convex relaxation

Image: Nonconvex Generalized BendersImage: Second Seco

Relaxed master problem

Relaxed Master Problem (MILP)

$$\begin{split} \min_{\eta, y} & \eta \\ s.t. \ \eta \ge obj_{PBP}^{(j)} + \left(\sum_{h=1}^{s} \left(w_{h}c_{h}^{T} + \left(\lambda_{h}^{(j)}\right)^{T}B_{h}\right)\right) \left(y - y^{(j)}\right), \quad \forall j \in T^{k}, \\ & 0 \ge obj_{FP}^{(i)} + \left(\sum_{h=1}^{s} \left(\mu_{h}^{(i)}\right)^{T}B_{h}\right) \left(y - y^{(i)}\right), \quad \forall i \in S^{k}, \\ & \sum_{r \in \Xi^{(1)}} y_{r} - \sum_{r \in \Xi^{(0)}} y_{r} \le |\{r : y_{r}^{(i)} = 1\}| - 1, \quad \forall t \in T^{k} \bigcup S^{k}, \\ & y \in Y, \eta \in \mathbb{R} \end{split}$$

IIII Nonconvex Generalized Benders Decomposition

Primal problem

Deterministic global optimization solvers based on *continuous* branch-and-bound (e.g., BARON) can solve many nonconvex NLPs & MINLPs of small to medium size in reasonable times.

Image: Nonconvex Generalized Benders Image: Second Sec

Algorithm flowchart

Illi Infrastructure Expansion of SGPS Under Uncertainty

Goal

Optimal network design and long-term operation policy to

- maximize profitability
- satisfy product-specific constraints for all addressed uncertainty scenarios

Illir Challenges and Novel Formulation

Challenges

- Strict specifications on gas products: H₂S, CO₂, GHV, etc.
- Large uncertainty in the system
 - quality and capacity of reservoirs
 - customer demands
 - ≻ etc.

Traditional deterministic linear model is not adequate

Novel Formulation

- Generalized pooling model to track gas flow qualities throughout the system
- Two-stage stochastic framework to address uncertainty explicitly

Stochastic pooling problem formulation combines

- > generalized pooling model
- stochastic framework
- > large-scale MINLP

Stochastic Pooling Problem

$$\min_{\substack{y,x_1,\dots,x_n\\q_1,\dots,q_n\\u_1,\dots,u_n}} c_1^T y + \sum_{h=1}^s \left(c_{2,h}^T x_h + c_{3,h}^T q_h + c_{4,h}^T u_h \right)$$
Economic objective
$$Nonconvex bilinear terms \\ model gas qualities \\ s.t. u_{h,l,l} = (x_{h,l} q_{h,l}) \quad \forall (l,t) \in \Omega, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h}^{(equ)} x_h + \tilde{A}_{3,h}^{(equ)} q_h + \tilde{A}_{4,h}^{(equ)} u_h = \tilde{b}_h^{(equ)}, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + A_{4,h} u_h \leq b_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \leq \tilde{b}_h, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \in \mathbb{R}^{n_h}, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \in \mathbb{R}^{n_h}, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{2,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \in \mathbb{R}^{n_h}, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{3,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \in \mathbb{R}^{n_h}, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{3,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \in \mathbb{R}^{n_h}, \quad \forall h \in \{1,\dots,s\} \\ \tilde{A}_{3,h} x_h + \tilde{A}_{3,h} q_h + \tilde{A}_{4,h} u_h \in \mathbb$$

 $\Omega \subset \{1, \dots, n_x\} \times \{1, \dots, n_q\}, \quad n_u = \mid \Omega \mid$

Computational Study Implementation Issues

Platform

- CPU 2.83 GHz, Memory 1 GB, Linux, GAMS 22.8.1

Solvers

- LP and MILP solver : CPLEX
- Global NLP solver: BARON
- Local NLP solver: SNOPT

Methods for Comparison

- 1. BARON The state-of-the-art global optimization solver
- 2. NGBD Nonconvex generalized Benders decomposition
- 3. EI Naïve integer enumeration

Relative Tolerance for Global Optimization

- 10-2

Computational Study SGPS design problem A

The stochastic problem contains 38 binary variables and 93s continuous variables (s represents total number of scenarios).

(a) Solver times with different methods

(b) Solver times with NGBD for more scenarios

Illii Computational Results: MILP Recourse

	examples								
	Ex1	Ex2	Ex3	Ex4	Ex5	Ex6	Ex7	Ex8	Ex9
number of products	2	3	4	5	6	7	8	9	10
number of scenarios	9	27	81	243	729	2,187	6,561	19,683	59,049
number of 1st-stage binary variables	124	124	124	124	124	124	124	124	124
number of 2nd-stage binary variables (per scenario)	124	186	248	310	372	434	496	558	620
number of 2nd-stage continuous variables (per scenario)	744	1,023	1,302	1,581	1,860	2,139	2,418	2,697	2,976
number of constraints	7,382	27,749	100,568	354,179	1,220,474	4,135,745	13,830,716	45,763,103	150,102,686
time-fullmodel (s)	0.6	0.7	12.3	135.0	998.8	NA	NA	NA	NA
objective_fullmodel (Billion \$)	17.525	25.573	32.176	41.929	49.452	NA	NA	NA	NA
relaxed objective* (Billion \$)	17.550	25.613	32.227	41.940	49.466	55.276	63.840	NA	NA
time-NGBD (s)	3.3	3.9	8.4	26.7	73.5	229.1	697.9	2494.9	8488.9
UBD at termination (Billion \$)	-17.523	-25.588	-32.198	-41.919	-49.435	-55.249	-63.801	-68.136	-72.482
LBD at termination (Billion \$)	-17.533	-25.601	-32.216	-41.931	-49.449	-55.237	-63.789	-68.108	-72.437
integer realizations visited by PBP	17	5	5	2	2	2	2	2	2
integer realizations visited by PP	1	1	1	1	1	1	1	1	1

NA = No solution returned in 10,000 CPU seconds; *obtained by solving full-space MILP model as an LP.

36 million BVs! /// 176 million CVs!

Hardware: 3.2 GHz Intel Xeon CPU with 12 GB RAM on Windows Software: GAMS 23.6 / CPLEX 12.2 Tolerance: 0.001 (relative) for both full model and NGBD

- With full model, the solution time increases drastically with # scenarios
- With NGBD, the solution time increases linearly with # scenarios

Computational Study

Summary of studied nonconvex problems

(all solved to global optimality with given tolerances)

	Continuous variable /Integer variable	Time via NGBD (Second)	Nonconvexity	Implementation ^[1]
Haverly	21,000/16	93.4	Bilinear	(A)
Gas Network	68,000/19	15,610.7	Bilinear	(A)
SGPS A	93,000/38	978.2	Bilinear	(A)
SGPS B	93,000/38	977.1	Bilinear	(A)
SGPS C	146,410/20	4,234.8	Bilinear, quadratic, power	(B)
Software	10,648/8	260.7	Logarithmic	(B)
Pump	50,578/18	2,794.8	Bilinear, quadratic, cubic	(B)
Polygeneration	14,688/70	15,825.0 [2]	Bilinear	(C)

Note: [1] Problems were run with different CPUs, GAMS systems and relative termination tolerances ε:

(A) CPU 2.83 GHz, GAMS 28.1, $\varepsilon = 10^{-2}$; (B) CPU 2.83 GHz, GAMS 23.4, $\varepsilon = 10^{-3}$; (C) CPU 2.66 GHz, GAMS 23.5, $\varepsilon = 10^{-2}$.

[2] Enhanced NGBD with tighter lower bounding problems employed.

Conclusions & Future Work

- Classical decomposition ideas (GBD) can be extended to certain problems with nonconvex recourse
 - > Algorithm running time tends to grow linearly with no. scenarios
 - Applied to hard nonconvex optimization problems in optimal design & operation of energy systems under uncertainty
- Continuous complicating variables?
- Multi-stage problems?
- How to close the relaxation gap?

Acknowledgments

- Dr. Xiang Li, Dr. Arul Sundaramoorthy, MIT
- Prof. Asgeir Tomasgard, NTNU (Norway)
- Statoil (Norway)
- Novartis
- BP

Illii Generalized Benders Decomposition

Principle of projection

* A.M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10(4):237–260, 1972.

14**1**1

Generalized Benders Decomposition

Optimality cuts

$$\min_{y} \phi(y)$$

s.t. $\phi(y) = \inf_{x \in X, g(x,y) \le 0} f(x, y)$ Optimality
 $y \in Y \cap V,$
 $V = \{y : \exists x \in X, g(x, y) \le 0\}$ Feasibility

Generalized Benders Decomposition

Nonconvex Generalized Benders USEL Decomposition

Primal bounding problem and feasibility problem

Ilii Nonconvex Generalized Benders Ilii Decomposition

Master problem

Haverly's Pooling Problem

Haverly C. A., "Studies of the behaviour of recursion for the pooling problem", ACM SIGMAP Bulletin, 25:29-32, 1978.

Need for Global Optimization

Solver	Type	Algorithm	Objective
BARON	Global	Branch-and-Reduce	400.0
SNOPT	Local	Sequential Quadratic Programming	0.0
MINOS	Local	Projected Lagrangian	0.0
CONOPT	Local	Generalized Reduced Gradient	0.0
KNITRO	Local	Interior Point	400.0

Deterministic global optimization solvers based on *continuous* branch-and-bound (e.g., BARON) can solve many nonconvex NLPs of small to medium size in reasonable times.

Global Optimization via Branch-and-Bound

- Nonconvex optimization

Standard optimization techniques cannot distinguish between suboptimal local minima

Global Optimization via Branch-and-Bound - Convex Relaxation

Global Optimization via Branch-and-Bound *- Branch*

Global Optimization via Branch-and-Bound *- Branch, and bound*

Global Optimization via Branch-and-Bound - Branch, bound and fathom

IlliTwo-Stage StochasticProgramming Framework

l'liī

The Different Design Results

Superstructure of the problem

Formulation 2 – Only quality addressed

Formulation 1 – Uncertainty and quality not addressed

Computational Study

SGPS design problem A

Convergence of the upper and lower bounds over the iterations

Pharmaceutical Business Processes

Pharmaceutical Business Processes

Pharmaceutical Business Processes

*Stonebraker, J.S. How Bayer makes decisions to develop new drugs. Interfaces, 32, 77, 2002.

Uncertainty in the Problem

- The success of each clinical trial is uncertain
 - Each drug can have only 1 out of 4 possible outcomes*
 - » For a drug *i*, $\Omega_i = \{IF, IIF, IIIF, IIIP\}; \# \text{ scenarios} = 4^{|I|}$

- We consider a subset of outcomes
 - PI outcomes are known a priori
 - » For a drug *i*, $\Omega_i = \{\text{IIF, IIIF, IIIP}\}; \# \text{ scenarios} = 3^{|I|}$

*Colvin, M; Maravelias, C.T. A Stochastic programming approach for clinical trial planning in new drug development. *Comput. Chem. Eng.*, 32, 2626-2642, 2008.

l'Iliī

Proposed Approach

Two-stage stochastic programming

- First stage decisions
 - » When to build a new facility
 - » When to expand an existing facility
- Second stage decisions
 - » When, where, and how much to produce, store, and supply

Model, Size, and Solution Method

- Mixed-integer linear programming (MILP) model
 - First-stage variables binary, recourse problem MILP
- The model size increases exponentially with the number of products
 - ▶ # scenarios = 3^n , where *n* is the total number of products
- When n = 10 products, the model size becomes prohibitively large
 - # binary variables > 35 million!
 - # cont. variables > 175 million!
 - # constraints > 150 million!
 - State-of-the-art commercial solvers cannot solve in reasonable time (eg. IBM / CPLEX)

Gaps Due to Dual and Convex Relaxations

It is very difficult to obtain dual multipliers for a nonconvex problem!

Enhanced NGBD with More Dual Information

The Enhanced Decomposition Strategy – Relaxed Dual of Primal Problem

The relaxed dual of the primal problem is usually much more difficult than the primal problem

The Enhanced Decomposition Strategy –Enhanced Relaxed Master Problem

	Enhanced Re Problem	laxed Master (MILP)	
	min _{y,η}	η	
	s.t. $\eta \ge \tilde{\alpha}^{(r)} y + \tilde{\beta}^{(r)}$, $\forall r \in U^k \subset T^k$,
	$\eta \ge \breve{\alpha}^{(r)} y + \breve{\beta}^{(r)}$	$, \forall r \in U^k \subset T^k$,
	$\eta \ge \alpha^{(j)} y + \beta^{(j)}$	$, \forall j \in T^k,$	
	$\gamma^{(i)}y + \theta^{(i)} \le 0,$	$\forall i \in S^k,$	
	$\sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l - \sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!\!\!\!\!\ l: y_l^{(t)} = 1\}} y_l = \sum_{l \in \{\!$	$\sum_{j^{(t)}=0} y_{l} \le \left \{ l : y_{l}^{(t)} = \right $	$=1\Big\}-1, \forall t \in T^k \cup S^k,$
	$y \in Y, \ \eta \in \mathbb{R}$		
$\widetilde{\boldsymbol{\alpha}}^{(r)} = \boldsymbol{c}_1^T + \sum_{h=1}^s \left(\boldsymbol{\lambda}_h^{(r)}\right)^T \boldsymbol{A}_{1,h}$		$\breve{\alpha}^{(r)} = c_1^T + \sum_{h=1}^s$	$\left(\kappa_{h}^{(r)}\right)^{T}A_{1,h}$
$\tilde{\beta}^{(r)} = \sum_{h=1}^{s} \left[c_{2,h}^{T} \tilde{x}_{h}^{(r)} + c_{3,h}^{T} \tilde{q}_{h}^{(r)} + c_{4,h}^{T} \tilde{i} \right]$	$\binom{(r)}{h} +$	$\breve{\beta}^{(r)} = \sum_{h=1}^{s} \left[c_{2,h}^T \breve{x} \right]$	$c_{h}^{(r)} + c_{3,h}^{T} \breve{q}_{h}^{(r)} + c_{4,h}^{T} \breve{u}_{h}^{(r)} \Big] +$
$\sum_{h=1}^{s} \left[\left(\lambda_{h}^{(r)} \right)^{T} \left(A_{2,h} \tilde{x}_{h}^{(r)} + A_{3,h} \tilde{x}_{h}^{(r)} \right) \right]$	$\left[\tilde{u}_{h}^{(r)}+A_{4,h}\tilde{u}_{h}^{(r)}-b_{h}\right]$	$\sum_{h=1}^{s} \Biggl[\left(\mathcal{K}_{h}^{(r)} \right.$	$\int_{0}^{T} \left(A_{2,h} \breve{x}_{h}^{(r)} + A_{3,h} \breve{q}_{h}^{(r)} + A_{4,h} \breve{u}_{h}^{(r)} - b_{h} \right) \right]$
$\left(\tilde{\mathbf{x}}_{h}^{(j)}, \tilde{q}_{h}^{(j)}, \tilde{u}_{h}^{(j)}\right)$: Optimal solution of Pro	bblem (DPP _h) with $\lambda_h^{(k)}$	$\left(\breve{x}_{h}^{(j)},\breve{q}_{h}^{(j)},\breve{u}_{h}^{(j)}\right)$: Optimal solution of Problem (DPP _h) with $\kappa_h^{(k)}$ 50

The Enhanced Decomposition Strategy –Enhanced Relaxed Master Problem

The Enhanced Decomposition Strategy

-Enhanced Relaxed Master Problem with Primal Dual Multicuts

The Enhanced Decomposition Strategy

-Enhanced Relaxed Master Problem with Primal Dual Multicuts

Enhanced NGBD Algorithm Flowchart

What is polygeneration?

Polygeneration is a novel conversion process

- Multiple feedstocks and multiple products
- Multiple processes with strong synergy in a single plant
- Flexible product portfolios in response to market conditions

Case Study

Problem Sizes and Optimization Results

	Case 1	Case 2
Case Study	Middle Oil Price Middle Carbon Tax 100% Flexibility	Middle Oil Price Middle Carbon Tax 100% Flexibility
Number of Scenarios	8	24
Explanation of Scenarios	Daytime and nighttime in 4 seasons	Daytime and nighttime in 12 months
Number of Binary Variables	70	70
Number of Continuous Variables	4896	14688
Optimization Results (\$MM)	1122.95	1124.31

Case 1 Results

	BARON	NGBD	Enhanced NGBD	Multicut Enhanced NGBD
Total Time	[1]	73004.91	11985.4	3065.11
Time for PBP		3.02	1.24	0.41
Time for FP		0.42	0.49	0.23
Time for RM		87.42	7.6	4.43
Time for PP		72914.05	9403.55	1299.12
Time for DPP			2572.52	1760.92
Integers Visited ^[2]		347/292	108/58	46/9

Tolerance: 10⁻²

[1] No global solution returned within 48 hours.

[2] Total number of integers visited / Number of integers visited by the primal problem

Case 1 Results

Case 2 Results

	BARON	NGBD	Enhanced NGBD	Multicut Enhanced NGBD
Total Time	[1]		48430.99	15824.95
Time for PBP			3.1	1.01
Time for FP			0.77	0.47
Time for RM			8.65	10.38
Time for PP			37571.26	6770.02
Time for DPP			10847.21	9043.07
Integers Visited ^[2]			106/55	44/10

Tolerance: 10⁻²

[1] No global solution returned within 48 hours.

[2] Total number of integers visited / Number of integers visited by the primal problem

Case 2 Results

-1100

-1120

-1140

-1160

-1180

-1200

-1220

-1240

-1260

-1280

-1300∟ 0

20

40

60

Iteration

Objective

Enhanced NGBD

Multicut Enhanced

Tolerance: 10⁻²

- - ε-optimal obj

ε-tolerance

Upper bounds

80

- Lower bounds

100

120

Case 1 Results

	BARON	NGBD	Enhanced NGBD	Multicut Enhanced NGBD
Total Time	[1]		21323.92	16447.34
Time for PBP			16.6	4.57
Time for FP			1.91	2.84
Time for RM			22.37	7.16
Time for PP			12853.22	9214.1
Time for DPP			8429.82	7218.67
Integers Visited ^[2]			133/87	50/14

Tolerance: 10⁻³

[1] No global solution returned within 48 hours.

[2] Total number of integers visited / Number of integers visited by the primal problem

Case 1 Results

Enhanced NGBD

Tolerance: 10-3

More Case Study Results

Scenarios Addressed in the Stochastic Formulation

Scenario	No. 1	No. 2	No. 3	No. 4	No. 5
Probability	0.036	0.238	0.451	0.238	0.036
M1 quality ¹	1.90	2.62	3.34	4.06	4.78

¹ Quality means the CO₂ mole percentage in gas.

More Results With the Three Formulations

	Average	Satisfaction for t	Capital		
	NPV (\$B)	LNG 1	LNG 2	LNG 3	COST (\$B)
1	34.4 ¹	Y/Y/Y/Y/Y ²	Y/N/N/N/N	Y/N/N/N/N	20.8
2	29.5	Y/Y/Y/Y/Y	Y/Y/Y/Y/Y	Y/Y/Y/Y/Y	21.5
3	32.3	Y/Y/Y/Y/Y	Y/Y/Y/Y/Y	Y/Y/Y/Y/Y	21.5

¹ This NPV cannot be achieved in reality because of the violation of the CO₂ specification .

² 'Y' indicates that the CO_2 specification is satisfied in one of the five scenarios and 'N' otherwise.

l'liī

Fixed Capacity

