Recent results on solving QCQPs, and related topics

Daniel Bienstock
joint work with: Alex Michalka, Gonzalo Muñoz, Irene Lo
Columbia University
Three problems

1. The “SUV” problem

 - given full-dimensional polyhedra P^1, \ldots, P^K in \mathbb{R}^d,

 - find a point closest to the origin not contained inside any of the P^h.

 \[
 \min_{x \in \mathbb{R}^d} ||x||^2 \\
 \text{s.t. } x \in \mathbb{R}^d - \bigcup_{h=1}^K \text{int}(P^h),
 \]

 (application: X-ray lithography)
• Typical values for d (dimension): less than 20; usually even smaller
• Typical values for K (number of polyhedra): possibly hundreds, but often less than 50
• Very hard problem
2. Cardinality constrained, convex quadratic programming.

\[
\begin{align*}
\min & \quad x^T Q x + c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \geq 0, \quad \|x\|_0 \leq k
\end{align*}
\]

\(\|x\|_0 = \text{number of nonzero entries in } x\).

- \(Q \succeq 0\)
- \(x \in \mathbb{R}^n \) for \(n\) possibly large
- \(k\) relatively small, e.g. \(k = 100\) for \(n = 10000\)
- VERY hard problem – just getting good bounds is tough
3. AC-OPF problem in rectangular coordinates

Given a power grid, determine voltages at every node so as to minimize a convex objective

\[
\min v^T Av \\
\text{s.t. } L_k \leq v^T F_k v \leq U_k, \quad k = 1, \ldots, K \\
v \in \mathbb{R}^{2n}, \quad (n = \text{number of nodes})
\]

- voltages are complex numbers; \(v \) is the vector of voltages in rectangular coordinates (real and imaginary parts)
- \(A \succeq 0 \)
- \(n \) could be in the tens of thousands, or more
- the \(F_k \) are very sparse (neighborhood structure for every node)
- Problem HARD when grid under distress and \(L_k \approx U_k \).
Why are these problems so hard

Generic problem: \(\min Q(x), \quad s.t. \quad x \in F, \)

- \(Q(x) \) (strongly) convex, especially: positive-definite quadratic
- \(F \) nonconvex

\[x^* \text{ solves } \min \left\{ Q(x), : x \in \hat{F} \right\} \text{ where } F \subset \hat{F} \text{ and } \hat{F} \text{ convex} \]

\(\rightarrow \) straightforward relaxations are weak
Lattice-free cuts for **linear** integer programming

Generic problem: \[\min c^T x, \quad \text{s.t.} \quad Ax \leq b, \quad z \in \mathbb{Z}^n \]
Lattice-free cuts for **linear** integer programming

Generic problem: \(\min c^T x, \quad \text{s.t.} \quad Ax \leq b, \quad z \in \mathbb{Z}^n \)
Lattice-free cuts for linear integer programming

Generic problem: \(\min c^T x, \quad s.t. \quad Ax \leq b, \quad z \in \mathbb{Z}^n \)
Lattice-free cuts for **linear** integer programming

Generic problem: \(\min c^T x, \ \text{s.t.} \ Ax \leq b, \ z \in Z^n \)

Special case: standard **disjunctions**

How to apply in a continuous, nonconvex setting?
Exclude-and-cut

\[
\begin{align*}
\min \ z \\
\text{s.t.} \quad z &\geq Q(x), \\
x &\in F
\end{align*}
\]

0. \(\hat{F} \): a convex relaxation of \(\text{conv} \ \{(x, z) : z \geq Q(x), \ x \in F\} \)

1. Let \((x^*, z^*) = \arg\min \{z : (x, z) \in \hat{F}\} \)
Exclude-and-cut

\[
\begin{align*}
\min \ & z \\
\text{s.t.} \quad & z \geq Q(x), \\
\ & x \in F
\end{align*}
\]

0. \hat{F}: a convex relaxation of $\text{conv} \{(x, z) : z \geq Q(x), \ x \in F\}$

1. Let \((x^*, z^*) = \text{argmin}\{z : (x, z) \in \hat{F}\}\)

2. Find an open set \(S\) s.t. \(x^* \in S\) and \(S \cap F = \emptyset\).
 Examples: lattice-free sets, geometry
Exclude-and-cut

\[\begin{align*}
\text{min} & \quad z \\
\text{s.t.} & \quad z \geq Q(x), \\
& \quad x \in F
\end{align*}\]

0. \(\hat{F}\): a \textbf{convex relaxation} of \(\text{conv} \{ (x, z) : z \geq Q(x), \ x \in F \}\)

1. Let \((x^*, z^*) = \text{argmin}\{ z : (x, z) \in \hat{F} \}\)

2. Find an \textbf{open set} \(S\) s.t. \(x^* \in S\) and \(S \cap F = \emptyset\).

 Examples: lattice-free sets, geometry

3. Add to the formulation an inequality \(az + \alpha^T x \geq \alpha_0\) valid for

 \[\{(x, z) : x \in \overline{S}, \ z \geq Q(x)\}\]

 but violated by \((x^*, z^*)\).
Valid **linear** inequalities for \(\{(x, z) : x \in \overline{S}, z \geq Q(x)\} \).
Valid **linear** inequalities for \(\{(x, z) : x \in \overline{S}, \ z \geq Q(x)\} \).

\[z \geq [\nabla Q(y)]^T (x - y) + Q(y) \]

is valid EVERYWHERE – does not cut-off any points
Valid **linear** inequalities for \(\{ (x, z) : x \in \overline{S}, z \geq Q(x) \} \).

First order inequality:

\[
z \geq \left[\nabla Q(y) \right]^T (x - y) + Q(y)
\]

is valid EVERYWHERE – does not cut-off any points **Lifted** first order inequality, for \(\alpha \geq 0 \):

\[
z \geq \left[\nabla Q(y) \right]^T (x - y) + Q(y) + \alpha v^T (x - y)
\]

NOT valid EVERYWHERE: RHS \(> Q(x) \) for \(\alpha > 0 \), \(v^T (x - y) > 0 \) and \(x \approx y \).

- want \(RHS \leq Q(x) \) in \(\tilde{S} \) (\(\alpha = 0 \) always OK)
Valid **linear** inequalities for \(\{(x, z) : x \in \overline{S}, \ z \geq Q(x) \} \).

First order inequality:

\[
z \geq [\nabla Q(y)]^T(x - y) + Q(y)
\]

is valid EVERYWHERE – does not cut-off any points Lifted first order inequality, for \(\alpha \geq 0 \):

\[
z \geq [\nabla Q(y)]^T(x - y) + Q(y) + \alpha v^T(x - y)
\]

NOT valid EVERYWHERE: RHS > \(Q(x) \) for \(\alpha > 0 \), \(v^T(x - y) > 0 \) and \(x \approx y \).
- want RHS \(\leq Q(x) \) in \(\tilde{S} \) (\(\alpha = 0 \) always OK)
Valid **linear** inequalities for \(\{ (x, z) : x \in \overline{S}, \ z \geq Q(x) \} \).

First order inequality:

\[
z \geq \left[\nabla Q(y) \right]^T (x - y) + Q(y)
\]

is valid EVERYWHERE – does not cut-off any points **Lifted** first order inequality, for \(\alpha \geq 0 \):

\[
z \geq \left[\nabla Q(y) \right]^T (x - y) + Q(y) + \alpha v^T (x - y)
\]

first-order term \(\approx Q(x) \) **lifting**

NOT valid EVERYWHERE: RHS > \(Q(x) \) for \(\alpha > 0 \), \(v^T (x - y) > 0 \) and \(x \approx y \).

- want \(RHS \leq Q(x) \) in \(\bar{S} \) (\(\alpha = 0 \) always OK)
Valid linear inequalities for \(\{(x, z) : x \in \overline{S}, \ z \geq Q(x) \} \).

First order inequality:

\[
z \geq [\nabla Q(y)]^T (x - y) + Q(y)
\]

is valid EVERYWHERE – does not cut-off any points Lifted first order inequality, for \(\alpha \geq 0 \):

\[
z \geq [\nabla Q(y)]^T (x - y) + Q(y) + \alpha v^T (x - y)
\]

first-order term \(\approx Q(x) \)

lifting

NOT valid EVERYWHERE: RHS > \(Q(x) \) for \(\alpha > 0 \), \(v^T (x - y) > 0 \) and \(x \approx y \).

– want \(RHS \leq Q(x) \) in \(\tilde{S} \) (\(\alpha = 0 \) always OK)
Valid **linear** inequalities for \(\mathcal{F} \doteq \{ (x, z) \in \mathbb{R}^n \times \mathbb{R} \mid x \in \overline{S}, \ z \geq Q(x) \} \).

Given \(y \in \partial S \), let
\[
\alpha^* \doteq \sup \{ \alpha \geq 0 : Q(x) \geq [\nabla Q(y)]^T(x - y) + Q(y) + \alpha v^T(x - y) \}
\]
valid for \(\mathcal{F} \). Note: \(\alpha^* = \alpha^*(v, y) \)

Theorem. If \(Q \) is convex and differentiable, then \(\text{conv}(\mathcal{F}) \) is given by
\[
Q(x) \geq [\nabla Q(y)]^T(x - y) + Q(y) \quad \forall y
\]
\[
Q(x) \geq [\nabla Q(y)]^T(x - y) + Q(y) + \alpha^* v^T(x - y) \quad \forall v \text{ and } y \in \partial S.
\]

(abridged)
Quadratics in action

Lifted first-order inequalities for $\mathcal{F} = \{(x, z) : x \in \bar{S}, z \geq Q(x)\}$.

$Q(x) \succ 0$

Separation problem. Given $(x^*, z^*) \in \mathbb{R}^n \times \mathbb{R}$, find a lifted-first order inequality maximally violated by (x^*, z^*) (if any)

Theorem: We can separate in polynomial time when:

- \bar{S} (or S) is a union of polyhedra
- S is an ellipsoid or paraboloid (many cases)
Quadratics in action

Lifted first-order inequalities for \(\mathcal{F} = \{(x, z) : x \in \overline{S}, \ z \geq Q(x)\} \).

\[Q(x) \geq 0 \]

Separation problem. Given \((x^*, z^*) \in \mathbb{R}^n \times \mathbb{R}, \) find a lifted-first order inequality maximally violated by \((x^*, z^*)\) (if any)

Theorem: We can separate in polynomial time when:

- \(\overline{S} \) (or \(S \)) is a union of polyhedra
- \(S \) is an ellipsoid or paraboloid (many cases)
Quadratics in action

Lifted first-order inequalities for \(\mathcal{F} = \{(x, z) : x \in \overline{S}, \ z \geq Q(x)\} \).

\[Q(x) \geq 0 \]

Separation problem. Given \((x^*, z^*) \in \mathbb{R}^n \times \mathbb{R}\), find a lifted-first order inequality maximally violated by \((x^*, z^*)\) (if any)

Theorem: We can separate in polynomial time when:

- \(\overline{S}\) (or \(S\)) is a union of polyhedra
- \(S\) is an ellipsoid or paraboloid (many cases)

Key proof technique: S-Lemma

\[
\begin{align*}
\min & \quad Q_1(x) \\
\text{s.t.} & \quad Q_2(x) \leq 0 \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

\((Q_i(x)\) arbitrary quadratics) is poly-time solvable
S-Lemma:

\[
\begin{align*}
\text{min} & \quad Q_1(x) \\
\text{s.t.} & \quad Q_2(x) \leq 0 \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

\((Q_i(x) \text{ arbitrary quadratics})\) is poly-time solvable
Trust-region subproblem:

\[
\begin{align*}
\min & \quad Q_1(x) \\
\text{s.t.} & \quad \|x\| \leq 1 \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]
(TGEN): \[
\min \quad x^T Ax + b^T x + c \\
\text{s.t.} \quad \|x - x^k\|^2 \leq f_k \quad k = 1, \ldots, L_k \\
\|x - y^k\|^2 \geq g_k \quad k = 1, \ldots, M_k \\
\|x - z^k\|^2 = h_k \quad k = 1, \ldots, E_k \\
a^T_i x \leq b_i \quad i = 1, \ldots, m \\
x \in \mathbb{R}^n.
\]
Extension

(TGEN): \[\begin{align*}
\text{min} & \quad x^T Ax + b^T x + c \\
\text{s.t.} & \quad \|x - x^k\|^2 \leq f_k \quad k = 1, \ldots, L_k \\
& \quad \|x - y^k\|^2 \geq g_k \quad k = 1, \ldots, M_k \\
& \quad \|x - z^k\|^2 = h_k \quad k = 1, \ldots, E_k \\
& \quad a_i^T x \leq b_i \quad i = 1, \ldots, m \\
& \quad x \in \mathbb{R}^n.
\end{align*} \]

\begin{itemize}
\item \(P = \{x : a_i^T x \leq b_i \quad i = 1, \ldots, m\} \)
\item \(F^* = \) the number of faces of \(P \) that intersect \(\bigcap_k \{x : \|x - x^k\| \leq f_k\} \).
\end{itemize}
\textbf{Extension}

\textbf{(TGEN)}: \quad \min \quad x^T A x + b^T x + c
\text{s.t.} \quad \|x - x^k\|^2 \leq f_k \quad k = 1, \ldots, L_k
\|x - y^k\|^2 \geq g_k \quad k = 1, \ldots, M_k
\|x - z^k\|^2 = h_k \quad k = 1, \ldots, E_k
a^T_i x \leq b_i \quad i = 1, \ldots, m
x \in \mathbb{R}^n.

- \(P = \{ x : a^T_i x \leq b_i \quad i = 1, \ldots, m \} \)
- \(F^* = \) the number of faces of \(P \) that intersect \(\bigcap_k \{ x : \|x - x^k\| \leq f_k \} \).

\textbf{Theorem:} For every fixed \(L_k \geq 1, M_k \geq 0, E_k \geq 0 \), problem \(\text{TGEN} \) can be solved in time polynomial in the problem size and \(F^* \).

\textit{(SODA 2014)}

Extends results by Ye, Ye-Zhang, Burer-Anstreicher, Burer-Yang
Even more general

Barvinok (STOC 1992):

For each fixed \(p \geq 1 \), there is a polynomial-time algorithm for deciding feasibility of a system

\[
 x^T M_i x = 0, \quad 1 \leq i \leq p, \\
 \|x\| = 1,
\]

where the \(M_i \) are general matrices.
Even more general

Barvinok (STOC 1992):

For each fixed \(p \geq 1 \), there is a polynomial-time algorithm for deciding feasibility of a system

\[
\begin{align*}
x^T M_i x &= 0, \quad 1 \leq i \leq p, \\
\|x\| &= 1,
\end{align*}
\]

where the \(M_i \) are general matrices.

- **Non-constructive.** Algorithm says “yes” or “no.”

- **Computational model?**
Theorem.

For each fixed $m \geq 1$ there is a polynomial-time algorithm that, given an optimization problem

$$\min \ f_0(x) = x^T Q_0 x + c_0^T x$$

s.t. $$x^T Q_i x + c_i^T x + d_i \leq 0 \quad 1 \leq i \leq m,$$

where $Q_1 \succ 0$, and $0 < \epsilon < 1$, either

(1) proves that the problem is infeasible,

or

(2) computes an ϵ-feasible vector \hat{x} such that there exists no feasible $x \in \mathbb{R}^n$ with $f_0(x) < f(\hat{x}) - \epsilon$.

The complexity of the algorithm is polynomial in the number of bits in the data and in $\log \epsilon^{-1}$