Recent results on solving QCQPs, and related topics

Daniel Bienstock

joint work with: Alex Michalka, Gonzalo Muñoz, Irene Lo Columbia University

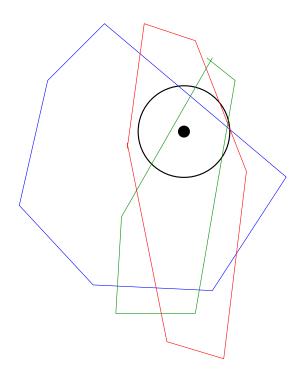
Three problems

- 1. The "SUV" problem
- given full-dimensional polyhedra P^1, \ldots, P^K in \mathbb{R}^d ,
- find a point closest to the origin *not* contained inside any of the P^h .

$$\min \|x\|^2$$

s.t. $x \in \mathbb{R}^d - \bigcup_{h=1}^K \operatorname{int}(P^h),$

(application: X-ray lythography)



- \bullet Typical values for d (dimension): less than 20; usually even smaller
- Typical values for K (number of polyhedra): possibly hundreds, but often less than 50
- \bullet Very hard problem

2. Cardinality constrained, convex quadratic programming.

$$\min x^T Q x + c^T x$$
s.t. $Ax \le b$
 $x \ge 0, \quad ||x||_0 \le k$

 $||x||_0 =$ number of nonzero entries in x.

- $\bullet Q \succeq 0$
- $x \in \mathbb{R}^n$ for n possibly large
- k relatively small, e.g. k = 100 for n = 10000
- VERY hard problem just getting good bounds is tough

3. AC-OPF problem in rectangular coordinates

Given a power grid, determine voltages at every node so as to minimize a convex objective

min
$$v^T A v$$

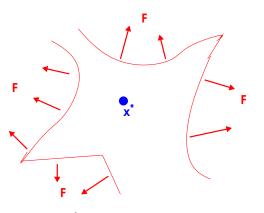
s.t. $L_k \leq v^T F_k v \leq U_k, \quad k = 1, \dots, K$
 $v \in \mathbb{R}^{2n}, \quad (n = \text{number of nodes})$

- voltages are complex numbers; v is the vector of voltages in rectangular coordinates (real and imaginary parts)
- $\bullet A \succeq 0$
- $\bullet~n$ could be in the tens of thousands, or more
- the F_k are very sparse (neighborhood structure for every node)
- Problem HARD when grid under distress and $L_k \approx U_k$.

Why are these problems so hard

Generic problem: min Q(x), s.t. $x \in F$,

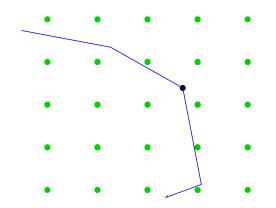
- Q(x) (strongly) convex, especially: positive-definite quadratic
- $\bullet~F$ nonconvex



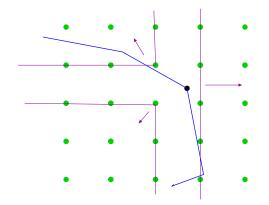
 x^* solves min $\left\{Q(x), : x \in \hat{F}\right\}$ where $F \subset \hat{F}$ and \hat{F} convex

 \rightarrow straightforward relaxations are weak

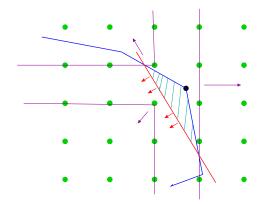
Generic problem: min $c^T x$, s.t. $Ax \le b$, $z \in Z^n$



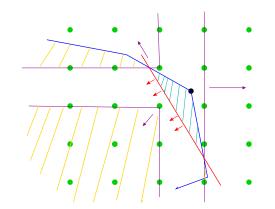
Generic problem: min $c^T x$, s.t. $Ax \le b$, $z \in Z^n$



Generic problem: min $c^T x$, s.t. $Ax \le b$, $z \in Z^n$



Generic problem: min $c^T x$, s.t. $Ax \leq b$, $z \in Z^n$



Special case: standard **disjunctions**

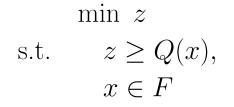
How to apply in a continuous, nonconvex setting?

Exclude-and-cut

$$\begin{array}{ll} \min \ z \\ \text{s.t.} & z \ge Q(x), \\ & x \in F \end{array}$$

0. \hat{F} : a convex relaxation of conv $\{(x, z) : z \ge Q(x), x \in F\}$ **1.** Let $(x^*, z^*) = \operatorname{argmin}\{z : (x, z) \in \hat{F}\}$

Exclude-and-cut



- **0.** \hat{F} : a convex relaxation of conv $\{(x, z) : z \ge Q(x), x \in F\}$ **1.** Let $(x^*, z^*) = \operatorname{argmin}\{z : (x, z) \in \hat{F}\}$
- **2.** Find an **open set** S s.t. $x^* \in S$ and $S \cap F = \emptyset$. Examples: lattice-free sets, geometry

Exclude-and-cut

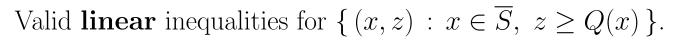
min
$$z$$

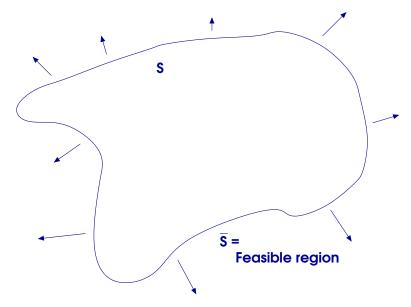
s.t. $z \ge Q(x),$
 $x \in F$

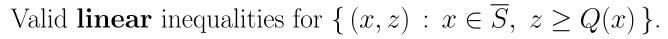
0. \hat{F} : a convex relaxation of conv $\{(x, z) : z \ge Q(x), x \in F\}$ **1.** Let $(x^*, z^*) = \operatorname{argmin}\{z : (x, z) \in \hat{F}\}$

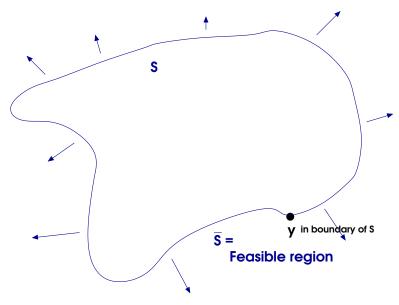
- **2.** Find an **open set** S s.t. $x^* \in S$ and $S \cap F = \emptyset$. Examples: lattice-free sets, geometry
- **3.** Add to the formulation an inequality $az + \alpha^T x \ge \alpha_0$ valid for $\{(x, z) : x \in \overline{S}, z \ge Q(x)\}$

but violated by (x^*, z^*) .



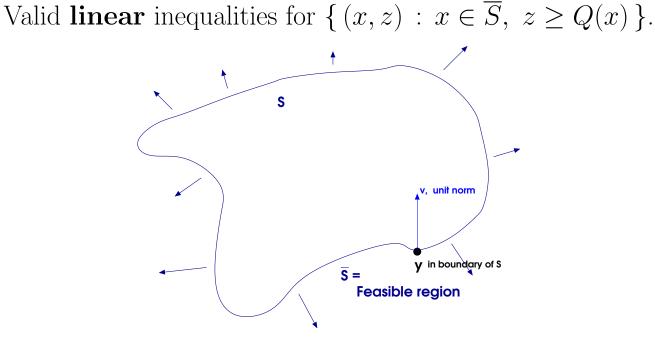






$$z \geq [\nabla Q(y)]^T (x-y) + Q(y)$$

is valid EVERYWHERE – does not cut-off any points



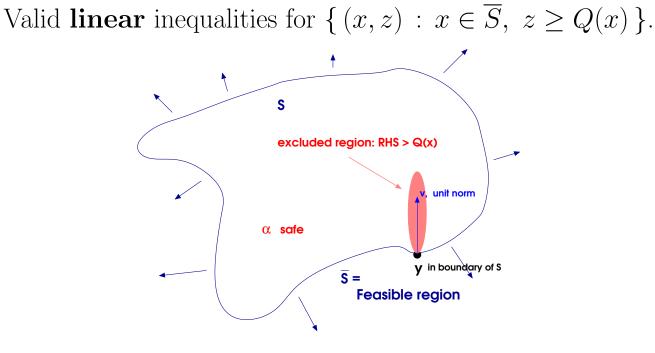
$$z \geq [\nabla Q(y)]^T (x - y) + Q(y)$$

is valid EVERYWHERE – does not cut-off any points **Lifted** first order inequality, for $\alpha \ge 0$:

$$z \geq \underbrace{[\nabla Q(y)]^T(x-y) + Q(y)}_{\text{first-order term} \approx Q(x)} + \underbrace{\alpha v^T(x-y)}_{\text{lifting}}$$

EVERYWHERE: RHS > Q(x) for $\alpha > 0, v^T(x - y)$

NOT valid EVERYWHERE: RHS > Q(x) for $\alpha > 0$, $v^T(x - y) > 0$ and $x \approx y$.



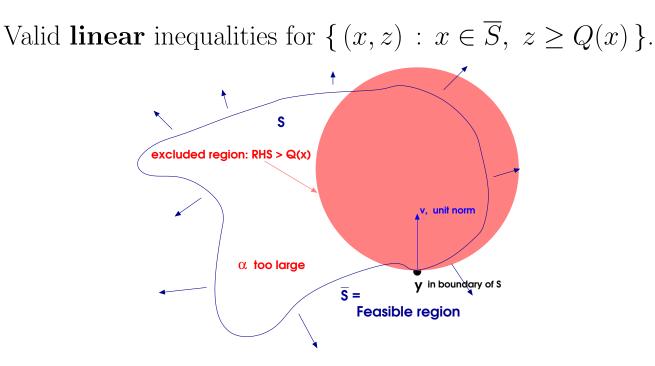
$$z \geq [\nabla Q(y)]^T (x - y) + Q(y)$$

is valid EVERYWHERE – does not cut-off any points **Lifted** first order inequality, for $\alpha \ge 0$:

$$z \geq \underbrace{[\nabla Q(y)]^T(x-y) + Q(y)}_{\text{first-order term} \approx Q(x)} + \underbrace{\alpha v^T(x-y)}_{\text{lifting}}$$

EVERYWHERE: RHS > Q(x) for $\alpha > 0, v^T(x-y)$

NOT valid EVERYWHERE: RHS > Q(x) for $\alpha > 0$, $v^T(x - y) > 0$ and $x \approx y$.



$$z \geq [\nabla Q(y)]^T (x - y) + Q(y)$$

is valid EVERYWHERE – does not cut-off any points **Lifted** first order inequality, for $\alpha \ge 0$:

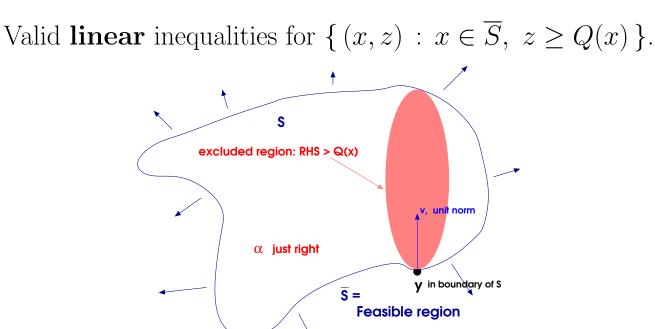
$$z \geq \underbrace{[\nabla Q(y)]^{T}(x-y) + Q(y)}_{\text{first-order term} \approx Q(x)} + \underbrace{\alpha v^{T}(x-y)}_{\text{lifting}}$$

EVERYWHERE: RHS > Q(x) for $\alpha > 0, v^{T}(x-y)$

y) > 0 and

 $x \approx y$.

NOT valid



$$z \geq [\nabla Q(y)]^T (x - y) + Q(y)$$

is valid EVERYWHERE – does not cut-off any points **Lifted** first order inequality, for $\alpha \ge 0$:

$$z \geq \underbrace{[\nabla Q(y)]^T(x-y) + Q(y)}_{\text{first-order term} \approx Q(x)} + \underbrace{\alpha v^T(x-y)}_{\text{lifting}}$$

EVERYWHERE: RHS > Q(x) for $\alpha > 0, v^T(x-y)$

NOT valid EVERYWHERE: RHS > Q(x) for $\alpha > 0$, $v^T(x - y) > 0$ and $x \approx y$.

Valid **linear** inequalities for $\mathcal{F} \doteq \{ (x, z) \in \mathbb{R}^n \times \mathbb{R} : x \in \overline{S}, z \ge Q(x) \}.$

Given $y \in \partial S$, let $\alpha^* \doteq \sup \{ \alpha \ge 0 : Q(x) \ge [\nabla Q(y)]^T (x - y) + Q(y) + \alpha v^T (x - y) \}$ valid for \mathcal{F} . Note: $\alpha^* = \alpha^* (v, y)$

Theorem. If Q is convex and differentiable, then $conv(\mathcal{F})$ is given by $Q(x) \geq [\nabla Q(y)]^T (x - y) + Q(y) \quad \forall y$ $Q(x) \geq [\nabla Q(y)]^T (x - y) + Q(y) + \alpha^* v^T (x - y)$ $\forall v \text{ and } y \in \partial S.$

(abridged)

Quadratics in action

Lifted first-order inequalities for $\mathcal{F} = \{ (x, z) : x \in \overline{S}, z \ge Q(x) \}.$

 $Q(x) \succ 0$

Separation problem. Given $(x^*, z^*) \in \mathbb{R}^n \times \mathbb{R}$, find a lifted-first order inequality maximally violated by (x^*, z^*) (if any)

Theorem: We can separate in polynomial time when:

- $\bullet\;\bar{S}\;(\mathrm{or}\;S)$ is a union of polyhedra
- S is an ellipsoid or paraboloid (many cases)

Quadratics in action

Lifted first-order inequalities for $\mathcal{F} = \{ (x, z) : x \in \overline{S}, z \ge Q(x) \}.$

 $Q(x) \succeq 0$

Separation problem. Given $(x^*, z^*) \in \mathbb{R}^n \times \mathbb{R}$, find a lifted-first order inequality maximally violated by (x^*, z^*) (if any)

Theorem: We can separate in polynomial time when:

- $\bullet\;\bar{S}\;(\mathrm{or}\;S)$ is a union of polyhedra
- S is an ellipsoid or paraboloid (many cases)

Quadratics in action

Lifted first-order inequalities for $\mathcal{F} = \{ (x, z) : x \in \overline{S}, z \ge Q(x) \}.$

 $Q(x) \succeq 0$

Separation problem. Given $(x^*, z^*) \in \mathbb{R}^n \times \mathbb{R}$, find a lifted-first order inequality maximally violated by (x^*, z^*) (if any)

Theorem: We can separate in polynomial time when:

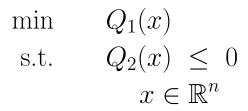
- \bar{S} (or S) is a union of polyhedra
- S is an ellipsoid or paraboloid (many cases)

Key proof technique: S-Lemma

$$\begin{array}{ll} \min & Q_1(x) \\ \text{s.t.} & Q_2(x) \leq 0 \\ & x \in \mathbb{R}^n \end{array}$$

 $(Q_i(x) \text{ arbitrary quadratics})$ is poly-time solvable

S-Lemma:



 $(Q_i(x) \text{ arbitrary quadratics})$ is poly-time solvable

Trust-region subproblem:

$$\begin{array}{ll} \min & Q_1(x) \\ \text{s.t.} & \|x\| \leq 1 \\ & x \in \mathbb{R}^n \end{array}$$

Extension

(TGEN): min
$$x^T A x + b^T x + c$$

s.t. $\|x - x^k\|^2 \leq f_k$ $k = 1, \dots, L_k$
 $\|x - y^k\|^2 \geq g_k$ $k = 1, \dots, M_k$
 $\|x - z^k\|^2 = h_k$ $k = 1, \dots, E_k$
 $a_i^T x \leq b_i$ $i = 1, \dots, m$
 $x \in \mathbb{R}^n$.

Extension

(TGEN): min
$$x^T A x + b^T x + c$$

s.t. $\|x - x^k\|^2 \leq f_k$ $k = 1, \dots, L_k$
 $\|x - y^k\|^2 \geq g_k$ $k = 1, \dots, M_k$
 $\|x - z^k\|^2 = h_k$ $k = 1, \dots, E_k$
 $a_i^T x \leq b_i$ $i = 1, \dots, m$
 $x \in \mathbb{R}^n$.

•
$$P = \{x : a_i^T x \leq b_i \ i = 1, \dots, m\}$$

• F^* = the number of **faces** of P that intersect $\bigcap_k \{x : ||x - x^k|| \le f_k\}.$

Extension

(TGEN): min
$$x^T A x + b^T x + c$$

s.t. $\|x - x^k\|^2 \leq f_k$ $k = 1, \dots, L_k$
 $\|x - y^k\|^2 \geq g_k$ $k = 1, \dots, M_k$
 $\|x - z^k\|^2 = h_k$ $k = 1, \dots, E_k$
 $a_i^T x \leq b_i$ $i = 1, \dots, m$
 $x \in \mathbb{R}^n$.

• $P = \{x : a_i^T x \leq b_i \quad i = 1, \dots, m\}$

• F^* = the number of **faces** of P that intersect $\bigcap_k \{x : ||x - x^k|| \le f_k\}.$

Theorem: For every fixed $L_k \ge 1$, $M_k \ge 0$, $E_k \ge 0$, problem **TGEN** can be solved in time polynomial in the problem size and F^* .

(SODA 2014)

Extends results by Ye, Ye-Zhang, Burer-Anstreicher, Burer-Yang

Even more general

Barvinok (STOC 1992):

For each fixed $p \geq 1$, there is a polynomial-time algorithm for deciding feasibility of a system

$$x^{T}M_{i}x = 0, \quad 1 \le i \le p,$$

 $||x|| = 1,$

where the M_i are general matrices.

Even more general

Barvinok (STOC 1992):

For each fixed $p \geq 1$, there is a polynomial-time algorithm for deciding feasibility of a system

$$x^{T}M_{i}x = 0, \quad 1 \le i \le p,$$

 $||x|| = 1,$

where the M_i are general matrices.

- Non-constructive. Algorithm says "yes" or "no."
- Computational model?

Theorem.

For each fixed $m \ge 1$ there is a polynomial-time algorithm that, given an optimization problem

 $\begin{array}{rll} \min & f_0(x) \ \doteq \ x^T Q_0 x + c_0^T x \\ & \text{s.t.} & x^T Q_i x + c_i^T x + d_i \ \leq \ 0 & 1 \le i \le m, \end{array}$ where $Q_1 \succ 0$, and $0 < \epsilon < 1$, either

(1) proves that the problem is infeasible,

or

(2) computes an ϵ -feasible vector \hat{x} such that there exists no feasible $x \in \mathbb{R}^n$ with $f_0(x) < f(\hat{x}) - \epsilon$.

The complexity of the algorithm is polynomial in the number of bits in the data and in $\log \epsilon^{-1}$

Wed.May.28.160506.2014@littleboy