Generation Investment Equilibria with Strategic Producers

A. J. Conejo, The Ohio State University J. Kazempour, Johns Hopkins University

- Each producer own a significant number of production units
- These units are distributed throughout the electric energy network

Pool-based Electricity Market

- Social welfare maximization
- DC network (1st and 2nd Kirchhoff laws) representation
- Locational marginal prices

Is there a state in the market where no producer can increase its profit by changing unilaterally its strategy (Nash equilibrium)?

- 1. The strategy of any producer is related with those of other producers by the market clearing algorithm.
- 2. Decisions made by one producer may influence the strategies of other producers.
- 3. A number of investment equilibria may exist.

GNE with shared constraints: market clearing common to all producers.
 Multiple or even infinitely many solutions.
 Choosing a meaningful solution is not simple.

Single-producer problem: bilevel model

MPEC

MPEC

Single-producer problem: MPEC

Single-producer problem: MPEC

Multi-producer problem: EPEC

MPEC of producer 1	MPEC of producer i	MPEC of producer <i>n</i>
Minimize Objective function of ULP 1 subject to Constraints of UL 1	Minimize Objective function of ULP <i>i</i> • • • subject to Constraints of UL <i>i</i>	 Minimize Objective function of ULP n subject to Constraints of UL n
LLP 1: PC DC SDE	LLP <i>i</i> : PC DC SDE	LLP n: PC DC SDE

Common to all producers

All

producers

Multi-producer problem: EPEC Many LL problems (operating MPEC of producer 1 MPEC of producer *i* MPEC of producer *n* conditions) Minimize Minimize Minimize Objective function Objective function **Objective function** of ULP *i* of UIP n of ULP 1 subject to subject to subject to Constraints of UL 1 Constraints of UL *i* Constraints of UL *n* LLP *i*: LLP *n*: LLP 1: PC PC PC DC DC DC SDE SDE SDE

Common to all producers

EPEC

Multi-producer problem: Optimality conditions of the EPEC

Nonlinear and highly non-convex due to both products of variables and complementarity conditions.

KKTs of PC+DC+SDE?

- Nonlinear system of equalities and inequalities
 - MFCQ does not hold: degrees of freedom! Parameterization MIL formulation

Investment Equilibria in an Oligopolistic Pool EPEC Linearization:

- 1. The complementarity conditions of the form $0 \le a \perp b \ge 0$ (Fortuny-Amat transformation: *exact* linearization)
- 2. Product of variables in the strong duality equality (replaced by complementarity conditions: *exact* linearization)
- 3. Product of variables whose common variable is the dual variable associated with the strong duality equality (parameterization: *exact* linearization)

- Generally multiple solutions!
- How can this system be solved?

Exploring for equilibria: Creating an optimization problem

Maximize A Meaningful Objective Function

Subject to:

System of linear equalities and inequalities that involves continuous and binary variables

Optimality conditions of the EPEC

A Meaningful Objective Function?

Explore for equilibria: meaningful objective functions:

- 1. Total profit (TP) of all producers
- 2. Annual true social welfare (SW) considering the production costs of the generation units
- 3. Annual SW considering the strategic offer prices of the generation units
- 4. Minus payment of the demands
- 5. Profit of a given producer
- 6. Minus payment of a given demand
- 7. Others

• Linear

• General market measures

Investment Equilibria in an Oligopolistic Pool Which solutions are Nash equilibria?

A single-iteration diagonalization approach is used to verify this

Investment Equilibria in an Oligopolistic Pool Which solutions are Nash equilibria?

A single-iteration diagonalization approach is used

Step 1: checking optimal strategy of producer 1

Step 1 is repeated for each producer and optimal strategies Y1, Y2, ..., Yn are obtained.

S. Jalal Kazempour, PhD Thesis

Which solutions are Nash equilibria?

A single-iteration diagonalization approach is used

Step 2:

$$X1 = Y1$$
 $X2 = Y2$ If \vdots $Xn = Yn$

Illustrative example:

Investment Equilibria in an Oligopolistic Pool Illustrative example → cases considered:

Case A) Triopoly case: all producers are strategic (EPEC needs to be solved)

Case B) Monopoly case: single strategic producer (MPEC needs to be solved)

Illustrative example \rightarrow general investment results:

Case	Total capacity to be built (MW)	Total profit (M€)	Annual true social welfare (M€)
Triopoly (Max SW)	250	11.09	20.89
Triopoly (Max TP)	200	11.83	20.13
Monopoly	200	11.83	20.13

Illustrative example → investment results for each producer (triopoly):

Equilibrium	E1	E2	E3
Investment of Producer 1 (MW)	200 (base)	-	-
Investment of Producer 2 (MW)	-	200 (base)	100 (base)
Investment of Producer 3 (MW)	-	-	100 (base)
Profit of Producer 1 (M€) Many	9.55	1.18	1.32
Profit of Producer 2 (M€) similar	1.18	9.55	5.30
Profit of Producer 3 (M€) equilibria	1.10	1.10	5.21
Total investment (MW)	200 (base)	200 (base)	200 (base)
Total profit (M€)	11.83	11.83	11.83

Case Study: one-area RTS

• Duopoly

• Producer A own all existing units of the <u>Southern</u> area

• Producer B own all existing units of the Northern area

Case Study: one-area RTS

Case	Total capacity to be built (MW)	Total profit (M€)	Annual true social welfare (M€)
Duopoly (Max SW)	1500	113.82	175.97
Duopoly (Max TP)	1277	118.18	163.12
Monopoly	1277	118.18	163.12

Case Study: one-area RTS

Case	Computational time (seconds)
Duopoly (Max SW)	945
Duopoly (Max TP)	164
Monopoly	1

All cases are solved using CPLEX 12.1 under GAMS on a Sun Fire X4600M2 with 8 Quad-Core processors clocking at 2.9 GHz and 256 GB of RAM.

The following three conclusions regarding the computational burden can be drawn:

- 1) Each oligopolistic case needs a significantly higher computational time than any monopoly case.
- 2) The computational times needed for solving the duopoly cases maximizing SW are comparatively higher than the computational times required for solving the same duopoly cases but maximizing TP.
- 3) Congestion results in increasing the required computational time.

Conclusions

- Proposed EPEC approach \rightarrow identification of meaningful equilibria
- The number of generation investment equilibria can be infinite
- Individual investment results are different across equilibria, but general investment results are generally similar
- TP is maximized \rightarrow higher profit
- SW is maximized \rightarrow higher SW
- Monopolistic market = oligopolistic market where all producers are strategic

