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Mixed Integer Linear Programming

min cx

s.t. Ax = b

xj ∈ Z for j = 1, . . . , p
xj ≥ 0 for j = 1, . . . , n.

Cutting plane approach to solving MILP:

• First solve the LP relaxation. Basic optimal solution:

xi = fi +
∑

j∈N r jxj for i ∈ B .

• If fi 6∈ Z for some i ∈ B ∩ {1, . . . , p}, add cutting planes.



Corner Relaxation

Gomory 1969: Relax nonnegativity on basic variables.

In addition, Andersen, Louveaux, Weismantel and Wolsey 2007
suggested to relax integrality on the nonbasic variables xj .

y = f +
∑k

j=1 r
jxj

y ∈ Z
q

x ≥ 0

Example

f

r 1

r 2 Feasible set {
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)

∈ Z
2 :

(

y1
y2

)

= f + r1x1 + r2x2

where x1 ≥ 0, x2 ≥ 0}



Formulas for Cutting Planes

y = f +
∑k

j=1 r
jxj

y ∈ Z
q

x ≥ 0

Every inequality cutting off the point (x̄ , ȳ) = (0, f ) is of the form
∑k

j=1 αjxj ≥ 1.

We are interested in ”formulas” for deriving such inequalities.
More formally, we are interested in functions ψ : Rq → R such that
the inequality

k
∑

j=1

ψ(r j)xj ≥ 1

is valid for every choice of k and vectors r1, . . . , rk ∈ R
q.

We refer to such functions ψ as cut-generating functions.

We are interested in minimal cut-generating functions.



Intersection Cuts Balas 1971

Assume f 6∈ Z
q. Want to cut off the basic solution x = 0, y = f .

f

r 1

r 2

S

intersection cut

Any convex set S with f ∈ int(S) with no integer point in int(S).

The gauge of S − f , i.e. ψ(r) = inf {λ > 0 : 1
λ
r ∈ S − f }, is a

cut-generating function.

Intersection cut: ψ(r1)x1 + ψ(r2)x2 ≥ 1.



Theorem Borozan and Cornuéjols (MOR 2009)

Let f ∈ R
q \ Zq.

If ψ : Rq → R is a minimal cut-generating function, then ψ is
• nonnegative
• piecewise linear
• positively homogeneous
• and convex.

Furthermore Bψ := {y ∈ R
q : ψ(y − f ) ≤ 1} is a maximal Zq-free

convex set containing f in its interior.

Conversely, for any maximal Zq-free convex set B containing f in
its interior, the gauge of B − f is a minimal cut-generating
function ψ.

DEFINITION A convex set is Zq-free if it does not have any
integral point in its interior. However, it may have integral points
on its boundary.



Maximal Zq-Free Sets in the Plane

Split, triangles and quadrilaterals

f

f
f

generate split, triangle and quadrilateral inequalities
∑

ψ(r)xr ≥ 1,
where the function ψ is the gauge of S − f .

If S = {y ∈ R
q : ai(y − f ) ≤ 1, i = 1, . . . , t},

then ψ(r) = maxi=1,...,t ai r .



Integer Lifting

Here, we consider a system of the form

y = f +
∑k

j=1 r
jxj +

∑ℓ
i=1 ρ

izi

y ∈ Z
q

x ≥ 0
zi ∈ Z, i = 1, . . . , ℓ.

We are interested in functions ψ : Rq → R and π : Rq → R such
that the inequality

k
∑

j=1

ψ(r j )xj +

ℓ
∑

i=1

π(ρi )zi ≥ 1

is valid for every choice of integers k , ℓ and vectors
r1, . . . , rk ∈ R

q and ρ1, . . . , ρℓ ∈ R
q.

Gomory and Johnson since the 1970’s: Construct π first, then ψ.



Integer Lifting Dey and Wolsey (IPCO 2008)

Starting from a minimal cut-generating function ψ : Rq → R,
what can we say about a minimal lifting function π?

Clearly, π ≤ ψ. Is there a region R where we can guarantee that
π(r) = ψ(r) for all r ∈ R? The answer is YES.

Basu, Campelo, Conforti, Cornuéjols, Zambelli (Math Prog 2013):

THEOREM Region where π = ψ:
R =

⋃

t R(yt) where the union is
taken over all integral points yt
on the boundary of the maximal
Z
q-free convex set Bψ defining ψ

and the R(yt)s are parallelepipeds
as shown in grey in the figure.
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Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick 2014

deal with sets of the form

X :=
{

x ∈ R
n
+ : Rx ∈ S

}

where

R = [r1, . . . , rn] is a real q × n matrix,
S ⊂ R

q is a nonempty closed set with 0 /∈ S .

S

R
q

r1

r2

cut

0

x1

x2

R
n
+

X

Since 0 6∈ S , the closed convex hull of X does not contain 0.
We are interested in separating 0 from X , which we write as

c⊤x > 1 , for all x ∈ X .



Motivation arising in mixed integer programming

Start from a polyhedron

P =
{

(x , y) ∈ R
n
+ × R

q : Ax + y = b
}

and assume that b /∈ Z
q.

Example 1 Andersen, Louveaux, Weismantel and Wolsey 2007

The set of interest is P ∩ {Rn
+ × Z

q},
I.e. we want (x , y = b − Ax) such that x ∈ R

n
+ and b − Ax ∈ Z

q.

This fits our model by taking

R = −A , S = Z
q − b



Motivation arising from complementary slackness

Example 2 Still using
P =

{

(x , y) ∈ R
n
+ × R

q : Ax + y = b
}

let E ⊂ {1, 2, . . . , q} × {1, 2, . . . , q}

and C := {y ∈ R
q
+ : yiyj = 0 , (i , j) ∈ E}.

The set of interest is then P ∩ (Rn
+ × C ).

It can be modeled in our framework where

R = −A , S = C − b;

Cuts have been used for complementarity problems of this type,
for example in Judice, Sherali, Ribeiro, Faustino 2006



Cut-generating functions

We will retain from the above examples the asymmetry between S – a
very particular and highly structured set – and R – an arbitrary matrix.

Keeping this in mind, we will consider that (q, S) is given and fixed,

while (n,R) is instance-dependent data.

Let S be fixed. Consider a function

ρ : R
q 7→ R

that produces coefficients cj := ρ(rj) of a cut c⊤x > 1 valid for X
for any choice of n and R = [r1 . . . rn].

In summary, we require our ρ to satisfy

∀R = [r1 . . . rn], x ∈ X =⇒
n

∑

j=1

ρ(rj)xj > 1.

Such a ρ can then justifiably be called a cut-generating function.



Sufficiency of cut-generating functions

Cut-generating functions are defined assuming that S is fixed but
R can vary arbitrarily.

What happens if both S and R are fixed?
A natural question is whether, for every cut c⊤x > 1 that is valid
for X , there exists some cut-generating function ρ such that
ρ(rj ) ≤ cj .

THEOREM Cornuejols, Wolsey, Yildiz (Math Prog 2014)
Suppose S ⊂ cone(R). Then any valid inequality c⊤x ≥ 1
separating 0 from X is dominated by one obtained from a
cut-generating function.

Next we show that the (vast!) class of cut-generating functions
from R

q to R can be drastically reduced.



Cut-generating functions

Let ρ̄(r) := infK ,α

{

∑K
k=1 αkρ(rk) :

∑K
k=1 αk rk = r , αk > 0

}

.

THEOREM
If ρ is a cut-generating function, then ρ̄ is nowhere −∞ and is
again a cut-generating function.

The function ρ̄ is sublinear (convex and positively homogeneous).
Sublinear functions are continuous.
Because ρ̄ ≤ ρ, the theorem shows that sublinear functions suffice
to generate all relevant cuts; a fairly narrow class indeed, which is
fundamental in convex analysis.

Sublinear functions are in correspondence with closed convex sets
and in our context, such a correspondence is based on the mapping
ρ 7→ V defined by

V :=
{

r ∈ R
q : ρ(r) 6 1

}

.



S-free sets

The set V turns out to be a cornerstone: the theorem below
establishes a correspondence between cut-generating functions and
the so-called S-free sets.

DEFINITION
Given a closed set S ⊂ R

q not containing the origin, a closed
convex neighborhood V of 0 ∈ R

q is called S-free if its interior
contains no point in S .

THEOREM
Let ρ be a sublinear function and V :=

{

r ∈ R
q : ρ(r) 6 1

}

.
Then ρ is a cut-generating function if and only if V is S-free.



Representation

As a result, cut-generating functions can alternatively be studied
from a geometric point of view, involving sets V instead of
functions ρ. This situation, common in convex analysis, is often
very fruitful. However, there is a difficulty here: the mapping
ρ 7→ V is many-to-one and therefore has no inverse.

DEFINITION
Let V ⊂ R

q be a closed convex neighborhood of the origin. A
representation of V is a sublinear function ρ satisfying
V =

{

r ∈ R
q : ρ(r) 6 1

}

.

A cut-generating function is a representation of an S-free set.
Among the several representations of an S-free set V , we are
interested in the small ones.



Minimal representation

The following geometric object turns out to be relevant:

V̂ ◦ :=
{

d ∈ R
q : supr∈V d⊤r = 1

}

. Let µV (r) := sup
d∈V̂ ◦

d⊤r .

PROPOSITION Basu, Cornuéjols and Zambelli (JOCA 2011)

Any sublinear function ρ representing V satisfies ρ > µV .

Let γV denote Minkowski’s gauge function.

THEOREM
A sublinear function ρ represents V if and only if it satisfies

µV 6 ρ 6 γV .


