CUT GENERATING FUNCTIONS

Gérard Cornuéjols

Tepper School of Business Carnegie Mellon University, Pittsburgh

June 2014

Mixed Integer Linear Programming

$$\begin{array}{ll} \min & cx\\ \mathrm{s.t.} & Ax = b\\ & x_j \in \mathbb{Z} \quad \text{for } j = 1, \dots, p\\ & x_j \geq 0 \quad \text{for } j = 1, \dots, n. \end{array}$$

Cutting plane approach to solving MILP:

• First solve the LP relaxation. Basic optimal solution:

$$x_i = f_i + \sum_{j \in \mathbb{N}} r^j x_j$$
 for $i \in B$.

• If $f_i \notin \mathbb{Z}$ for some $i \in B \cap \{1, \dots, p\}$, add cutting planes.

Corner Relaxation

Gomory 1969: Relax nonnegativity on basic variables.

In addition, Andersen, Louveaux, Weismantel and Wolsey 2007 suggested to relax integrality on the nonbasic variables x_i .

$$y = f + \sum_{j=1}^{k} r^{j} x_{j}$$

$$y \in \mathbb{Z}^{q}$$

$$x \ge 0$$

Feasible set $\left\{ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{Z}^2 : \right\}$

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = f + r^1 x_1 + r^2 x_2$$

where $x_1 \ge 0, x_2 \ge 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Formulas for Cutting Planes

$$y = f + \sum_{j=1}^{k} r^{j} x_{j}$$

$$y \in \mathbb{Z}^{q}$$

$$x \ge 0$$

Every inequality cutting off the point $(\bar{x}, \bar{y}) = (0, f)$ is of the form $\sum_{j=1}^{k} \alpha_j x_j \ge 1$.

We are interested in "formulas" for deriving such inequalities. More formally, we are interested in functions $\psi : \mathbb{R}^q \to \mathbb{R}$ such that the inequality

$$\sum_{j=1}^k \psi(r^j) x_j \ge 1$$

(日) (四) (日) (日) (日) (日)

is valid for every choice of k and vectors $r^1, \ldots, r^k \in \mathbb{R}^q$. We refer to such functions ψ as cut-generating functions. We are interested in minimal cut-generating functions.

Intersection Cuts

Balas 1971

Assume $f \notin \mathbb{Z}^q$. Want to cut off the basic solution x = 0, y = f.

Any convex set S with $f \in int(S)$ with no integer point in int(S).

The gauge of S - f, i.e. $\psi(r) = inf\{\lambda > 0 : \frac{1}{\lambda}r \in S - f\}$, is a cut-generating function.

Intersection cut: $\psi(r^1)x_1 + \psi(r^2)x_2 \ge 1$.

Theorem

Let $f \in \mathbb{R}^q \setminus \mathbb{Z}^q$.

If $\psi:\mathbb{R}^q\to\mathbb{R}$ is a minimal cut-generating function, then ψ is

- nonnegative
- piecewise linear
- positively homogeneous
- and convex.

Furthermore $B_{\psi} := \{y \in \mathbb{R}^q : \psi(y - f) \le 1\}$ is a maximal \mathbb{Z}^q -free convex set containing f in its interior.

Conversely, for any maximal \mathbb{Z}^{q} -free convex set B containing f in its interior, the gauge of B - f is a minimal cut-generating function ψ .

DEFINITION A convex set is \mathbb{Z}^{q} -free if it does not have any integral point in its interior. However, it may have integral points on its boundary.

Maximal \mathbb{Z}^{q} -Free Sets in the Plane

Split, triangles and quadrilaterals

generate split, triangle and quadrilateral inequalities $\sum \psi(r)x_r \ge 1$, where the function ψ is the gauge of S - f.

If
$$S = \{y \in \mathbb{R}^q : a_i(y - f) \le 1, i = 1, ..., t\}$$
,
then $\psi(r) = \max_{i=1,...,t} a_i r$.

Integer Lifting

Here, we consider a system of the form

$$y = f + \sum_{j=1}^{k} r^{j} x_{j} + \sum_{i=1}^{\ell} \rho^{i} z_{i}$$

$$y \in \mathbb{Z}^{q}$$

$$x \ge 0$$

$$z_{i} \in \mathbb{Z}, i = 1, \dots, \ell.$$

We are interested in functions $\psi: \mathbb{R}^q \to \mathbb{R}$ and $\pi: \mathbb{R}^q \to \mathbb{R}$ such that the inequality

$$\sum_{j=1}^k \psi(r^j) x_j + \sum_{i=1}^\ell \pi(
ho^i) z_i \geq 1$$

is valid for every choice of integers k, ℓ and vectors $r^1, \ldots, r^k \in \mathbb{R}^q$ and $\rho^1, \ldots, \rho^\ell \in \mathbb{R}^q$.

Gomory and Johnson since the 1970's: Construct π first, then ψ .

Integer Lifting

Starting from a minimal cut-generating function $\psi : \mathbb{R}^q \to \mathbb{R}$, what can we say about a minimal lifting function π ?

Clearly, $\pi \leq \psi$. Is there a region *R* where we can guarantee that $\pi(r) = \psi(r)$ for all $r \in R$? The answer is YES.

Basu, Campelo, Conforti, Cornuéjols, Zambelli (Math Prog 2013):

THEOREM Region where $\pi = \psi$: $R = \bigcup_t R(y_t)$ where the union is taken over all integral points y_t on the boundary of the maximal \mathbb{Z}^q -free convex set B_{ψ} defining ψ and the $R(y_t)$ s are parallelepipeds as shown in grey in the figure.

Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick 2014

deal with sets of the form

$$X := \left\{ x \in \mathbb{R}^n_+ : Rx \in S \right\}$$

where

 $R = [r_1, \dots, r_n] \text{ is a real } q \times n \text{ matrix,}$ $S \subset \mathbb{R}^q \text{ is a nonempty closed set with } 0 \notin S.$

Since $0 \notin S$, the closed convex hull of X does not contain 0. We are interested in *separating* 0 from X, which we write as

 $c^{\top}x \ge 1$, for all $x \in X$.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

-

Motivation arising in mixed integer programming

Start from a polyhedron

 $P = \left\{ (x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^q : Ax + y = b \right\}$

and assume that $b \notin \mathbb{Z}^q$.

Example 1 Andersen, Louveaux, Weismantel and Wolsey 2007

The set of interest is $P \cap \{\mathbb{R}^n_+ \times \mathbb{Z}^q\}$, I.e. we want (x, y = b - Ax) such that $x \in \mathbb{R}^n_+$ and $b - Ax \in \mathbb{Z}^q$.

This fits our model by taking

R = -A, $S = \mathbb{Z}^q - b$

Motivation arising from complementary slackness

Example 2 Still using $P = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^q : Ax + y = b\}$ let $E \subset \{1, 2, \dots, q\} \times \{1, 2, \dots, q\}$ and $C := \{y \in \mathbb{R}^q_+ : y_i y_j = 0, (i, j) \in E\}.$

The set of interest is then $P \cap (\mathbb{R}^n_+ \times C)$.

It can be modeled in our framework where

R = -A, S = C - b;

Cuts have been used for complementarity problems of this type, for example in Judice, Sherali, Ribeiro, Faustino 2006

Cut-generating functions

We will retain from the above examples the asymmetry between S - a very particular and highly structured set - and R - an arbitrary matrix.Keeping this in mind, we will consider that (q, S) is given and fixed, while (n, R) is instance-dependent data.

Let S be fixed. Consider a function

 $\rho : \mathbb{R}^q \mapsto \mathbb{R}$

that produces coefficients $c_j := \rho(r_j)$ of a cut $c^{\top}x \ge 1$ valid for X for any choice of n and $R = [r_1 \dots r_n]$.

In summary, we require our ρ to satisfy

$$\forall R = [r_1 \dots r_n], \quad x \in X \implies \sum_{j=1}^n \rho(r_j) x_j \ge 1.$$

Such a ρ can then justifiably be called a *cut-generating function*.

Sufficiency of cut-generating functions

Cut-generating functions are defined assuming that S is fixed but R can vary arbitrarily.

What happens if both *S* and *R* are fixed? A natural question is whether, for every cut $c^{\top}x \ge 1$ that is valid for *X*, there exists some cut-generating function ρ such that $\rho(r_j) \le c_j$.

THEOREM Cornuejols, Wolsey, Yildiz (Math Prog 2014) Suppose $S \subset \operatorname{cone}(R)$. Then any valid inequality $c^{\top}x \ge 1$ separating 0 from X is dominated by one obtained from a cut-generating function.

Next we show that the (vast!) class of cut-generating functions from \mathbb{R}^q to \mathbb{R} can be drastically reduced.

Cut-generating functions

Let
$$\bar{\rho}(r) := \inf_{K,\alpha} \left\{ \sum_{k=1}^{K} \alpha_k \rho(r_k) : \sum_{k=1}^{K} \alpha_k r_k = r, \, \alpha_k \ge 0 \right\}.$$

THEOREM

If ρ is a cut-generating function, then $\bar{\rho}$ is nowhere $-\infty$ and is again a cut-generating function.

The function $\overline{\rho}$ is *sublinear* (convex and positively homogeneous). Sublinear functions are continuous.

Because $\bar{\rho} \leq \rho$, the theorem shows that sublinear functions suffice to generate all relevant cuts; a fairly narrow class indeed, which is fundamental in convex analysis.

Sublinear functions are in correspondence with closed convex sets and in our context, such a correspondence is based on the mapping $\rho \mapsto V$ defined by

$$V := \{r \in \mathbb{R}^q : \rho(r) \leqslant 1\}.$$

S-free sets

The set V turns out to be a cornerstone: the theorem below establishes a correspondence between cut-generating functions and the so-called *S*-free sets.

DEFINITION

Given a closed set $S \subset \mathbb{R}^q$ not containing the origin, a closed convex neighborhood V of $0 \in \mathbb{R}^q$ is called *S*-free if its interior contains no point in *S*.

THEOREM

Let ρ be a sublinear function and $V := \{r \in \mathbb{R}^q : \rho(r) \leq 1\}$. Then ρ is a cut-generating function if and only if V is S-free.

Representation

As a result, cut-generating functions can alternatively be studied from a geometric point of view, involving sets V instead of functions ρ . This situation, common in convex analysis, is often very fruitful. However, there is a difficulty here: the mapping $\rho \mapsto V$ is many-to-one and therefore has no inverse.

DEFINITION

Let $V \subset \mathbb{R}^q$ be a closed convex neighborhood of the origin. A *representation* of V is a sublinear function ρ satisfying $V = \{r \in \mathbb{R}^q : \rho(r) \leq 1\}.$

A cut-generating function is a representation of an S-free set. Among the several representations of an S-free set V, we are interested in the small ones.

Minimal representation

The following geometric object turns out to be relevant:

 $\hat{V}^{\circ} := \big\{ d \in \mathbb{R}^q : \, \sup_{r \in V} d^{\top}r = 1 \big\}. \quad \text{ Let } \mu_V(r) := \sup_{d \in \hat{V}^{\circ}} d^{\top}r.$

PROPOSITION Basu, Cornuéjols and Zambelli (JOCA 2011) Any sublinear function ρ representing V satisfies $\rho \ge \mu_V$.

Let γ_V denote Minkowski's gauge function.

THEOREM

A sublinear function ρ represents V if and only if it satisfies

 $\mu_{V} \leqslant \rho \leqslant \gamma_{V}.$