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Mixed Integer Linear Programming

min c¢x

st. Ax=0b
xi€Z forj=1,...,p
xp>0 forj=1,...,n.

Cutting plane approach to solving MILP:

e First solve the LP relaxation. Basic optimal solution:
xi = fi+Xenrx forieB.

o If f; ¢ Z for some i € BN {1,...,p}, add cutting planes.



Corner Relaxation

Gomory 1969: Relax nonnegativity on basic variables.

In addition, Andersen, Louveaux, Weismantel and Wolsey 2007
suggested to relax integrality on the nonbasic variables x;.

P
y = f+3,rPx
y € 29

x > 0

Example

r2

Feasible set {(y1> €Z?:
y2

(}/1) =f+ r1x1 + r2x2
Y2

where x; > 0,x > 0}



Formulas for Cutting Planes

P
y = f‘i'Zj:l rx;
y € 79

x > 0

Every inequality cutting off the point (x,¥) = (0, f) is of the form
k
We are interested in "formulas” for deriving such inequalities.

More formally, we are interested in functions ¢ : R — R such that

the inequality
k

DU =1

j=1
is valid for every choice of k and vectors r!,..., rk € R9.
We refer to such functions ¢ as cut-generating functions.

We are interested in minimal cut-generating functions.



Intersection Cuts Balas 1971

Assume f ¢ Z9. Want to cut off the basic solution x =0,y = f.

intersection cut
°
Any convex set S with f € int(S) with no integer point in int(S)

The gauge of S — f , i.e. (r) =inf{A >0: %r €S—f} isa
cut-generating function.

Intersection cut: ¥(rt)x; +1(r?)xs > 1.

DA



Theorem Borozan and Cornuéjols (MOR 2009)

Let f € R9\ Z9.

If ¢ : RY — R is a minimal cut-generating function, then ¥ is
e nonnegative

o piecewise linear

e positively homogeneous

e and convex.

Furthermore By, := {y € R9: o(y — f) < 1} is a maximal Z9-free
convex set containing f in its interior.

Conversely, for any maximal Z9-free convex set B containing f in
its interior, the gauge of B — f is a minimal cut-generating
function .

DEFINITION A convex set is Z9-free if it does not have any
integral point in its interior. However, it may have integral points
on its boundary.



Maximal Z9-Free Sets in the Plane

Split, triangles and quadrilaterals

generate split, triangle and quadrilateral inequalities > ¢(r)x, > 1,
where the function 1) is the gauge of S — f .

IfS={y €RI:a(y — F) <1,i=1,..,¢t},
then ¢(r) = maxj—1



Integer Lifting

Here, we consider a system of the form

y = f+zjl'<:1 Fxj+ Y0z
y € 79

x > 0

zo€ Z,i=1,...1

We are interested in functions ¢ : RY — R and 7 : R — R such
that the inequality

k

l
S () + 3wz > 1

j=1 i=1

is valid for every choice of integers k, ¢ and vectors
rt oo rkeRIand pt, ..., pf € RY.

Gomory and Johnson since the 1970’'s: Construct 7 first, then .



Integer Lifting Dey and Wolsey (IPCO 2008)

Starting from a minimal cut-generating function ¢ : R? — R,
what can we say about a minimal lifting function 77

Clearly, m < . Is there a region R where we can guarantee that
w(r) =(r) for all r € R? The answer is YES.

Basu, Campelo, Conforti, Cornuéjols, Zambelli (Math Prog 2013):

THEOREM Region where m = 1):
R = U, R(yt) where the union is
taken over all integral points y;
on the boundary of the maximal
Z9-free convex set By, defining ¢
and the R(y:)s are parallelepipeds
as shown in grey in the figure.




Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick 2014

deal with sets of the form

X::{XER?'_ : RXES}

where

R={[n,...,r] is a real g x n matrix,
S C R9 is a nonempty closed set with 0 ¢ S.

X1

cut

R}

0

X2
Since 0 € S, the closed convex hull of X does not contain 0.
We are interested in separating 0 from X, which we write as

c'x>1, forall xeX.



Motivation arising in mixed integer programming

Start from a polyhedron
P={(x,y) eRL xRI: Ax+y=0b}
and assume that b ¢ Z9.

Example 1 Andersen, Louveaux, Weismantel and Wolsey 2007

The set of interest is P N {R/ x Z9},
l.e. we want (x,y = b — Ax) such that x € R and b — Ax € Z9.

This fits our model by taking

R=-A, S=29—b



Motivation arising from complementary slackness

Example 2 Still using
P={(x,y) eRL xR : Ax+y=0b}

let Ec{l,2,...,q9} x{1,2,...,q}
and C:={yeRy: yy=0,(ij) € E}.
The set of interest is then P N (R7 x C).
It can be modeled in our framework where

R=-A, S=C-b;

Cuts have been used for complementarity problems of this type,
for example in Judice, Sherali, Ribeiro, Faustino 2006



Cut-generating functions

We will retain from the above examples the asymmetry between S — a
very particular and highly structured set — and R — an arbitrary matrix.

Keeping this in mind, we will consider that (g, S) is given and fixed,
while (n, R) is instance-dependent data.

Let S be fixed. Consider a function
p:RI—R

that produces coefficients ¢; := p(r;) of a cut c'x > 1 valid for X
for any choice of nand R =[r1...r).

In summary, we require our p to satisfy

VR=[n...r), xeX = Zp(q))g}l.
j=1

Such a p can then justifiably be called a cut-generating function.



Sufficiency of cut-generating functions

Cut-generating functions are defined assuming that S is fixed but
R can vary arbitrarily.

What happens if both S and R are fixed?
A natural question is whether, for every cut ¢’ x > 1 that is valid
for X, there exists some cut-generating function p such that

p(r) < g

THEOREM Cornuejols, Wolsey, Yildiz (Math Prog 2014)
Suppose S C cone(R). Then any valid inequality c"x > 1
separating 0 from X is dominated by one obtained from a
cut-generating function.

Next we show that the (vast!) class of cut-generating functions
from RY to R can be drastically reduced.



Cut-generating functions

Let p(r) = ian,a{Zle agp(rg) - Zszl Qpr = r, Qi > 0}.

THEOREM
If p is a cut-generating function, then p is nowhere —oco and is
again a cut-generating function.

The function p is sublinear (convex and positively homogeneous).
Sublinear functions are continuous.

Because p < p, the theorem shows that sublinear functions suffice
to generate all relevant cuts; a fairly narrow class indeed, which is
fundamental in convex analysis.

Sublinear functions are in correspondence with closed convex sets
and in our context, such a correspondence is based on the mapping
p — V defined by

Vi={reR?: p(r)<1}.



S-free sets

The set V turns out to be a cornerstone: the theorem below
establishes a correspondence between cut-generating functions and
the so-called S-free sets.

DEFINITION

Given a closed set S C RY not containing the origin, a closed
convex neighborhood V of 0 € RY is called S-free if its interior
contains no point in S.

THEOREM
Let p be a sublinear function and V := {r e R9 : p(r) < 1}.
Then p is a cut-generating function if and only if V is S-free.



Representation

As a result, cut-generating functions can alternatively be studied
from a geometric point of view, involving sets V' instead of
functions p. This situation, common in convex analysis, is often
very fruitful. However, there is a difficulty here: the mapping

p — V is many-to-one and therefore has no inverse.

DEFINITION
Let V C RY be a closed convex neighborhood of the origin. A

representation of V' is a sublinear function p satisfying
V={reR9: p(r)<1}.

A cut-generating function is a representation of an S-free set.
Among the several representations of an S-free set V, we are
interested in the small ones.



Minimal representation

The following geometric object turns out to be relevant:

Ve = {d €RI: sup,cy d'r=1}. Let py(r) = SUP 4e v dr.

PROPOSITION  Basu, Cornuéjols and Zambelli (JOCA 2011)

Any sublinear function p representing V satisfies p > py .
Let vy denote Minkowski's gauge function.

THEOREM
A sublinear function p represents V' if and only if it satisfies

Hy < p< v



