RLT-POS: Reformulation-Linearization Technique (RLT)-based Optimization Software for Polynomial Programming Problems

E. Dalkiran1 H.D. Sherali2

1The Department of Industrial and Systems Engineering, Wayne State University

2Grado Department of Industrial and Systems Engineering, Virginia Tech

MINLP 2014

Acknowledgement: This research has been supported by the National Science Foundation under Grant No. CMMI-0969169.
Mathematical formulation: Problem PP

PP: Minimize $\phi_0(x)$
subject to

$\phi_r(x) \geq \beta_r$, $\forall r = 1, \ldots, R_1$

$\phi_r(x) = \beta_r$, $\forall r = R_1 + 1, \ldots, R$

$Ax = b$

$x \in \Omega \equiv \{x : 0 \leq l_j \leq x_j \leq u_j < \infty, \forall j \in \mathcal{N}\}$,

where

$\phi_r(x) \equiv \sum_{t \in T_r} \alpha_{rt} \left[\prod_{j \in J_{rt}} x_j \right]$, for $r = 0, \ldots, R$.

Mathematical formulation: Problem PP

PP: Minimize $\phi_0(x)$

subject to

\[
\phi_r(x) \geq \beta_r, \ \forall r = 1, \ldots, R_1 \\
\phi_r(x) = \beta_r, \ \forall r = R_1 + 1, \ldots, R \\
Ax = b \\
x \in \Omega \equiv \{x : 0 \leq l_j \leq x_j \leq u_j < \infty, \ \forall j \in \mathcal{N}\},
\]

where

\[
\phi_r(x) \equiv \sum_{t \in T_r} \alpha_{rt} \left[\prod_{j \in J_{rt}} x_j \right], \text{ for } r = 0, \ldots, R.
\]

Reformulation Generate *bound-factors* and append *bound-factor constraints*:

- **Bound-factors:**
 \[
 (x_j - l_j) \geq 0 \text{ and } (u_j - x_j) \geq 0, \ \forall j \in \mathcal{N}.
 \]
Mathematical formulation: Problem PP

PP: Minimize $\phi_0(x)$
subject to

$$
\phi_r(x) \geq \beta_r, \forall r = 1, \ldots, R_1
$$
$$
\phi_r(x) = \beta_r, \forall r = R_1 + 1, \ldots, R
$$
$$
Ax = b
$$

$x \in \Omega \equiv \{x : 0 \leq l_j \leq x_j \leq u_j < \infty, \forall j \in \mathcal{N}\}$,

where

$$
\phi_r(x) \equiv \sum_{t \in T_r} \alpha_{rt} \left[\prod_{j \in J_{rt}} x_j \right], \text{ for } r = 0, \ldots, R.
$$

Reformulation Generate *bound-factors* and append *bound-factor constraints*:

- **Bound-factors:**

 $$(x_j - l_j) \geq 0 \text{ and } (u_j - x_j) \geq 0, \forall j \in \mathcal{N}.$$

- **Bound-factor constraints:**

 $$
 \prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \geq 0, \forall (J_1 \cup J_2) \in \mathcal{N}^\delta.
 $$
Mathematical formulation: Problem PP

\textbf{PP:} Minimize \(\phi_0(x) \)

subject to

\(\phi_r(x) \geq \beta_r, \forall r = 1, \ldots, R_1 \)

\(\phi_r(x) = \beta_r, \forall r = R_1 + 1, \ldots, R \)

\(Ax = b \)

\(x \in \Omega \equiv \{ x : 0 \leq l_j \leq x_j \leq u_j < \infty, \forall j \in \mathcal{N} \} \),

where

\(\phi_r(x) \equiv \sum_{t \in T_r} \alpha_{rt} \left[\prod_{j \in J_{rt}} x_j \right], \text{ for } r = 0, \ldots, R. \)

\textbf{Reformulation} Generate \textit{bound-factors} and append \textit{bound-factor constraints}:

\begin{itemize}
 \item Bound-factors:
 \[(x_j - l_j) \geq 0 \text{ and } (u_j - x_j) \geq 0, \forall j \in \mathcal{N} \].

 \item Bound-factor constraints:
 \[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \geq 0, \forall (J_1 \cup J_2) \in \mathcal{N}^\delta. \]
\end{itemize}

\textbf{Linearization} Substitute a new RLT variable for each distinct monomial as given by:

\[X_J = \prod_{j \in J} x_j, \forall J \in \bigcup_{d=2}^{\delta} \mathcal{N}^d. \]
Reformulation-Linearization Technique (RLT):

Minimize \([\phi_0(x)]_L \) subject to

\[
[\phi_r(x)]_L \geq \beta_r, \forall r = 1, \ldots, R_1 \tag{2b}
\]

\[
[\phi_r(x)]_L = \beta_r, \forall r = R_1 + 1, \ldots, R \tag{2c}
\]

\[Ax = b\] \hspace{1cm} (2d)

\[
\left[\prod_{j \in J_1} (x_j - l'_j) \prod_{j \in J_2} (u'_j - x_j) \right]_L \geq 0, \forall (J_1 \cup J_2) \in \mathcal{N}^\delta \tag{2e}
\]

\(x \in \Omega' \equiv \{x : 0 \leq l'_j \leq x_j \leq u'_j < \infty, \forall j \in \mathcal{N}\}\) \hspace{1cm} (2f)

\(X_J = \prod_{j \in J} x_j, \forall J \in \bigcup_{d=2}^{\delta} \mathcal{N}^d\) \hspace{1cm} (2g)
\[\text{RLT}(\Omega') : \quad \text{Minimize} \quad [\phi_0(x)]_L \]
subject to

\[[\phi_r(x)]_L \geq \beta_r, \forall r = 1, \ldots, R_1 \]
\[[\phi_r(x)]_L = \beta_r, \forall r = R_1 + 1, \ldots, R \]
\[Ax = b \]
\[\left[\prod_{j \in J_1} (x_j - l'_j) \prod_{j \in J_2} (u'_j - x_j) \right]_L \geq 0, \forall (J_1 \cup J_2) \in \mathcal{N}^\delta \]
\[x \in \Omega' \equiv \{ x : 0 \leq l'_j \leq x_j \leq u'_j < \infty, \forall j \in \mathcal{N} \} \]
\[X_J = \prod_{j \in J} x_j, \forall J \in \cup_{d=2}^{\delta} \mathcal{N}^d. \]

1. Is there a strict subset of the fundamental bound-factor constraints for which the branch-and-bound algorithm described in Sherali and Tuncbilek [1992] would yet converge to a global optimum?

2. Is there additional valid inequalities that would tighten the RLT relaxation without sacrificing computational effort?
Background

Reformulation-Linearization Technique (RLT)

RLT(Ω'):

Minimize \([\phi_0(x)]_L \)
subject to

\[
[\phi_r(x)]_L \geq \beta_r, \forall r = 1, \ldots, R_1
\]

\[
[\phi_r(x)]_L = \beta_r, \forall r = R_1 + 1, \ldots, R
\]

\[
Ax = b
\]

\[
\left[\prod_{j \in J_1} (x_j - l'_j) \prod_{j \in J_2} (u'_j - x_j) \right]_L \geq 0, \forall (J_1 \cup J_2) \in \mathcal{N}^\delta
\]

\[
x \in \Omega' \equiv \{x : 0 \leq l'_j \leq x_j \leq u'_j < \infty, \forall j \in \mathcal{N}\}
\]

\[
X_J = \prod_{j \in J} x_j, \forall J \in \bigcup_{d=2}^{\delta} \mathcal{N}^d.
\]

1. Is there a strict subset of the fundamental bound-factor constraints for which the branch-and-bound algorithm described in Sherali and Tuncbilek [1992] would yet converge to a global optimum?

2. Is there additional valid inequalities that would tighten the RLT relaxation without sacrificing computational effort?

Model Enhancements:

1. The \(J \)-set of filtered bound-factor constraints,
2. Reduced RLT representations or RLT formulations in the reduced space,
3. \(\nu \)-SDP cuts.
The J-set of bound-factor constraints

For a given index set J,
- $N_J \subseteq J$: the largest nonrepetitive set,
- d_J: the cardinality of J.
The J-set of bound-factor constraints

For a given index set J,
- $N_J \subseteq J$: the largest nonrepetitive set,
- d_J: the cardinality of J.

Standard RLT constraints:

$$\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right] \geq 0, \forall (J_1 \cup J_2) \in N_J^{d_J}.$$
The \(J \)-set of bound-factor constraints

For a given index set \(J \),
- \(N_J \subseteq J \): the largest nonrepetitive set,
- \(d_J \): the cardinality of \(J \).

Standard RLT constraints:

\[
\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right]_L \geq 0, \forall (J_1 \cup J_2) \in N_J^{d_J}.
\]

Proposition

The convergence result in Sherali and Tuncbilek [1992] holds true if the following RLT bound-factor constraints are appended to the relaxation for each \(J \) such that the monomial \(\prod_{j \in J} x_j \) appears in Problem PP:

\[
\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right]_L \geq 0, \forall (J_1 \cup J_2) = J.
\]
The J-set and the standard RLT

The J-set of bound-factor constraints for $x_1^2 x_2$:

\[
\begin{align*}
[(x_1 - l_1)(x_1 - l_1)(x_2 - l_2)]_L &\geq 0, \\
[(x_1 - l_1)(u_1 - x_1)(x_2 - l_2)]_L &\geq 0, \\
[(u_1 - x_1)(u_1 - x_1)(x_2 - l_2)]_L &\geq 0, \\
[(x_1 - l_1)(x_1 - l_1)(u_2 - x_2)]_L &\geq 0, \\
[(x_1 - l_1)(u_1 - x_1)(u_2 - x_2)]_L &\geq 0, \\
[(u_1 - x_1)(u_1 - x_1)(u_2 - x_2)]_L &\geq 0,
\end{align*}
\]
The J-set and the standard RLT

The J-set of bound-factor constraints for $x_1^2x_2$:

\[
\begin{align*}
& [(x_1 - l_1)(x_1 - l_1)(x_2 - l_2)]_L \geq 0, & & [(x_1 - l_1)(u_1 - x_1)(x_2 - l_2)]_L \geq 0, & & [(u_1 - x_1)(u_1 - x_1)(x_2 - l_2)]_L \geq 0, \\
& [(x_1 - l_1)(x_1 - l_1)(u_2 - x_2)]_L \geq 0, & & [(x_1 - l_1)(u_1 - x_1)(u_2 - x_2)]_L \geq 0, & & [(u_1 - x_1)(u_1 - x_1)(u_2 - x_2)]_L \geq 0.
\end{align*}
\]

The bound-factor constraints for $x_1^2x_2$ with the standard RLT:

\[
\begin{align*}
& [(x_1 - l_1)(x_1 - l_1)(x_1 - l_1)]_L \geq 0, & & [(x_1 - l_1)(u_1 - x_1)(u_1 - x_1)]_L \geq 0, \\
& [(x_1 - l_1)(x_1 - l_1)(u_1 - x_1)]_L \geq 0, & & [(u_1 - x_1)(u_1 - x_1)(u_1 - x_1)]_L \geq 0.
\end{align*}
\]

\[
\begin{align*}
& [(x_1 - l_1)(x_1 - l_1)(x_2 - l_2)]_L \geq 0, & & [(x_1 - l_1)(u_1 - x_1)(x_2 - l_2)]_L \geq 0, & & [(u_1 - x_1)(u_1 - x_1)(x_2 - l_2)]_L \geq 0, \\
& [(x_1 - l_1)(x_1 - l_1)(u_2 - x_2)]_L \geq 0, & & [(x_1 - l_1)(u_1 - x_1)(u_2 - x_2)]_L \geq 0, & & [(u_1 - x_1)(u_1 - x_1)(u_2 - x_2)]_L \geq 0, \\
& [(x_1 - l_1)(x_2 - l_2)(x_2 - l_2)]_L \geq 0, & & [(x_1 - l_1)(x_2 - x_2)(x_2 - x_2)]_L \geq 0, & & [(x_1 - l_1)(u_2 - x_2)(x_2 - x_2)]_L \geq 0, \\
& [(u_1 - x_1)(x_2 - l_2)(x_2 - l_2)]_L \geq 0, & & [(u_1 - x_1)(x_2 - x_2)(x_2 - x_2)]_L \geq 0, & & [(u_1 - x_1)(u_2 - x_2)(x_2 - x_2)]_L \geq 0, \\
& [(x_2 - l_2)(x_2 - l_2)(x_2 - l_2)]_L \geq 0, & & [(x_2 - l_2)(x_2 - x_2)(x_2 - x_2)]_L \geq 0, & & [(u_2 - x_2)(u_2 - x_2)(x_2 - x_2)]_L \geq 0, \\
& [(x_2 - l_2)(x_2 - l_2)(u_2 - x_2)]_L \geq 0, & & [(x_2 - l_2)(x_2 - x_2)(u_2 - x_2)]_L \geq 0, & & [(u_2 - x_2)(u_2 - x_2)(u_2 - x_2)]_L \geq 0.
\end{align*}
\]
The number of RLT constraints and new RLT variables

\[\prod_{j \in J} x_j = \prod_{j \in N_j} x_j^{r_j} \]
The number of RLT constraints and new RLT variables

\[\prod_{j \in J} x_j = \prod_{j \in N_j} x_j^{r_j} \]

J-set
- The number of bound-factor constraints: \(\prod_{j \in N_J} (r_j + 1) \)
- The number of new RLT variables: \(\prod_{j \in N_J} (r_j + 1) - (|N_J| + 1) \)

N-δ-set
- \((2n + \delta - 1) \)
- \(\binom{n + \delta}{\delta} - (n + 1) \)
The number of RLT constraints and new RLT variables

\[\prod_{j \in J} x_j = \prod_{j \in N_j} x_{j}^{r_j} \]

\(J \)-set: The number of bound-factor constraints
\[\prod_{j \in N_j} (r_j + 1) \]
\(N^\delta \)-set: The number of new RLT variables
\[\left(\begin{array}{c} 2n + \delta - 1 \\ \delta \end{array} \right) \]

Example: For a PP involving only \(x_1^3 x_2 x_3^2 \) and \(x_4^2 x_5 x_6^3 \) as nonlinear terms, the \(J \)-set and the \(N^\delta \)-set respectively generate in total:
- 48 and 12376 bound-factor constraints,
- 40 and 917 new RLT variables.
Reduced RLT representations

Linear Equality Subsystem: \(Ax = b \)
Constraint-based RLT restrictions:

\[
[(Ax = b) \times \prod_{j \in J} x_j]_L, \text{ yielding } AX_{(J)} = bX_J, \ \forall J \subseteq \mathcal{N}^d, d = 1, \ldots, \delta - 1. \tag{3}
\]
Reduced RLT representations

Linear Equality Subsystem: \(Ax = b \)
Constraint-based RLT restrictions:

\[
[(Ax = b) \times \prod_{j \in J} x_j]_L, \text{ yielding } AX(J) = bX_J, \ \forall J \subseteq \mathcal{N}^d, d = 1, \ldots, \delta - 1. \tag{3}
\]

Given a basis \(B \) of \(A \),

- \(Ax = b \Rightarrow Bx_B + Nx_N = b, \)
- \(AX(.,J) = bX_J, \Rightarrow BX(BJ) + NX(NJ) = bX_J, \ \forall J \subseteq \mathcal{N}^d, d = 1, \ldots, \delta - 1. \)
Reduced RLT representations

Linear Equality Subsystem: $Ax = b$
Constraint-based RLT restrictions:

$$[(Ax = b) \times \prod_{j \in J} x_j]_L, \text{ yielding } AX_{(., J)} = bX_J, \forall J \subseteq \mathcal{N}^d, d = 1, \ldots, \delta - 1. \quad (3)$$

Given a basis B of A,

- $Ax = b \Rightarrow Bx_B + Nx_N = b$,
- $AX_{(., J)} = bX_J, \Rightarrow BX_{(BJ)} + NX_{(NJ)} = bX_J, \forall J \subseteq \mathcal{N}^d, d = 1, \ldots, \delta - 1.$

Proposition

Let the equality system $Ax = b$ be partitioned as $Bx_B + Nx_N = b$ for any basis B of A, and define

$$Z = \left\{ (x, X) : Ax = b, (3) \text{ and } X_J = \prod_{j \in J} x_j, \forall J \subseteq J_N^d, \text{ for } d = 2, \ldots, \delta \right\}.$$

Then, we have $X_J = \prod_{j \in J} x_j, \forall J \subseteq \mathcal{N}^d, \text{ for } d = 2, \ldots, \delta \}.$
Equivalent formulations

PP1:

\[BX_{(BJ)} + NX_{(NJ)} = bX, \forall J \subseteq \mathcal{N}_d, d = 1, \ldots, \delta - 1 \]

\[\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right]_L \geq 0, \forall (J_1 \cup J_2) \subseteq \mathcal{N}_\delta \]

\[l \leq x \leq u \]

\[X_J = \prod_{j \in J} x_j, \forall J \subseteq \mathcal{N}_d, d = 2, \ldots, \delta. \]
Equivalent formulations

PP1:

\[
BX_{(BJ)} + NX_{(NJ)} = bX_J, \quad \forall J \subseteq \mathcal{N}^d, \quad d = 1, \ldots, \delta - 1
\]

\[
\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right]_L \geq 0, \quad \forall (J_1 \cup J_2) \subseteq \mathcal{N}^\delta
\]

\[
l \leq x \leq u
\]

\[
X_J = \prod_{j \in J} x_j, \quad \forall J \subseteq \mathcal{N}^d, \quad d = 2, \ldots, \delta.
\]

PP2:

\[
BX_{(BJ)} + NX_{(NJ)} = bX_J, \quad \forall J \subseteq \mathcal{N}^d, \quad d = 1, \ldots, \delta - 1
\]

\[
\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right]_L \geq 0, \quad \forall (J_1 \cup J_2) \subseteq \mathcal{N}^\delta
\]

\[
l \leq x \leq u, \quad \text{and} \quad \prod_{j \in J} l_j \leq X_J \leq \prod_{j \in J} u_j, \quad \forall J \subseteq \mathcal{N}^d, \quad d = 2, \ldots, \delta, \quad |J_B \cap J| \geq 1
\]

\[
X_J = \prod_{j \in J} x_j, \quad \forall J \subseteq \mathcal{J}_N^d, \quad d = 2, \ldots, \delta.
\]
Equivalent formulations

PP1:

\[BX_{(BJ)} + NX_{(NJ)} = bX_J, \forall J \subseteq \mathcal{N}^d, d = 1, \ldots, \delta - 1 \]

\[
\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right]_L \geq 0, \forall (J_1 \cup J_2) \subseteq \mathcal{N}^\delta
\]

\[l \leq x \leq u \]

\[X_J = \prod_{j \in J} x_j, \forall J \subseteq \mathcal{N}^d, d = 2, \ldots, \delta. \]

PP2:

\[BX_{(BJ)} + NX_{(NJ)} = bX_J, \forall J \subseteq \mathcal{N}^d, d = 1, \ldots, \delta - 1 \]

\[
\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right]_L \geq 0, \forall (J_1 \cup J_2) \subseteq J_N^\delta
\]

\[l \leq x \leq u, \text{ and } \prod_{j \in J} l_j \leq X_J \leq \prod_{j \in J} u_j, \forall J \subseteq \mathcal{N}^d, d = 2, \ldots, \delta, |J_B \cap J| \geq 1 \]

\[X_J = \prod_{j \in J} x_j, \forall J \subseteq J_N^d, d = 2, \ldots, \delta. \]

Enhancing Algorithm RLT(PP2): Identify key bound-factor constraints, positive associated dual variables, at the root node and append within Problem PP2.
RLT(PP1) in \mathbb{R}^{n-m} **and Hybrid algorithm**

RLT(PP1) in \mathbb{R}^{n-m}: Eliminate the basic variables x_B for the basis B via the substitution. Then, implement regular RLT process in the space of the $(n - m)$ nonbasic variables.
RLT(PP1) in \(\mathbb{R}^{n-m} \) and Hybrid algorithm

RLT(PP1) in \(\mathbb{R}^{n-m} \): Eliminate the basic variables \(x_B \) for the basis \(B \) via the substitution. Then, implement regular RLT process in the space of the \((n - m) \) nonbasic variables.

RLT\textsubscript{SDP}(PP2) vs. RLT\textsubscript{SDP}(PP1) in \(\mathbb{R}^{n-m} \)

- The size of the LP relaxations,
- The quality of the lower bounds at the root node.
RLT(PP1) in \mathbb{R}^{n-m} and Hybrid algorithm

RLT(PP1) in \mathbb{R}^{n-m}: Eliminate the basic variables x_B for the basis B via the substitution. Then, implement regular RLT process in the space of the $(n - m)$ nonbasic variables.

RLT$_{SDP}$(PP2) vs. RLT$_{SDP}$(PP1) in \mathbb{R}^{n-m}
- The size of the LP relaxations,
- The quality of the lower bounds at the root node.

RLT$_{SDP}$(Hybrid)
- The swiftness of RLT$_{SDP}$(PP1) in \mathbb{R}^{n-m},
- The robustness of RLT$_{SDP}$(PP2).

Compute $\mu = \frac{\text{GAP}_1}{\text{GAP}_2} \times \frac{N_1}{N_2}$
RLT(PP1) in \mathbb{R}^{n-m} **and Hybrid algorithm**

RLT(PP1) in \mathbb{R}^{n-m}: Eliminate the basic variables x_B for the basis B via the substitution. Then, implement regular RLT process in the space of the $(n-m)$ nonbasic variables.

RLT$_{SDP}$(PP2) vs. RLT$_{SDP}$(PP1) in \mathbb{R}^{n-m}
- The size of the LP relaxations,
- The quality of the lower bounds at the root node.

RLT$_{SDP}$(Hybrid)
- The swiftness of RLT$_{SDP}$(PP1) in \mathbb{R}^{n-m},
- The robustness of RLT$_{SDP}$(PP2).

Compute $\mu = \frac{\text{GAP}_1}{\text{GAP}_2} \times \frac{N_1}{N_2}$

If ($\mu < 1$)
- implement RLT$_{SDP}$(PP2)
else
- implement RLT$_{SDP}$(PP1) in \mathbb{R}^{n-m}.
PP: Minimize \(x_1 x_2 x_3 x_5^2 \)
subject to
\[
\begin{align*}
& x_1 + 0.5 x_3 + x_4 = 3 \\
& x_2 + x_5 = 6 \\
& x_3 x_5 - x_4^2 \geq 1.5 \\
& l_i \leq x_i \leq u_i, \ i = 1, 2, 3, 4, 5.
\end{align*}
\]
PP: Minimize \(x_1 x_2 x_3 x_5^2 \)

subject to

\[
\begin{align*}
 x_1 + 0.5x_3 + x_4 &= 3 \\
 x_2 + x_5 &= 6 \\
 x_3 x_5 - x_4^2 &\geq 1.5 \\
 l_i &\leq x_i \leq u_i, \; i = 1, 2, 3, 4, 5.
\end{align*}
\]

\[
\begin{align*}
 x_{12355} + x_{1355} - 6x_{1355} &= 0 \\
 x_{1355} + 0.5x_{3355} + x_{3455} - 3x_{355} &= 0 \\
 x_{1355} + 0.5x_{3355} + x_{3455} - 3x_{355} &= 0.
\end{align*}
\]
PP: Minimize \(x_1 x_2 x_3 x_5^2 \)
subject to
\[
\begin{align*}
&x_1 + 0.5x_3 + x_4 = 3 \\
&x_2 + x_5 = 6 \\
&x_3 x_5 - x_4^2 \geq 1.5 \\
&l_i \leq x_i \leq u_i, i = 1, 2, 3, 4, 5.
\end{align*}
\]
\[
X_{12355} + X_{1355} - 6X_{135} = 0 \\
X_{1355} + 0.5X_{33555} + X_{34555} - 3X_{3555} = 0 \\
X_{135} + 0.5X_{3355} + X_{3455} - 3X_{355} = 0.
\]

or
\[
X_{12355} + 0.5X_{23355} + X_{23455} - 3X_{2355} = 0 \\
X_{23355} + X_{33555} - 6X_{3355} = 0 \\
X_{23455} + X_{34555} - 6X_{3455} = 0 \\
X_{2355} + X_{3555} - 6X_{355} = 0.
\]
Reduced RLT Routine for Sparse Problems:

Initialization: Define $\mathcal{K} \equiv \{ J : X_J \text{ appears in (2a) - (2c)} \text{ and } |J \cap J_B| \geq 1 \}$, $\mathcal{K'} = \emptyset$, and $\mathcal{L} \equiv \{ J : X_J \text{ appears within (2a) - (2c)} \text{ and } J \cap J_B = \emptyset \}$.

Step 1: If $\mathcal{K} = \emptyset$, go to Step 4. Else, select an index set $J \in \mathcal{K}$ that involves the maximum number of basic variables, delete it from the list \mathcal{K} and add it to the list $\mathcal{K'}$.

Step 2: Let $B_j \in J$ be a randomly selected basic variable index. Multiply the representation of the basic variable x_{B_j} in terms of the nonbasic variables by $\prod_{J - \{B_j\}} x_j$, and linearize and append this to the relaxation.

Step 3: If $J - \{B_j\}$ involves any basic variable, the multiplication at Step 2 generates monomials involving basic variables. Include these monomials within the list \mathcal{K}. Otherwise, if $J - \{B_j\}$ does not involve any basic variable, then include the resulting monomials within the set \mathcal{L}. Continue with Step 1.

Step 4: Apply the J-set Routine to the set \mathcal{L} in order to generate the proposed set of filtered bound-factor restrictions for reformulating the model.
Model enhancements
Coordination between constraint filtering and reduced basis techniques

PP: Minimize \(x_1 x_2 x_3 x_5^2 \)
subject to \(x_1 + 0.5x_3 + x_4 = 3 \)
\(x_2 + x_5 = 6 \)
\(x_3 x_5 - x_4^2 \geq 1.5 \)
\(l_i \leq x_i \leq u_i, i = 1, 2, 3, 4, 5. \)

J-RRLT: Minimize \(X_{12355} \)
subject to \(x_1 + 0.5x_3 + x_4 = 3 \)
\(X_{13555} + 0.5X_{33555} + X_{34555} - 3X_{3555} = 0 \)
\(X_{13555} + 0.5X_{3355} + X_{3455} - 3X_{355} = 0 \)
\(x_2 + x_5 = 6 \)
\(X_{12355} + X_{13555} - 6X_{1355} = 0 \)
\(X_{35} - X_{44} \geq 1.5 \)
\[\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right] \geq 0, \forall (J_1 \cup J_2) \in \mathcal{L} \]
\(l_i \leq x_i \leq u_i, i = 1, 2, 3, 4, 5, \)

where \(\mathcal{L} = \{\{4, 4\}, \{3, 3, 5, 5, 5\}, \{3, 4, 5, 5, 5\}\}. \)
J-set in \mathbb{R}^{n-m}: Minimize

$$18X_{355} - 3X_{3355} - 6X_{3455} - 3X_{3555} + 0.5X_{33555} + X_{34555}$$

subject to

$$X_{35} - X_{44} \geq 1.5$$

$$l_1 \leq 3 - 0.5x_3 - x_4 \leq u_1$$

$$l_2 \leq 6 - x_5 \leq u_2$$

$$\left[\prod_{j \in J_1} (x_j - l_j) \prod_{j \in J_2} (u_j - x_j) \right] \geq 0, \forall (J_1 \cup J_2) \in \mathcal{L}$$

$$l_i \leq x_i \leq u_i, i = 3, 4, 5.$$
Table: The number of problems solved within the minimum CPU time among the \(J \)-set, \(J \)-RRLT+, and the \(J \)-NB.

<table>
<thead>
<tr>
<th>Degree</th>
<th>(J)-set</th>
<th>(J)-RRLT+</th>
<th>(J)-NB</th>
<th>(J)-Hybrid (Offline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>9</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>37</td>
<td>46</td>
<td>102</td>
</tr>
</tbody>
</table>
Table: The number of problems solved within the minimum CPU time among the \(J \)-set, \(J \)-RRLT+, and the \(J \)-NB.

<table>
<thead>
<tr>
<th>Degree</th>
<th>(J)-set</th>
<th>(J)-RRLT+</th>
<th>(J)-NB</th>
<th>(J)-Hybrid (Offline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>9</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>37</td>
<td>46</td>
<td>102</td>
</tr>
</tbody>
</table>

Table: Average CPU time (in seconds) with the reduced basis techniques for sparse problems.

<table>
<thead>
<tr>
<th>Degree</th>
<th>(J)-set</th>
<th>(J)-RRLT+</th>
<th>(J)-NB</th>
<th>(J)-Hybrid (Offline)</th>
<th>Minimum</th>
<th>(J)-Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>136.4</td>
<td>134.8</td>
<td>246.0</td>
<td>111.4</td>
<td>94.4</td>
<td>112.2</td>
</tr>
<tr>
<td>3</td>
<td>182.0</td>
<td>166.0</td>
<td>266.6</td>
<td>122.6</td>
<td>80.3</td>
<td>122.6</td>
</tr>
<tr>
<td>4</td>
<td>230.1</td>
<td>226.3</td>
<td>318.5</td>
<td>122.2</td>
<td>109.2</td>
<td>134.8</td>
</tr>
<tr>
<td>5</td>
<td>170.2</td>
<td>125.7</td>
<td>200.6</td>
<td>62.9</td>
<td>46.8</td>
<td>69.0</td>
</tr>
<tr>
<td>6</td>
<td>97.0</td>
<td>42.0</td>
<td>98.7</td>
<td>42.3</td>
<td>23.6</td>
<td>51.1</td>
</tr>
<tr>
<td>7</td>
<td>132.9</td>
<td>75.1</td>
<td>181.2</td>
<td>62.5</td>
<td>38.0</td>
<td>72.7</td>
</tr>
</tbody>
</table>
\(\nu \)-SDP cuts

\[xx^T \] is symmetric and positive semidefinite \(\Rightarrow M_0 = [xx^T]_L \succeq 0. \]
ν-SDP cuts

$[xx^T]$ is symmetric and positive semidefinite $\Rightarrow M_0 = [xx^T]_L \succeq 0$.

A stronger implication in this same vein is:

$x(1) = \begin{bmatrix} 1 \\ x \end{bmatrix}$, and defining the matrix $M_1 \equiv [x(1)x(1)^T]_L = \begin{bmatrix} 1 & x^T \\ x & M_0 \end{bmatrix} \succeq 0$.

\([xx^T] \) is symmetric and positive semidefinite \(\Rightarrow M_0 = [xx^T] \succeq 0. \)

A stronger implication in this same vein is:
\[
x(1) = \begin{bmatrix} 1 \\ x \end{bmatrix}, \text{ and defining the matrix } M_1 \equiv [x(1)x(1)^T]_L = \begin{bmatrix} 1 & x^T \\ x & M_0 \end{bmatrix} \succeq 0.
\]

Two main approaches:
1. SDP relaxations,
2. SDP-induced valid inequalities.

\[
M = [\nu \nu^T] \succeq 0 \iff \alpha^T M \alpha = [(\alpha^T \nu)^2]_L \succeq 0, \forall \alpha \in \mathbb{R}^n (\text{or } \mathbb{R}^{n+1}), \|\alpha\| = 1.
\]
ν-SDP cuts

\[[xx^T]\] is symmetric and positive semidefinite \(\Rightarrow M_0 = [xx^T]_L \succeq 0.\)

A stronger implication in this same vein is:

\[
x(1) = \begin{bmatrix} 1 \\ x \end{bmatrix}, \text{ and defining the matrix } M_1 \equiv [x(1)x^T(1)]_L = \begin{bmatrix} 1 & x^T \\ x & M_0 \end{bmatrix} \succeq 0.
\]

Two main approaches:

1. SDP relaxations,
2. SDP-induced valid inequalities.

\[
M = [\nu \nu^T] \succeq 0 \iff \alpha^T M \alpha = [(\alpha^T \nu)^2]_L \geq 0, \forall \alpha \in \mathbb{R}^n (\text{or } \mathbb{R}^{n+1}), \|\alpha\| = 1.
\]

1. Let \((\bar{x}, \bar{X})\) be a solution to the RLT relaxation.
2. Check if \(\bar{M} \succeq 0\), where \(\bar{M}\) evaluates \(M\) at the solution \((\bar{x}, \bar{X})\).
\(\nu \)-SDP cuts

\[xx^T \] is symmetric and positive semidefinite \(\Rightarrow M_0 = [xx^T]_L \succeq 0. \)

A stronger implication in this same vein is:

\[x_{(1)} = \begin{bmatrix} 1 \\ x \end{bmatrix}, \text{ and defining the matrix } M_1 \equiv [x_{(1)}x_{(1)}^T]_L = \begin{bmatrix} 1 & x^T \\ x & M_0 \end{bmatrix} \succeq 0. \]

Two main approaches:

1. SDP relaxations,
2. SDP-induced valid inequalities.

\[M = [\nu \nu^T] \succeq 0 \iff \alpha^T M \alpha = [(\alpha^T \nu)^2]_L \geq 0, \forall \alpha \in \mathbb{R}^n (\text{or } \mathbb{R}^{n+1}), \|\alpha\| = 1. \]

1. Let \((\bar{x}, \bar{X})\) be a solution to the RLT relaxation.
2. Check if \(\bar{M} \succeq 0\), where \(\bar{M}\) evaluates \(M\) at the solution \((\bar{x}, \bar{X})\).
 - If not, we have an \(\bar{\alpha} \in \mathbb{R}^{n+1}\) such that \(\bar{\alpha}^T \bar{M} \bar{\alpha} < 0\).
 - Append the SDP cut \(\bar{\alpha}^T \bar{M} \bar{\alpha} = [(\bar{\alpha}^T \nu)^2]_L \geq 0\), and go to Step 1.
ν-vectors

\[\nu^{(1)} = \left[1, \{ x_j, j \in \mathcal{N} \}, \{ \text{all quadratic monomials using } x_j, j \in \mathcal{N} \}, \ldots, \{ \text{all monomials of order } \Delta \text{ using } x_j, j \in \mathcal{N} \} \right]^T \in \mathbb{R}^{(n+\Delta)} \]
\(\nu \)-vectors

\(\nu(1) = \begin{bmatrix} 1, \{ x_j, j \in N \}, \{ \text{all quadratic monomials using } x_j, j \in N \}, \ldots, \{ \text{all monomials of order } \Delta \text{ using } x_j, j \in N \} \end{bmatrix}^T \in \mathbb{R}^{(n+\Delta)\Delta}. \)

\(\nu(2) = \begin{bmatrix} 1, \{ x_j, j \in N_{J*} \}, \{ \text{all quadratic monomials using } x_j, j \in N_{J*} \}, \ldots, \{ \text{all monomials of order } \Delta \text{ using } x_j, j \in N_{J*} \} \end{bmatrix}^T \)

where

\[J^* \in \arg \max_{J \subseteq \bar{N}} \left\{ \sum_{r \in \{0, 1, \ldots, R\}} \left| \alpha_{rt} \left[\bar{X}_{Jrt} - \prod_{j \in J_{rt}} \bar{x}_j \right] \right| \right\} \]
\(\nu \)-vectors

\[
\nu^{(1)} = \begin{bmatrix} 1, \{x_j, j \in \mathcal{N}\}, \{\text{all quadratic monomials using } x_j, j \in \mathcal{N}\}, \ldots, \{\text{all monomials of order } \Delta \text{ using } x_j, j \in \mathcal{N}\} \end{bmatrix}^T \in \mathbb{R}^{(n+\Delta)}.
\]

\[
\nu^{(2)} = \begin{bmatrix} 1, \{x_j, j \in \mathcal{N}_J^*\}, \{\text{all quadratic monomials using } x_j, j \in \mathcal{N}_J^*\}, \ldots, \{\text{all monomials of order } \Delta \text{ using } x_j, j \in \mathcal{N}_J^*\} \end{bmatrix}^T
\]

where

\[
J^* \in \arg \max_{J \subseteq \bar{\mathcal{N}}} \left\{ \sum_{r \in \{0, 1, \ldots, R\}} |\alpha_{rt} [\bar{X}_{J_{rt}} - \prod_{j \in J_{rt}} \bar{x}_j]| \right\}.
\]

For a polynomial constraint \(\phi_r(x) \geq \beta_r \) of order \(\delta_r \), define \(\Delta_r \equiv \lceil \frac{\delta}{2} - \frac{\delta_r}{2} \rceil \). If \(\Delta_r \geq 1 \), let

\[
\nu^{(3)} = \begin{bmatrix} 1, \text{all monomials of order } \Delta_r \text{ using } x_j, j \in \mathcal{N} \end{bmatrix}^T.
\]

Then, we impose the following:

\[
\left\{ \left[\phi_r(x) - \beta_r \right] \nu^{(3)} (\nu^{(3)})^T \right\}_L \succeq 0.
\]
\(\nu \)-SDP cut inheritance

- \(\nu \)-SDP parent
- \(\nu \)-SDP self
- \(\nu \)-SDP left-child
- \(\nu \)-SDP right-child

Copy all

Filter inactive cuts
Cut generation vs. branching

\[\Delta \text{GAP}_{\text{branching}}^{i+1} = \frac{\text{GAP}_{\text{left}} - \text{GAP}_{\text{parent}}}{\max(1,|UB|)} \]

\[\Delta \text{GAP}_{\text{branching}}^{i+2} \]

\[\Delta \text{GAP}_{\text{branching}}^{i+3} \]

\[\Delta \text{GAP}_{\text{branching}}^{i+4} \]

SDP cuts?

Expected \((\Delta \text{GAP}_{\text{SDP}}^{i+3}) > \frac{\Delta \text{GAP}_{\text{branching}}^{i+3}}{2} \)
Table: Performances of SDP cut generation routines.

<table>
<thead>
<tr>
<th>Degree</th>
<th>No SDP</th>
<th>Routine 1</th>
<th>Routine 2</th>
<th>Routine 3</th>
<th>Routine 4</th>
<th>No SDP</th>
<th>Routine 1</th>
<th>Routine 2</th>
<th>Routine 3</th>
<th>Routine 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>122.3</td>
<td>106.5</td>
<td>105.6</td>
<td>106.7</td>
<td>106.7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>152.0</td>
<td>119.1</td>
<td>114.0</td>
<td>126.4</td>
<td>125.5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>174.0</td>
<td>128.4</td>
<td>128.0</td>
<td>144.1</td>
<td>141.2</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>124.7</td>
<td>62.9</td>
<td>62.6</td>
<td>75.0</td>
<td>69.0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>76.1</td>
<td>45.3</td>
<td>44.8</td>
<td>48.6</td>
<td>47.2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>103.9</td>
<td>77.0</td>
<td>71.5</td>
<td>83.9</td>
<td>76.6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Routine 1: Generate SDP cuts and re-optimize the relaxation if they perform well. Else, generate and store SDP cuts for inheritance, if they perform well. Else, don’t generate.
- Routine 2: Generate and store SDP cuts for inheritance, if they perform well. Else, don’t generate.
- Routine 3: Generate SDP cuts and re-optimize the relaxation.
- Routine 4: Generate and store SDP cuts for inheritance.
Figure: Performance of the RLT algorithms for solving polynomial problems *without equality constraints* (in CPU seconds).

- **Degree-two**
- **Degree-four**
- **Degree-six**

The graphs show the CPU time (in seconds) for different problem densities and degrees, comparing the RLT and J-set algorithms.
Figure: Performance of the RLT algorithms for solving \textit{quadratic and cubic problems with equality constraints} (in CPU seconds).
Computational Results

Problems with equality constraints

Figure: Performance of the RLT Hybrid algorithms for solving degree-four, -five, -six, and -seven problems with equality constraints (in CPU seconds).
RLT-POS vs. BARON

Degree-two

![Graph showing computational results for Degree-two problems with equality constraints]

Degree-four

![Graph showing computational results for Degree-four problems with equality constraints]

Degree-six

![Graph showing computational results for Degree-six problems with equality constraints]
- Coordination between constraint filtering and reduced basis techniques.
- SDP cut generation routine for sparse problems.
- The J-Hybrid algorithm.
- RLT-based open-source optimization software.
Conclusions and future research directions

- Coordination between constraint filtering and reduced basis techniques.
- SDP cut generation routine for sparse problems.
- The J-Hybrid algorithm.
- RLT-based open-source optimization software.

- Nonlinear equality constraints.
- Tighten the relaxation in the reduced subspace.
- Stability of J-set of relaxations: Barrier and dual optimizer of CPLEX.
- Factorable programming problems and nonlinear integer programming problems.
Thank you!