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Background Polynomial programming formulation

Mathematical formulation: Problem PP

PP: Minimize φ0(x)

subject to

φr (x) ≥ βr , ∀r = 1, . . . ,R1

φr (x) = βr , ∀r = R1 + 1, . . . ,R

Ax = b

x ∈ Ω ≡ {x : 0 ≤ lj ≤ xj ≤ uj <∞, ∀j ∈ N},

where

φr (x) ≡
∑
t∈Tr

αrt

[∏
j∈Jrt

xj

]
, for r = 0, . . . ,R.

Reformulation Generate bound-factors and append bound-factor constraints:
Bound-factors:

(xj − lj ) ≥ 0 and (uj − xj ) ≥ 0, ∀j ∈ N .

Bound-factor constraints:∏
j∈J1

(
xj − lj

) ∏
j∈J2

(
uj − xj

)
≥ 0, ∀ (J1 ∪ J2) ∈ N δ.

Linearization Substitute a new RLT variable for each distinct monomial as given by:

XJ =
∏
j∈J

xj , ∀J ∈
δ⋃

d=2

N d
.
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Background Reformulation-Linearization Technique (RLT)

RLT(Ω′): Minimize [φ0(x)]L (2a)

subject to

[φr (x)]L ≥ βr , ∀r = 1, . . . ,R1 (2b)

[φr (x)]L = βr , ∀r = R1 + 1, . . . ,R (2c)

Ax = b (2d)∏
j∈J1

(
xj − l′j

) ∏
j∈J2

(
u′j − xj

)
L

≥ 0, ∀ (J1 ∪ J2) ∈ N δ (2e)

x ∈ Ω′ ≡ {x : 0 ≤ l′j ≤ xj ≤ u′j <∞, ∀j ∈ N} (2f)

XJ =
∏
j∈J

xj , ∀J ∈ ∪δd=2N
d
. (2g)

1 Is there a strict subset of the fundamental bound-factor constraints for which the
branch-and-bound algorithm described in Sherali and Tuncbilek [1992] would yet converge to
a global optimum?

2 Is there additional valid inequalities that would tighten the RLT relaxation without sacrificing
computational effort?

Model Enhancements:
1 The J-set of filtered bound-factor constraints,
2 Reduced RLT representations or RLT formulations in the reduced space,
3 ν-SDP cuts.
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Model enhancements Constraint filtering routines

The J-set of bound-factor constraints

For a given index set J,

NJ ⊆ J : the largest nonrepetitive set,

dJ : the cardinality of J.

Standard RLT constraints:∏
j∈J1

(
xj − lj

) ∏
j∈J2

(
uj − xj

)
L

≥ 0, ∀ (J1 ∪ J2) ∈ NJ
dJ .

Proposition

The convergence result in Sherali and Tuncbilek [1992] holds true if the following RLT bound-factor
constraints are appended to the relaxation for each J such that the monomial

∏
j∈J xj appears in

Problem PP: ∏
j∈J1

(
xj − lj

) ∏
j∈J2

(
uj − xj

)
L

≥ 0, ∀ (J1 ∪ J2) = J.
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Model enhancements Constraint filtering routines

The J-set and the standard RLT

The J-set of bound-factor constraints for x2
1 x2:

[(x1 − l1)(x1 − l1)(x2 − l2)]L ≥ 0, [(x1 − l1)(u1 − x1)(x2 − l2)]L ≥ 0, [(u1 − x1)(u1 − x1)(x2 − l2)]L ≥ 0,

[(x1 − l1)(x1 − l1)(u2 − x2)]L ≥ 0, [(x1 − l1)(u1 − x1)(u2 − x2)]L ≥ 0, [(u1 − x1)(u1 − x1)(u2 − x2)]L ≥ 0,

The bound-factor constraints for x2
1 x2 with the standard RLT:

[(x1 − l1)(x1 − l1)(x1 − l1)]L ≥ 0, [(x1 − l1)(u1 − x1)(u1 − x1)]L ≥ 0,

[(x1 − l1)(x1 − l1)(u1 − x1)]L ≥ 0, [(u1 − x1)(u1 − x1)(u1 − x1)]L ≥ 0.

[(x1 − l1)(x1 − l1)(x2 − l2)]L ≥ 0, [(x1 − l1)(u1 − x1)(x2 − l2)]L ≥ 0, [(u1 − x1)(u1 − x1)(x2 − l2)]L ≥ 0,

[(x1 − l1)(x1 − l1)(u2 − x2)]L ≥ 0, [(x1 − l1)(u1 − x1)(u2 − x2)]L ≥ 0, [(u1 − x1)(u1 − x1)(u2 − x2)]L ≥ 0,

[(x1 − l1)(x2 − l2)(x2 − l2)]L ≥ 0, [(x1 − l1)(x2 − x2)(u2 − x2)]L ≥ 0, [(x1 − l1)(u2 − x2)(u2 − x2)]L ≥ 0,

[(u1 − x1)(x2 − l1)(x2 − l2)]L ≥ 0, [(u1 − x1)(x2 − l2)(u2 − x2)]L ≥ 0, [(u1 − x1)(u2 − x2)(u2 − x2)]L ≥ 0,

[(x2 − l2)(x2 − l2)(x2 − l2)]L ≥ 0, [(x2 − l2)(u2 − x2)(u2 − x2)]L ≥ 0,

[(x2 − l2)(x2 − l2)(u2 − x2)]L ≥ 0, [(u2 − x2)(u2 − x2)(u2 − x2)]L ≥ 0.
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Model enhancements Constraint filtering routines

The number of RLT constraints and new RLT variables

∏
j∈J

xj =
∏

j∈NJ

x
rj
j

The number of bound-factor constraints The number of new RLT variables
J-set

∏
j∈NJ

(rj + 1)
∏

j∈NJ
(rj + 1)− (|NJ | + 1)

N δ-set
(2n + δ − 1

δ

) (n + δ

δ

)
− (n + 1)

Example: For a PP involving only x3
1 x2x2

3 and x2
4 x5x3

6 as nonlinear terms, the J-set and the
N δ-set respectively generate in total:

48 and 12376 bound-factor constraints,

40 and 917 new RLT variables.
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Model enhancements Reduced RLT representations

Reduced RLT representations

Linear Equality Subsystem: Ax = b
Constraint-based RLT restrictions:

[(Ax = b)×
∏
j∈J

xj ]L, yielding AX(. J) = bXJ , ∀J ⊆ N d , d = 1, . . . , δ − 1. (3)

Given a basis B of A,

Ax = b ⇒ BxB + NxN = b,

AX(. J) = bXJ ,⇒ BX(BJ) + NX(NJ) = bXJ , ∀J ⊆ N d , d = 1, . . . , δ − 1.

Proposition

Let the equality system Ax = b be partitioned as BxB + NxN = b for any basis B of A, and define

Z =

(x ,X) : Ax = b, (3) and XJ =
∏
j∈J

xj , ∀J ⊆ Jd
N , for d = 2, . . . , δ

 .

Then, we have XJ =
∏

j∈J xj , ∀J ⊆ N d , for d = 2, . . . , δ}.
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Model enhancements Reduced RLT representations

Equivalent formulations

PP1:
BX(BJ) + NX(NJ) = bXJ , ∀J ⊆ N d , d = 1, . . . , δ − 1[∏

j∈J1
(xj − lj )

∏
j∈J2

(uj − xj )
]

L
≥ 0, ∀(J1 ∪ J2) ⊆ N δ

l ≤ x ≤ u

XJ =
∏

j∈J xj , ∀J ⊆ N d , d = 2, . . . , δ.

PP2:
BX(BJ) + NX(NJ) = bXJ ,∀J ⊆ N d , d = 1, . . . , δ − 1[∏

j∈J1
(xj − lj )

∏
j∈J2

(uj − xj )
]

L
≥ 0, ∀(J1 ∪ J2) ⊆ Jδ

N

l≤x≤u, and
∏

j∈J lj ≤ XJ ≤
∏

j∈J uj , ∀J ⊆N d, d =2,. . . ,δ, |JB∩J|≥1

XJ =
∏

j∈J xj , ∀J ⊆ Jd
N , d = 2, . . . , δ.

Enhancing Algorithm RLT(PP2): Identify key bound-factor constraints, positive associated dual
variables, at the root node and append within Problem PP2.
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Model enhancements Reduced RLT representations

RLT(PP1) in Rn−m and Hybrid algorithm

RLT(PP1) in Rn−m: Eliminate the basic variables xB for the basis B via the substitution. Then,
implement regular RLT process in the space of the (n −m) nonbasic variables.

RLTSDP(PP2) vs. RLTSDP(PP1) in Rn−m

The size of the LP relaxations,

The quality of the lower bounds at the root node.

RLTSDP(Hybrid)
The swiftness of RLTSDP(PP1) in Rn−m,

The robustness of RLTSDP(PP2).

Compute µ = GAP1
GAP2

× N1
N2

If (µ < 1)
implement RLTSDP(PP2)

else
implement RLTSDP(PP1) in Rn−m.
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Model enhancements Coordination between constraint filtering and reduced basis techniques

PP: Minimize x1x2x3x2
5

subject to x1 + 0.5x3 + x4 = 3

x2 + x5 = 6

x3x5 − x2
4 ≥ 1.5

li ≤ xi ≤ ui , i = 1, 2, 3, 4, 5.

X12355 + X13555 − 6X1355 = 0

X13555 + 0.5X33555 + X34555 − 3X3555 = 0

X1355 + 0.5X3355 + X3455 − 3X355 = 0.

or

X12355 + 0.5X23355 + X23455 − 3X2355 = 0

X23355 + X33555 − 6X3355 = 0

X23455 + X34555 − 6X3455 = 0

X2355 + X3555 − 6X355 = 0.
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Model enhancements Coordination between constraint filtering and reduced basis techniques

Reduced RLT Routine for Sparse Problems:
Initialization: Define K ≡ {J : XJ appears in (2a)− (2c) and |J ∩ JB | ≥ 1}, K′ = ∅, and

L ≡ {J : XJ appears within (2a)− (2c) and J ∩ JB = ∅}.

Step 1: If K = ∅, go to Step 4. Else, select an index set J ∈ K that involves the maximum
number of basic variables, delete it from the list K and add it to the list K′.

Step 2: Let Bj ∈ J be a randomly selected basic variable index. Multiply the
representation of the basic variable xBj in terms of the nonbasic variables by∏

J−{Bj} xj , and linearize and append this to the relaxation.

Step 3: If J − {Bj} involves any basic variable, the multiplication at Step 2 generates
monomials involving basic variables. Include these monomials within the list K.
Otherwise, if J − {Bj} does not involve any basic variable, then include the
resulting monomials within the set L. Continue with Step 1.

Step 4: Apply the J-set Routine to the set L in order to generate the proposed set of
filtered bound-factor restrictions for reformulating the model.
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Model enhancements Coordination between constraint filtering and reduced basis techniques

PP: Minimize x1x2x3x2
5

subject to x1 + 0.5x3 + x4 = 3

x2 + x5 = 6

x3x5 − x2
4 ≥ 1.5

li ≤ xi ≤ ui , i = 1, 2, 3, 4, 5.

J-RRLT: Minimize X12355

subject to x1 + 0.5x3 + x4 = 3

X13555 + 0.5X33555 + X34555 − 3X3555 = 0

X1355 + 0.5X3355 + X3455 − 3X355 = 0

x2 + x5 = 6

X12355 + X13555 − 6X1355 = 0

X35 − X44 ≥ 1.5∏
j∈J1

(
xj − lj

) ∏
j∈J2

(
uj − xj

)
L

≥ 0, ∀ (J1 ∪ J2) ∈ L

li ≤ xi ≤ ui , i = 1, 2, 3, 4, 5,

where L = {{4, 4}, {3, 3, 5, 5, 5}, {3, 4, 5, 5, 5}}.
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Model enhancements Coordination between constraint filtering and reduced basis techniques

J-set in Rn−m: Minimize 18X355 − 3X3355 − 6X3455 − 3X3555 + 0.5X33555 + X34555

subject to X35 − X44 ≥ 1.5

l1 ≤ 3− 0.5x3 − x4 ≤ u1

l2 ≤ 6− x5 ≤ u2∏
j∈J1

(
xj − lj

) ∏
j∈J2

(
uj − xj

)
L

≥ 0, ∀ (J1 ∪ J2) ∈ L

li ≤ xi ≤ ui , i = 3, 4, 5.

Table : Relaxation sizes and optimality gaps.

# of equalities # of bound-factor constraints % optimality gap

RLT 2 2002 65.2
RLT-E 250 2002 2.6
RRLT 250 252 87

RRLT+ 250 252+55 2.6
J-set 2 27 81.6

J-RRLT+ 5 31+20 52.3
J-NB 0 31 1279
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Model enhancements Coordination between constraint filtering and reduced basis techniques

Table : The number of problems solved within the minimum CPU time among the J-set, J-RRLT+, and the J-NB.

Degree J-set J-RRLT+ J-NB J-Hybrid (Offline)

2 13 6 0 13
3 11 9 3 16
4 11 9 4 20
5 8 7 9 17
6 5 3 16 16
7 7 3 14 20

Total 55 37 46 102

Table : Average CPU time (in seconds) with the reduced basis techniques for sparse problems.

Degree J-set J-RRLT+ J-NB J-Hybrid (Offline) Minimum J-Hybrid

2 136.4 134.8 246.0 111.4 94.4 112.2
3 182.0 166.0 266.6 122.6 80.3 122.6
4 230.1 226.3 318.5 122.2 109.2 134.8
5 170.2 125.7 200.6 62.9 46.8 69.0
6 97.0 42.0 98.7 42.3 23.6 51.1
7 132.9 75.1 181.2 62.5 38.0 72.7
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Model enhancements Semidefinite programming (SDP)-induced cuts (ν-SDP cuts)

ν-SDP cuts

[xxT ] is symmetric and positive semidefinite⇒ M0 = [xxT ]L � 0.

A stronger implication in this same vein is:

x(1) =

[
1
x

]
, and defining the matrix M1 ≡ [x(1)xT

(1)
]L =

[
1 xT

x M0

]
� 0.

Two main approaches:
1 SDP relaxations,
2 SDP-induced valid inequalities.

M = [ννT ] � 0⇔ αT Mα = [(αT ν)2]L ≥ 0, ∀α ∈ Rn(orRn+1), ‖α‖ = 1.

1 Let (x̄ , X̄ ) be a solution to the RLT relaxation.
2 Check if M̄ � 0, where M̄ evaluates M at the solution (x̄ , X̄ ).

If not, we have an ᾱ ∈ Rn+1 such that ᾱT M̄ᾱ < 0.
Append the SDP cut ᾱT Mᾱ = [(ᾱTν)2]L ≥ 0, and go to Step 1.
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Model enhancements Semidefinite programming (SDP)-induced cuts (ν-SDP cuts)

ν-vectors

ν(1)=

[
1, {xj , j ∈ N}, {all quadratic monomials using xj , j ∈ N}, . . . ,

{all monomials of order ∆ using xj , j ∈ N}

]T
∈ R( n+∆

∆
)
.

ν(2) =

[
1, {xj , j ∈ NJ∗}, {all quadratic monomials using xj , j ∈ NJ∗}, . . . ,

{all monomials of order ∆ using xj , j ∈ NJ∗}

]T

where
J∗ ∈ arg max

J⊆N̄

{ ∑
r ∈ {0, 1, . . . , R} :
Jrt = J for some t ∈ Tr

∣∣∣αrt

[
X̄Jrt −

∏
j∈Jrt

x̄j

]∣∣∣}.

For a polynomial constraint φr (x) ≥ βr of order δr , define ∆r ≡ b δ2 −
δr
2 c. If ∆r ≥ 1, let

ν(3) = [1, all monomials of order ∆r using xj , j ∈ N ]T . Then, we impose the following:{
[φr (x)− βr ]ν(3)(ν(3))T

}
L
� 0.
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Model enhancements Semidefinite programming (SDP)-induced cuts (ν-SDP cuts)

ν-SDP cut inheritance

 ν-SDPinherit
𝑝𝑎𝑟𝑒𝑛𝑡

 

 ν-SDPself
𝑝𝑎𝑟𝑒𝑛𝑡

 

 ν-SDPself
𝑟𝑖𝑔ℎ𝑡−𝑐ℎ𝑖𝑙𝑑

 

 ν-SDPinherit
𝑟𝑖𝑔ℎ𝑡−𝑐ℎ𝑖𝑙𝑑

 

 ν-SDPself
𝑙𝑒𝑓𝑡−𝑐ℎ𝑖𝑙𝑑

 

 ν-SDPinherit
𝑙𝑒𝑓𝑡−𝑐ℎ𝑖𝑙𝑑

 

Filter 
inactive 

cuts 

Copy all 
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Model enhancements Semidefinite programming (SDP)-induced cuts (ν-SDP cuts)

Cut generation vs. branching

i 

i+4 i+3 

i+2 i+1 

∆GAPbranching
𝑖+1 =

GAPleft−GAPparent

max(1,|𝑈𝐵|)
 ∆GAPbranching

𝑖+2  

∆GAPbranching
𝑖+3  ∆GAPbranching

𝑖+4  

SDP cuts? 

Expected (∆GAPSDP
𝑖+3 ) > 

∆GAPbranching
𝑖+3

2
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Model enhancements Semidefinite programming (SDP)-induced cuts (ν-SDP cuts)

Table : Performances of SDP cut generation routines.

Average CPU time (in seconds) Number of unsolved problems

Degree No SDP Routine 1 Routine 2 Routine 3 Routine 4 No SDP Routine 1 Routine 2 Routine 3 Routine 4
2 122.3 106.5 105.6 106.7 106.7 6 6 6 6 6
3 152.0 119.1 114.0 126.4 125.5 6 3 3 4 4
4 174.0 128.4 128.0 144.1 141.2 5 3 3 3 3
5 124.7 62.9 62.6 75.0 69.0 3 0 0 1 1
6 76.1 45.3 44.8 48.6 47.2 2 1 1 1 1
7 103.9 77.0 71.5 83.9 76.6 1 0 0 0 0

Routine 1: Generate SDP cuts and re-optimize the relaxation if they perform well. Else,
generate and store SDP cuts for inheritance, if they perform well. Else, don’t generate.

Routine 2: Generate and store SDP cuts for inheritance, if they perform well. Else, don’t
generate.

Routine 3: Generate SDP cuts and re-optimize the relaxation.

Routine 4: Generate and store SDP cuts for inheritance.
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Computational Results Problems without equality constraints

Figure : Performance of the RLT algorithms for solving polynomial problems without equality constraints (in
CPU seconds).
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Computational Results Problems with equality constraints

Figure : Performance of the RLT algorithms for solving quadratic and cubic problems with equality
constraints (in CPU seconds).
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Computational Results Problems with equality constraints

Figure : Performance of the RLT Hybrid algorithms for solving degree-four, -five, -six, and -seven problems
with equality constraints (in CPU seconds).
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Computational Results Problems with equality constraints

RLT-POS vs. BARON
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Conclusions and future research directions

Coordination between constraint filtering and reduced basis techniques.

SDP cut generation routine for sparse problems.

The J-Hybrid algorithm.

RLT-based open-source optimization software.

Nonlinear equality constraints.

Tighten the relaxation in the reduced subspace.

Stability of J-set of relaxations: Barrier and dual optimizer of CPLEX.

Factorable programming problems and nonlinear integer programming problems.
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Conclusions and future research directions

Thank you!
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