Integer Quadratic Programming in the Plane

<u>Alberto Del Pia</u>

Goldstine Fellow IBM Research Robert Weismantel

IFOR ETH Zürich

June 2, 2014

Integer Polynomial Programming

$$\min\{f_0^d(x) : f_i^d(x) \le 0, i \in I, x \in \mathbb{Z}^n\}$$

 f_i^d is a polynomial of degree at most d

	n=1	n=2	n=9	n=58	n fixed	n general
d=1	Р	Р	Р	Р	P ^a	NPH ^b
d=2	Р	NPH ^c	NPH	Und ^d	Und	Und
d=4	Р	NPH	NPH	Und	Und	Und
$d{=}1.6 \cdot 10^{45}$	Р	NPH	Und ^d	Und	Und	Und

- ^a Lenstra '83
- ^b Cook '71
- ^c Manders & Adleman '78
- ^d Matiyasevich '77, Jones '82 (Hilbert's 10th problem, 1900)

Integer Polynomial Programming

- Natural extension of Integer Linear Programming
- Huge modeling power
- Wide open field

Hydropower plants

Gas pipeline transportation

Polynomial objective function

Polynomial objective function

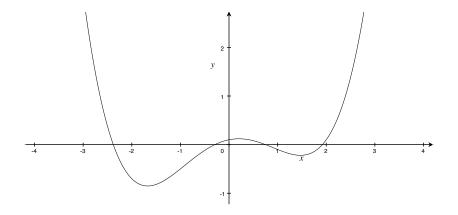
$$\min\{f^d(x)\,:\,x\in P\cap\mathbb{Z}^n\}$$

 f^d is a polynomial of degree at most d

	n = 1	<i>n</i> = 2	<i>n</i> = 58	<i>n</i> fixed	n general
d = 1	Р	Р	Р	P ^a	NPH ^b
<i>d</i> = 2	Р	?	?	?	NPH
<i>d</i> = 3	Р	?	?	?	NPH
<i>d</i> = 4	P	NPH ^c	Und ^{<i>d</i>}	Und	Und

- ^a Lenstra '83
- ^b Cook '71
- ^c De Loera, Hemmecke, Köppe & Weismantel '06
- ^d Matiyasevich '77, Jones '82

One dimensional problem



- compute the zeroes of the derivative of *f* and the boundary of *P*
- evaluate the integer points closest to each such point
- pick the best feasible

Theorem (De Loera, Hemmecke, Köppe & Weismantel '06) min{ $f^4(x) : x \in P \cap \mathbb{Z}^2$ } is NP-hard

Given $a, b, c \in \mathbb{Z}^+$, the following problem is NP-hard (Manders and Adleman, 1978): $\exists x \in \mathbb{Z}^+$ with x < c such that $x^2 \equiv_b a$ $\iff \exists x \in \mathbb{Z}^+, y \in \mathbb{Z}$ with x < c such that $x^2 - a - by = 0$ $\iff \min(x^2 - a - by)^2 = 0$ s.t. $(x, y) \in \mathbb{Z}^2$ $1 \le x \le c - 1$ $\frac{1-a}{b} \le y \le \frac{(c-1)^2 - a}{b}$ Polynomial objective function

$$\min\{f^d(x)\,:\,x\in P\cap\mathbb{Z}^n\}$$

 f^d is a polynomial of degree at most d

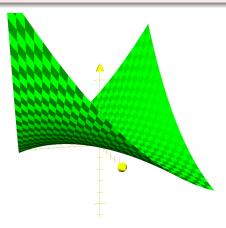
	n = 1	<i>n</i> = 2	<i>n</i> = 58	<i>n</i> fixed	n general
d = 1	Р	Р	Р	Р	NPH
<i>d</i> = 2	Р	Р	?	?	NPH
<i>d</i> = 3	Р	?	?	?	NPH
<i>d</i> = 4	P	NPH	Und	Und	Und

Integer Quadratic Programming in the plane

Theorem (DP & Weismantel '14)

$$\min\{f^2(x)\,:\,x\in P\cap\mathbb{Z}^2\}$$

can be solved in polynomial time



Integer Quadratic Programming and Number Theory

The Pell equation

$$x^2 = dy^2 + 1$$

to be solved in $x, y \in \mathbb{Z}^+$ for a given non-square $d \in \mathbb{Z}^+$ The Pell equation always has a solution, but all its solutions can be of size exponential in the size of d

The Pell equation – bounded version

$$x^2 = dy^2 + 1$$
$$x \le u$$

to be solved in $x, y \in \mathbb{Z}^+$ for given $d, u \in \mathbb{Z}^+$

Integer Quadratic Programming in the plane

Integer Quadratic Programming in the plane (IQP)

min
$$ax^2 + bxy + cy^2 + dx + ey$$

s.t. $(x, y) \in P \cap \mathbb{Z}^2$

- integer coefficients
- *P* is a rational polyhedron in \mathbb{R}^2

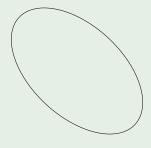
Conic sections

The conic section

$$ax^2 + bxy + cy^2 + dx + ey = \gamma$$

can be classified with the discriminant $\Delta = b^2 - 4ac$

• If $\Delta < 0$, the equation represents an ellipse



Conic sections

The conic section

$$ax^2 + bxy + cy^2 + dx + ey = \gamma$$

can be classified with the discriminant $\Delta = b^2 - 4ac$

• If $\Delta = 0$, the equation represents a parabola

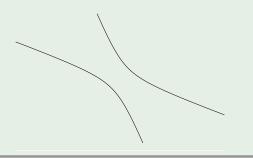
Conic sections

The conic section

$$ax^2 + bxy + cy^2 + dx + ey = \gamma$$

can be classified with the discriminant $\Delta = b^2 - 4ac$

• If $\Delta > 0$, the equation represents a hyperbola

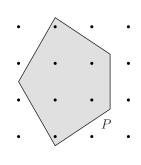


Concave Lemma

Let P be a rational polytope, and let f be quasi-concave on P_I . Then IQP can be solved in polynomial time.

Proof

- We can find the set V of the vertices of P₁ (Hartman, 1989)
- Let \overline{z} be the best vertex, and let $W := \{z \in P : f(z) \ge f(\overline{z})\}$
- $V \subseteq W$
- As W is convex, $P_I = \operatorname{conv} V \subseteq W$



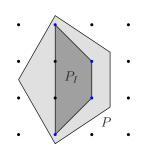
Concave Lemma

Let P be a rational polytope, and let f be quasi-concave on P_I . Then IQP can be solved in polynomial time.

Proof

- We can find the set V of the vertices of P₁ (Hartman, 1989)
- Let \overline{z} be the best vertex, and let $W := \{z \in P : f(z) \ge f(\overline{z})\}$
- $V \subseteq W$

• As W is convex,
$$P_I = \operatorname{conv} V \subseteq W$$

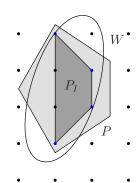


Concave Lemma

Let P be a rational polytope, and let f be quasi-concave on P_I . Then IQP can be solved in polynomial time.

Proof

- We can find the set V of the vertices of P₁ (Hartman, 1989)
- Let \overline{z} be the best vertex, and let $W := \{z \in P : f(z) \ge f(\overline{z})\}$
- $V \subseteq W$
- As W is convex, $P_I = \operatorname{conv} V \subseteq W$



Theorem

Let Y be a convex set defined by polynomial inequalities with integer coefficients. The feasibility problem for $Y \cap \mathbb{Z}^n$ can be solved in polynomial time.

Corollary

Let $g^i(z)$, i = 0, ..., m be quasi-convex polynomials with integer coefficients. Then the following can be solved in polynomial time:

$$\begin{array}{ll} \min & g_0(z) \\ s.t. & g_i(z) \leq 0, \ i = 1, \dots, m \\ & z \in \mathbb{Z}^n \end{array}$$

Proof - case $\Delta \leq 0$

$$\min\{ax^2 + bxy + cy^2 + dx + ey : (x, y) \in P \cap \mathbb{Z}^2\}$$

Case a = c = 0

- As $b^2 \leq 4ac$, it follows that b = 0. Then f is linear
- We can solve IQP in polynomial time (Lenstra, 1983)

Case *a* and *c* are not both zero, wlog $a \neq 0$

$$f(x,y) = a\left(x + \frac{b}{2a}y\right)^2 + \frac{-\Delta}{4a}y^2 + dx + ey$$

- If a > 0, then $-\Delta/4a \ge 0$. Hence f is convex. We can solve IQP in polynomial time (Khachiyan and Porkolab, 2000)
- If a < 0, then $-\Delta/4a \le 0$. Thus f is concave. We can solve IQP in polynomial time (Concave Lemma)

Proof - case $\Delta > 0$

From now on we consider the case a > 0.

f can be rewritten as follows:

$$f(x,y) = a\left(x + \frac{b}{2a}y + \frac{d}{2a}\right)^2 - \frac{\Delta}{4a}\left(y + \frac{bd - 2ae}{\Delta}\right)^2 + \frac{ae^2 + cd^2 - bde}{\Delta}$$

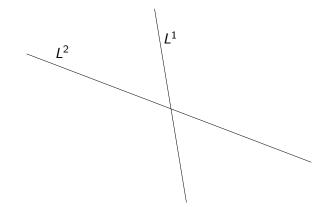
The conic section $f(x,y) = \overline{\gamma}$ is degenerate for

$$\bar{\gamma} = \frac{ae^2 + cd^2 - bde}{\Delta}$$

$$f(x,y) = \overline{\gamma}$$
 if and only if
 $a\left(x + \frac{b}{2a}y + \frac{d}{2a}\right)^2 = \frac{\Delta}{4a}\left(y + \frac{bd - 2ae}{\Delta}\right)^2$

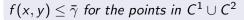
Claim

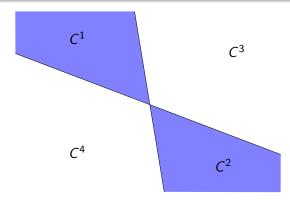
 $f(x, y) = \overline{\gamma}$ for the points in $L^1 \cup L^2$. L^1 and L^2 are not necessarily rational.



L^1 and L^2 subdivide \mathbb{R}^2 into four translated cones C^1 , C^2 , C^3 , C^4 .

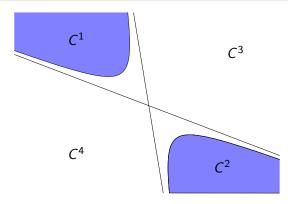
Claim





Claim

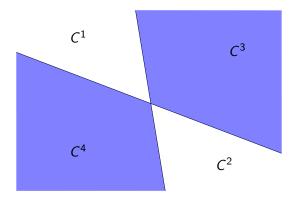
For every $\gamma \leq \overline{\gamma}$, the set of points that satisfy $f(x, y) \leq \gamma$ is the union of two convex sets, one contained in C^1 , and the other contained in C^2 .



f is quasi-convex on C^1 and C^2 .

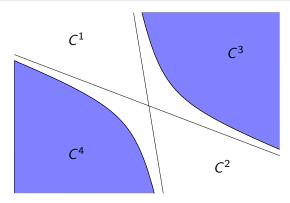
Claim

$f(x,y) \geq \overline{\gamma}$ for the points in $C^3 \cup C^4$.



Claim

For every $\gamma \geq \overline{\gamma}$, the set of points that satisfy $f(x, y) \geq \gamma$ is the union of two convex sets, one contained in C^3 , and the other contained in C^4 .



f is quasi-concave on C^3 and C^4 .

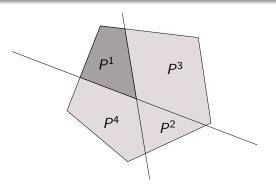
Algorithm

Let $P^i := P \cap C^i$, i = 1, ..., 4.

• Solve IQP over P^1 and over P^2 .

If $(P^1 \cup P^2) \cap \mathbb{Z}^2 \neq \emptyset$, we are done. Otherwise

• solve IQP over P^3 and over P^4



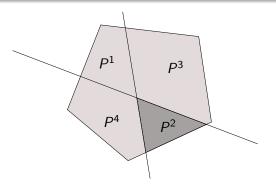
Algorithm

Let $P^i := P \cap C^i$, i = 1, ..., 4.

• Solve IQP over P^1 and over P^2 .

If $(P^1 \cup P^2) \cap \mathbb{Z}^2 \neq \emptyset$, we are done. Otherwise

• solve IQP over P³ and over



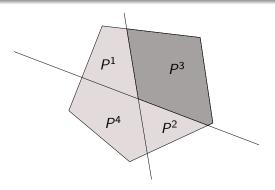
Algorithm

Let $P^i := P \cap C^i$, i = 1, ..., 4.

• Solve IQP over P^1 and over P^2 .

If $(P^1 \cup P^2) \cap \mathbb{Z}^2 \neq \emptyset$, we are done. Otherwise

• solve IQP over P^3 and over P^4 .



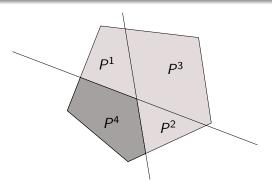
Algorithm

Let $P^i := P \cap C^i$, i = 1, ..., 4.

• Solve IQP over P^1 and over P^2 .

If $(P^1 \cup P^2) \cap \mathbb{Z}^2 \neq \emptyset$, we are done. Otherwise

• solve IQP over P^3 and over P^4 .



Idea

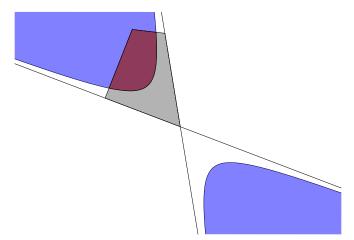
Use Khachiyan & Porkolab's algorithm in a binary search setting.

Theorem

Let Y be a convex set defined by polynomial inequalities with integer coefficients. The feasibility problem for $Y \cap \mathbb{Z}^n$ can be solved in polynomial time.

Proof - region P^1 - feasibility problem

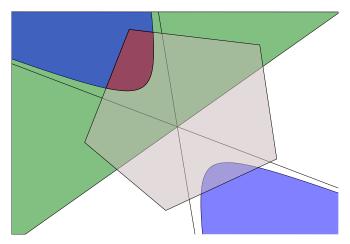
Feasibility problem for $\mathbf{Y} \cap \mathbb{Z}^2$ $\mathbf{Y} = \{(x, y) : f(x, y) \le \gamma\} \cap P^1$



Alberto Del Pia Integer Quadratic Programming in the Plane

Proof - region P^1 - feasibility problem

Feasibility problem for $Y \cap \mathbb{Z}^2$ $Y = \{(x, y) : f(x, y) \le \gamma\} \cap P \cap H$



Bounds for binary search

• Upper bound:
$$\forall (x,y) \in P^1$$
, $f(x,y) \leq \bar{\gamma}$

• Lower bound: We bound separately the monomials in f $l_x := \min\{x : (x, y) \in P\}, u_x := \max\{x : (x, y) \in P\}$ $l_y := \min\{y : (x, y) \in P\}, u_y := \max\{y : (x, y) \in P\}$

$$ax^{2} \geq \min\{0, al_{x}^{2}, au_{x}^{2}\}$$

$$cy^{2} \geq \min\{0, cl_{y}^{2}, cu_{y}^{2}\}$$

$$bxy \geq \min\{bl_{x}l_{y}, bl_{x}u_{y}, bu_{x}l_{y}, bu_{x}u_{y}\}$$

$$dx \geq \min\{dl_{x}, du_{x}\}$$

$$ey \geq \min\{el_{y}, eu_{y}\}$$

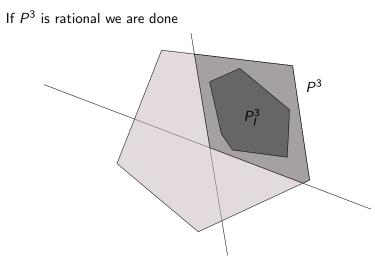
Idea

Use Concave Lemma

Concave Lemma

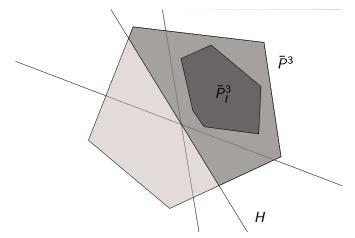
Let \overline{P} be a rational polytope, and let f be quasi-concave on \overline{P}_{I} . Then IQP can be solved in polynomial time.

Proof - region P^3



Proof - region P^3

Otherwise we construct a larger rational polyhedron $\bar{P}^3=P\cap H$



Lower bound for binary search for P^1

Either P^1 is bounded or the lower bound is $\overline{\gamma}$.

Characterization of boundedness of IQP

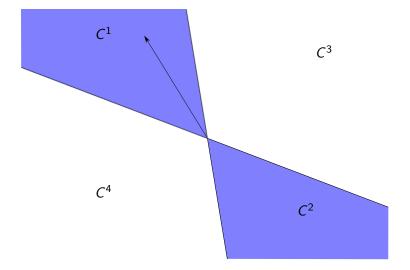
Assume that P contains an integer point.

IQP is unbounded if and only if there exists a nonzero vector \overline{v} in $\mathbb{Z}^2 \cap \operatorname{rec} P$ such that:

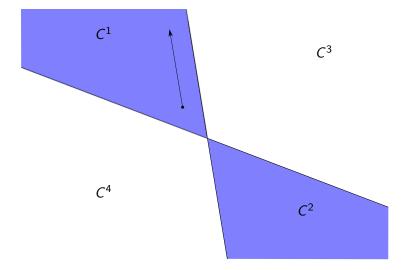
• either
$$aar{v}_x^2 + bar{v}_xar{v}_y + car{v}_y^2 \leq -1$$
,

• or $a\overline{v}_x^2 + b\overline{v}_x\overline{v}_y + c\overline{v}_y^2 = 0$ and there exists $(\overline{x}, \overline{y}) \in \mathbb{Z}^2 \cap P$ such that $(2a\overline{x} + b\overline{y} + d)\overline{v}_x + (b\overline{x} + 2c\overline{y} + e)\overline{v}_y \leq -1$.

Unbounded polyhedron



Unbounded polyhedron



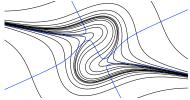
Future directions

	n=1	n=2	n=3	n fixed	n general
d=1	Р	Р	Р	Р	NPH
d=2	Р	Р	?	?	NPH
d=3	Р	?	?	?	NPH
d=4	Р	NPH	NPH	NPH	NPH
d general	Р	NPH	NPH	NPH	NPH

Future directions

- Quadratics in higher dimension? See Santanu's talk!
- Higher degree in the plane? See Robert H.'s talk!

Future directions



More future directions

- Polynomial constraints
- Multilinear functions
- Cutting planes

