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Integer Polynomial Programming

Integer Polynomial Programming

min{f d
0 (x) : f d

i (x) ≤ 0, i ∈ I , x ∈ Zn}

f d
i is a polynomial of degree at most d

n=1 n=2 n=9 n=58 n fixed n general

d=1 P P P P Pa NPHb

d=2 P NPHc NPH Undd Und Und
d=4 P NPH NPH Und Und Und

d=1.6 · 1045 P NPH Undd Und Und Und

a Lenstra ’83
b Cook ’71
c Manders & Adleman ’78
d Matiyasevich ’77, Jones ’82 (Hilbert’s 10th problem, 1900)
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Integer Polynomial Programming

Natural extension of
Integer Linear Programming

Huge modeling power

Wide open field

Hydropower plants

Gas pipeline transportation
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Polynomial objective function

Polynomial objective function

min{f d(x) : x ∈ P ∩ Zn}

f d is a polynomial of degree at most d

n = 1 n = 2 n = 58 n fixed n general

d = 1 P P P Pa NPHb

d = 2 P ? ? ? NPH
d = 3 P ? ? ? NPH
d = 4 P NPHc Undd Und Und

a Lenstra ’83
b Cook ’71
c De Loera, Hemmecke, Köppe & Weismantel ’06
d Matiyasevich ’77, Jones ’82
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One dimensional problem

-4 -3 -2 -1 0 1 2 3 4
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1

2

compute the zeroes of the derivative of f

and the boundary of P

evaluate the integer points closest to each such point

pick the best feasible
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Quartic in the plane: NP-hardness

Theorem (De Loera, Hemmecke, Köppe & Weismantel ’06)

min{f 4(x) : x ∈ P ∩ Z2} is NP-hard

Given a, b, c ∈ Z+, the following problem is NP-hard
(Manders and Adleman, 1978):

⇐⇒

∃x ∈ Z+ with x < c such that x2 ≡b a

⇐⇒ ∃x ∈ Z+, y ∈ Z with x < c such that x2 − a− by = 0

⇐⇒ min(x2 − a− by)2 = 0

⇐⇒

s.t. (x , y) ∈ Z2

⇐⇒ s.t.

1 ≤ x ≤ c − 1

⇐⇒ s.t.

1−a
b ≤ y ≤ (c−1)2−a

b
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Integer Polynomial Programming

Polynomial objective function

min{f d(x) : x ∈ P ∩ Zn}

f d is a polynomial of degree at most d

n = 1 n = 2 n = 58 n fixed n general

d = 1 P P P P NPH
d = 2 P P ? ? NPH
d = 3 P ? ? ? NPH
d = 4 P NPH Und Und Und
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Integer Quadratic Programming in the plane

Theorem (DP & Weismantel ’14)

min{f 2(x) : x ∈ P ∩ Z2}

can be solved in polynomial time
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Integer Quadratic Programming and Number Theory

The Pell equation

x2 = dy2 + 1

to be solved in x , y ∈ Z+ for a given non-square d ∈ Z+

The Pell equation always has a solution, but all its solutions can be
of size exponential in the size of d

The Pell equation – bounded version

x2 = dy2 + 1

x ≤ u

to be solved in x , y ∈ Z+ for given d , u ∈ Z+
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Integer Quadratic Programming in the plane

Integer Quadratic Programming in the plane (IQP)

min ax2 + bxy + cy2 + dx + ey

s.t. (x , y) ∈ P ∩ Z2

integer coefficients

P is a rational polyhedron in R2
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Conic sections

The conic section

ax2 + bxy + cy2 + dx + ey = γ

can be classified with the discriminant ∆ = b2 − 4ac

If ∆ < 0, the equation represents an ellipse
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Conic sections

The conic section

ax2 + bxy + cy2 + dx + ey = γ

can be classified with the discriminant ∆ = b2 − 4ac

If ∆ = 0, the equation represents a parabola
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Conic sections

The conic section

ax2 + bxy + cy2 + dx + ey = γ

can be classified with the discriminant ∆ = b2 − 4ac

If ∆ > 0, the equation represents a hyperbola
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Ingredients – Concave Lemma

Concave Lemma

Let P be a rational polytope, and let f be quasi-concave on PI .
Then IQP can be solved in polynomial time.

Proof

We can find the set V of the vertices
of PI (Hartman, 1989)

Let z̄ be the best vertex, and let
W := {z ∈ P : f (z) ≥ f (z̄)}
V ⊆W

As W is convex, PI = convV ⊆W
P
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Ingredients – Concave Lemma

Concave Lemma

Let P be a rational polytope, and let f be quasi-concave on PI .
Then IQP can be solved in polynomial time.

Proof

We can find the set V of the vertices
of PI (Hartman, 1989)
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As W is convex, PI = convV ⊆W
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W
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Ingredients – Khachiyan & Porkolab ’00

Theorem

Let Y be a convex set defined by polynomial inequalities with
integer coefficients. The feasibility problem for Y ∩ Zn can be
solved in polynomial time.

Corollary

Let g i (z), i = 0, . . . ,m be quasi-convex polynomials with integer
coefficients. Then the following can be solved in polynomial time:

min g0(z)

s.t. gi (z) ≤ 0, i = 1, . . . ,m

z ∈ Zn
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Proof - case ∆ ≤ 0

min{ax2 + bxy + cy2 + dx + ey : (x , y) ∈ P ∩ Z2}

Case a = c = 0

As b2 ≤ 4ac, it follows that b = 0. Then f is linear

We can solve IQP in polynomial time (Lenstra, 1983)

Case a and c are not both zero, wlog a 6= 0

f (x , y) = a
(

x +
b

2a
y
)2

+
−∆

4a
y2 + dx + ey

If a > 0, then −∆/4a ≥ 0. Hence f is convex. We can solve
IQP in polynomial time (Khachiyan and Porkolab, 2000)

If a < 0, then −∆/4a ≤ 0. Thus f is concave. We can solve
IQP in polynomial time (Concave Lemma)
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Proof - case ∆ > 0

From now on we consider the case a > 0.

f can be rewritten as follows:

f (x , y) = a
(

x+
b

2a
y+

d

2a

)2
−∆

4a

(
y+

bd − 2ae

∆

)2
+

ae2 + cd2 − bde

∆

The conic section f (x , y) = γ̄ is degenerate for

γ̄ =
ae2 + cd2 − bde

∆

f (x , y) = γ̄ if and only if

a
(

x +
b

2a
y +

d

2a

)2
=

∆

4a

(
y +

bd − 2ae

∆

)2
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Proof

Claim

f (x , y) = γ̄ for the points in L1 ∪ L2.
L1 and L2 are not necessarily rational.

L1

L2
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Proof

L1 and L2 subdivide R2 into four translated cones C 1, C 2, C 3, C 4.

Claim

f (x , y) ≤ γ̄ for the points in C 1 ∪ C 2

C 1

C 2

C 3

C 4
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Proof

Claim

For every γ ≤ γ̄, the set of points that satisfy f (x , y) ≤ γ is the
union of two convex sets, one contained in C 1, and the other
contained in C 2.

C 1

C 2

C 3

C 4

f is quasi-convex on C 1 and C 2.
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Proof

Claim

f (x , y) ≥ γ̄ for the points in C 3 ∪ C 4.

C 1

C 2

C 3

C 4
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Proof

Claim

For every γ ≥ γ̄, the set of points that satisfy f (x , y) ≥ γ is the
union of two convex sets, one contained in C 3, and the other
contained in C 4.

C 1

C 2

C 3

C 4

f is quasi-concave on C 3 and C 4.
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Proof - algorithm

Algorithm

Let P i := P ∩ C i , i = 1, . . . , 4.

Solve IQP over P1 and over P2.

If (P1 ∪ P2) ∩ Z2 6= ∅, we are done. Otherwise

solve IQP over P3 and over P4.

P1

P2

P3

P4
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Proof - region P1

Idea

Use Khachiyan & Porkolab’s algorithm in a binary search setting.

Theorem

Let Y be a convex set defined by polynomial inequalities with
integer coefficients. The feasibility problem for Y ∩ Zn can be
solved in polynomial time.
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Proof - region P1 - feasibility problem

Feasibility problem for Y ∩ Z2

Y = {(x , y) : f (x , y) ≤ γ} ∩ P1
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Proof - region P1 - feasibility problem

Feasibility problem for Y ∩ Z2

Y = {(x , y) : f (x , y) ≤ γ} ∩ P ∩ H
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Proof - region P1

Bounds for binary search

Upper bound: ∀(x , y) ∈ P1, f (x , y) ≤ γ̄
Lower bound: We bound separately the monomials in f
lx := min{x : (x , y) ∈ P}, ux := max{x : (x , y) ∈ P}
ly := min{y : (x , y) ∈ P}, uy := max{y : (x , y) ∈ P}

ax2 ≥ min{0, al2x , au2
x}

cy2 ≥ min{0, cl2y , cu2
y}

bxy ≥ min{blx ly , blxuy , bux ly , buxuy}
dx ≥ min{dlx , dux}
ey ≥ min{ely , euy}
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Proof - region P3

Idea

Use Concave Lemma

Concave Lemma

Let P̄ be a rational polytope, and let f be quasi-concave on P̄I .
Then IQP can be solved in polynomial time.

Alberto Del Pia Integer Quadratic Programming in the Plane



Proof - region P3

If P3 is rational we are done

P3

P3
I
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Proof - region P3

Otherwise we construct a larger rational polyhedron P̄3 = P ∩ H

P̄3

P̄3
I

H
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Unbounded polyhedron

Lower bound for binary search for P1

Either P1 is bounded or the lower bound is γ̄.

Characterization of boundedness of IQP

Assume that P contains an integer point.
IQP is unbounded if and only if there exists a nonzero vector v̄ in
Z2 ∩ recP such that:

either av̄2
x + bv̄x v̄y + cv̄2

y ≤ −1,

or av̄2
x + bv̄x v̄y + cv̄2

y = 0 and there exists (x̄ , ȳ) ∈ Z2 ∩ P
such that (2ax̄ + bȳ + d)v̄x + (bx̄ + 2cȳ + e)v̄y ≤ −1.
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Unbounded polyhedron

C 1

C 2

C 3

C 4

Alberto Del Pia Integer Quadratic Programming in the Plane



Unbounded polyhedron

C 1

C 2

C 3

C 4
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Future directions

n=1 n=2 n=3 n fixed n general

d=1 P P P P NPH
d=2 P P ? ? NPH
d=3 P ? ? ? NPH
d=4 P NPH NPH NPH NPH

d general P NPH NPH NPH NPH

Future directions

Quadratics in higher dimension? See Santanu’s talk!

Higher degree in the plane? See Robert H.’s talk!
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Future directions

More future directions

Polynomial constraints

Multilinear functions

Cutting planes
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