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mn x'Qx+c'x
st. Ax<b
xe7Z",
We do no assume that x " Qx is convex i.e., Q is not necessarily
positive semi-definite.

Decision Version of IQP
Does there exist x satisfying:

x"Qx+c'x+d < 0
Ax < b F(Q,c,d, A b)
x € 7"

where we assume all the data is rational.
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Main Result

Theorem

LetnmeZ,,. LetQe Q™" ceQ",deQ,Ac Qm",

be QM.

If 7(Q,c,d, A, b)is non-empty, then there exists

x% € F(Q, c,d, A, b) such that the binary encoding size of x° is
bounded from above by a polynomial function of the size of
binary encoding of Q, ¢, d, A, b.

Consequences

1. Integer Quadratic Programming is in NP . In particular, the
decision version of IQP is NP-complete.

2. Broadly speaking, this implies that these exists an algorithm to
solve IQP, i.e. not undecidable.
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Comparison 1: More quadratic inequalities?

Undecidable!
Determing the feasibility of a system with

1. Number of quadratic inequalities: 2 ((528) +58 + 1) = 3424,
2. Number of linear inequalities: 58
3. Number of integer variables: ((528) + 2% 58) =1769.

is Undecidable.
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Undecidable!
Determing the feasibility of a system with

1. Number of quadratic inequalities: 2 ((528) +58 + 1) = 3424,
2. Number of linear inequalities: 58
3. Number of integer variables: ((528) + 2% 58) =1769.

is Undecidable.

Reduction from undecidability of determining the feasibility of a
quartic equation in 58 non-negative integer variables.

[Jones (1982)], See discussion and additional references in [Koppe
(2012)].
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Exponential size solution!

Consider the system for d = 52"*1:
X —dy*+1<0,
X2 +dy—-1<0
X,y € Z.
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Exponential size solution!

Consider the system for d = 5°"':
X —dy*+1<0,
X2 +dy—-1<0
X,y € Z.

1. The binary encoding length of smallest integer solution with
minimal binary encoding length has an encoding length of: Q(5").
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Comparison 2: Two quadratic inequalities?

Exponential size solution!

Consider the system for d = 5°"':

X —dy?+1<0,
X2 +dy—-1<0
X,y € Z.

1. The binary encoding length of smallest integer solution with
minimal binary encoding length has an encoding length of: Q(5").

2. The binary encoding length of instance: ©(n).

[Lagarias (1980)], See discussion and additional references in
[Koppe (2012)]
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Exponential size solution!
Consider the system:

Xy > 2
X > xavje{2,....n}
x € ZVjie{l,...n}.
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Xy > 2
Xj > )92,1\7/6{2,...,”}
X € ZVje{l,... . .n}.

1. The binary encoding length of smallest size solution is: Q(2").
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Exponential size solution!
Consider the system:

Xy > 2
Xj > )92,1\7/6{2,...,”}
X € ZVje{l,... . .n}.

1. The binary encoding length of smallest size solution is: Q(2").
2. The binary encoding length of instance: ©(n).
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In Conclusion...

1. In the presence of exactly one rational quadratic inequality, there
exists “small" poly-size feasible solutions.

20
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1. In the presence of exactly one rational quadratic inequality, there
exists “small" poly-size feasible solutions.

2. With even two inequality, the binary encoding of the smallest
solution may be exponential in size.

3. With “many" inequalities, (a) the problem become undecidables
with general quadratics, or (b) binary encoding of all solutions
may be exponential in size in the convex quadratics case.

24
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Definition: Simplicial cone
A simplicial cone is a cone generated by a simplex.
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Definition: Simplicial cone
A simplicial cone is a cone generated by a simplex.

Proof Steps

1. Step 1: It is sufficient to prove the result where P is a
full-dimensional simplicial cone.
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Proof Outline XT Qx + CTX +d < 0
............ (P)
x e 7'

Definition: Simplicial cone
A simplicial cone is a cone generated by a simplex.

Proof Steps

1. Step 1: It is sufficient to prove the result where P is a
full-dimensional simplicial cone.
— Standard techniques to show Integer linear programming is in NP.
— Carathéodory Theorem.
— Some careful rotation using (poly-size) unimodular matrices.

26
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Proof Outline XT Qx + CTX +d < 0
............ (P)
x e 7'

Definition: Simplicial cone
A simplicial cone is a cone generated by a simplex.

Proof Steps

1. Step 1: It is sufficient to prove the result where P is a
full-dimensional simplicial cone.

— Standard techniques to show Integer linear programming is in NP.
— Carathéodory Theorem.
— Some careful rotation using (poly-size) unimodular matrices.
2. Step 2: Verify the result for the case where P is a full-dimensional
simplicial cone.

27
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x'Qx+c'x+d < 0
Ax < 0
x € 7"

1. {x| Ax < 0} is a simplicial cone.
2. We may assume d > 0.

29
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roaanmngenne. P is @ full-dimensional simplicial cone.
petPia, ey Hoinaro » "Slice " the cone P with a "carefully selected" hyperplane #
> Let x* be a poly-size rational optimal solution to the problem
xTQx* == min x'Qx
st. xePNnH

Accomplishing Step 2

» The quadratic problem min{x " Vx| x € rational polytope} (where
V is a rational matrix) has a rational globally optimal solution of
poly-size with respect to the size of the instance. [Vavasis 1990]

Poly-size
rational

optimal
solution x*

“Carefully
selected”
Hyperplane

kPl
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st. xePnH

Poly-size
rational
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“Carefully
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Hyperplane
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Case 1: x*TQx* <0

Scale and find a solution

24
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Scale and find a solution

1. First scale x* to X so that x ¢ PN Z".

Accomplishing Step 2

25



posmmmsane. Case 1: x*TQx* < 0

Del Pia, Dey, Molinaro

Scale and find a solution

1. First scale x* to X so that x ¢ PN Z".

- T<
— c_X d
Accomplishing Step 2 2 >\ = ’V

x)Tax + T ®Tax -‘
3. Then Ax € PN Z" and
x)" Q) + ¢ (Ax)+d <0.

Poly-size
rational

optimal
solution x*

AN

“Carefully
selected”
Hyperplane

26
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Question: Can x* " Qx* be arbitrarily close to zero?

Accomplishing Step 2
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Del Pia, Dey, Molinaro

Question: Can x* " Qx* be arbitrarily close to zero?

Accomplishing Step 2

1. No. In fact x* " Qx* > L where G < 25°°'*" (Assuming Q is
integral WLOG).

9
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Question: Can x* " Qx* be arbitrarily close to zero?

Accomplishing Step 2

1. No. In fact x* " Qx* > L where G < 25°°'*" (Assuming Q is
integral WLOG).

2. Let x € P and x = AXx where X belongs to slice of P.

x'Qx+c'x+d = Xx'Qx+M x+d

20



Integer Quadratic

Programming is in NP CaSG 2 X* T QX* > O

Del Pia, Dey, Molinaro

Question: Can x* " Qx* be arbitrarily close to zero?

Accomplishing Step 2

1. No. In fact x* " Qx* > L where G < 25°°'*" (Assuming Q is
integral WLOG).

2. Let x € P and x = AXx where X belongs to slice of P.
X' Qx+c'x+d = Nx'Qx+Ac'X+d
1

> )\2§ —Me|M +d

Y

40
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Question: Can x* " Qx* be arbitrarily close to zero?

Accomplishing Step 2

1. No. In fact x* " Qx* > L where G < 25°°'*" (Assuming Q is
integral WLOG).

2. Let x € P and x = AXx where X belongs to slice of P.

X' Qx+c'x+d = Nx'Qx+Ac'X+d
1
> N a MM +d
> 0 for sufficiently large A
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Integer Quadratic

Programming is in NP Case 2 X* T QX* > O

Del Pia, Dey, Molinaro

Question: Can x* " Qx* be arbitrarily close to zero?

Accomplishing Step 2

1. No. Infact x* T Qx* > 1 where G < 25%°°"%" (Assuming Q is
G
integral WLOG).

2. Let x € P and x = AXx where X belongs to slice of P.

X' Qx+c'x+d = Nx'Qx+Ac'X+d
1
> N a MM +d
> 0 for sufficiently large A

Bound size of all potential solution

If [x] > [|x*||c|(R)®and x € P, then x " Qx + ¢"x + d > 0 (Ris the
size of the largest extreme ray of P.).

42
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Accomplishing Step 2
x* such that
X*TQX* = 0

“Carefully
selected”
Hyperplane
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Accomplishing Step 2

x'Qx => 0

c'x<0

44
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Programming is in NP LOOklng around X* o

Del Pia, Dey, Molinaro (XTQX + CTX + d S O)

Accomplishing Step 2

X'Qx => 0 1. Not easy to
bound size
of feasible
solution.

2. Not easy to
find feasible
solution of
small size.

45
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0= min x"Qx
st. x esliceof P

then we need to tread more cautiously ...

46



Integer Quadratic

Programming is in NP SO fal’ We have

Del Pia, Dey, Molinaro

Accomplishing Step 2

0= min x"Qx
st. x esliceof P

then we need to tread more cautiously ...

Lets see one possible approach.

a7
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Del Pia, Dey, Molinaro
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Lemma
Let P be a full-dimensional simplicial cone such that x™ Qx > 0 for
every x € C. Let H be a hyperplane such that P N # is a simplex.
Then there exist a finite family of full-dimensional simple cones C’,
i € I'such that

(@ U, C' =P,
(b) forevery i e I, if aface F of C' satisfies

min{x " Hx : x € FNH} = 0, then there exists an extreme ray v
of F with vT Hv = 0,

(c) forevery i € I, the size of C' is polynomial in the size of P.

48
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Programming is in NP WOI’kIng Wlth One Of these ConeS C

Del Pia, Dey, Molinaro 1 n
1. Chas nextremeraysr',...,r".

2. LetJ C {1,...,n} suchthat (F)"QF = 0foralljc J.
3. xeCnZ" then

Accomplishing Step 2

n
X = Xo +> Py, ez vje{l,...n}
~—~ —
polysize integer point =

4. Using (2) and (3) above:
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Del Pia, Dey, Molinaro 1 n
1. Chas nextremeraysr',...,r".

2. LetJ C {1,...,n} suchthat (F)"QF = 0foralljc J.
3. xeCnZ" then

Accomplishing Step 2

n
X = Xo +> Py, ez vje{l,...n}
~—~ —
polysize integer point =

4. Using (2) and (3) above: For each j € J either

4.1 We can directly construct a small size solution or [y; > 0 in this
solution]

4.2 If a solution exists, then there exist another solution with y; = 0.
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Accomplishing Step 2

Working with one of these cones C

1. Chas nextremeraysr',...,r".
. LetJ C {1,...,n} suchthat (F)"Qrf =0forallje J.
. XECNZ" then

n
X = Xo +> Py, ez vje{l,...n}
~—~ —
polysize integer point =

. Using (2) and (3) above: For each j € J either

4.1 We can directly construct a small size solution or [y; > 0 in this
solution]
4.2 If a solution exists, then there exist another solution with y; = 0.

. If we are not in case (4.1) above for all j € Jthen: lIf x e CNZ

and x"Qx + ¢ x + d < 0, then there exists X € C N Z such that

X=X+ Py, ez vje{l,. .. .np\J.
=1

113
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Programming is in NP WOI’kIng Wlth One Of these ConeS C

Del Pia, Dey, Molinaro 1 n
1. Chas nextremeraysr',...,r".

2. LetJ C {1,...,n} suchthat (F)"QF = 0foralljc J.
3. xeCnZ" then

Accomplishing Step 2

n
X = Xo +> Py, ez vje{l,...n}
polysize integer point

j=1
4. Using (2) and (3) above: For each j € J either
4.1 We can directly construct a small size solution or [y; > 0 in this

solution]
4.2 If a solution exists, then there exist another solution with y; = 0.

5. If we are not in case (4.1) above forall j € Jthen: lf x e CNZ
and x"Qx + ¢ x + d < 0, then there exists X € C N Z such that

X=X+ Py, ez vje{l,. .. .np\J.
=1

6. Finally, using the structure of the cone, (5) implies all the
solutions are bounded, where the bound is polynomial size.

57
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Is Integer Quadratic Programming in P for fixed
dimension?
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