Alberto Del Pia¹ Santanu S. Dey² Marco Molinaro²

¹IBM T. J. Watson Research Center, Yorktown Heights.

²School of Industrial and Systems Engineering, Atlanta

MINLP 2014 Workshop

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

Integer Quadratic Programming is in NP in fixed dimension

Alberto Del Pia¹ Santanu S. Dey² Marco Molinaro²

¹IBM T. J. Watson Research Center, Yorktown Heights.

²School of Industrial and Systems Engineering, Atlanta

MINLP 2014 Workshop

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

Outline

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Introduction and Main Result

Proof Outline Accomplishing Step 2

1 Introduction and Main Result

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Integer Quadratic Program: Definition

Definition (IQP)

min $x^{\top}Qx + c^{\top}x$ s.t. $Ax \le b$ $x \in \mathbb{Z}^n$,

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Integer Quadratic Program: Definition

Definition (IQP)

min $x^{\top}Qx + c^{\top}x$ s.t. $Ax \le b$ $x \in \mathbb{Z}^n$,

・ロト (日本・ヨー・ヨー・ショー・ショー)

We do no assume that $x^{\top}Qx$ is convex i.e., Q is not necessarily positive semi-definite.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Integer Quadratic Program: Definition

Definition (IQP)

min $x^{\top}Qx + c^{\top}x$ s.t. $Ax \le b$ $x \in \mathbb{Z}^n$,

We do no assume that $x^{\top}Qx$ is convex i.e., *Q* is not necessarily positive semi-definite.

Decision Version of IQP

Does there exist *x* satisfying:

$$\left. \begin{array}{ccc} x^\top Q x + c^\top x + d & \leq & 0 \\ A x & \leq & b \\ x & \in & \mathbb{Z}^n, \end{array} \right\} \quad \mathcal{F}(Q,c,d,A,b)$$

・ロト (日本・ヨー・ヨー・ショー・ショー)

where we assume all the data is rational.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Main Result

Theorem

Let $n, m \in \mathbb{Z}_{++}$. Let $Q \in \mathbb{Q}^{n \times n}$, $c \in \mathbb{Q}^n$, $d \in \mathbb{Q}$, $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Main Result

Theorem

Let $n, m \in \mathbb{Z}_{++}$. Let $Q \in \mathbb{Q}^{n \times n}$, $c \in \mathbb{Q}^n$, $d \in \mathbb{Q}$, $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$. If $\mathcal{F}(Q, c, d, A, b)$ is non-empty, then there exists $x^0 \in \mathcal{F}(Q, c, d, A, b)$

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Main Result

<u>Theorem</u> Let $n, m \in \mathbb{Z}_{++}$. Let $Q \in \mathbb{Q}^{n \times n}$, $c \in \mathbb{Q}^n$, $d \in \mathbb{Q}$, $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$. If $\mathcal{F}(Q, c, d, A, b)$ is non-empty, then there exists $x^0 \in \mathcal{F}(Q, c, d, A, b)$ such that the binary encoding size of x^0 is bounded from above by a polynomial function of the size of binary encoding of Q, c, d, A, b.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Main Result

Theorem Let $n, m \in \mathbb{Z}_{++}$. Let $Q \in \mathbb{Q}^{n \times n}$, $c \in \mathbb{Q}^n$, $d \in \mathbb{Q}$, $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$. If $\mathcal{F}(Q, c, d, A, b)$ is non-empty, then there exists $x^0 \in \mathcal{F}(Q, c, d, A, b)$ such that the binary encoding size of x^0 is bounded from above by a polynomial function of the size of binary encoding of Q, c, d, A, b.

Consequences

- 1. Integer Quadratic Programming is in NP . In particular, the decision version of IQP is NP-complete.
- 2. Broadly speaking, this implies that these exists an algorithm to solve IQP, i.e. not undecidable.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Comparison 1: More quadratic inequalities?

Undecidable!

Determing the feasibility of a system with

- 1. Number of quadratic inequalities: $2\left(\binom{58}{2} + 58 + 1\right) = 3424$.
- 2. Number of linear inequalities: 58
- 3. Number of integer variables: $\binom{58}{2} + 2 * 58 = 1769$.

is Undecidable.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Comparison 1: More quadratic inequalities?

Undecidable!

Determing the feasibility of a system with

- 1. Number of quadratic inequalities: $2\left(\binom{58}{2} + 58 + 1\right) = 3424$.
- 2. Number of linear inequalities: 58
- 3. Number of integer variables: $\binom{58}{2} + 2 * 58 = 1769$.

is Undecidable.

Reduction from undecidability of determining the feasibility of a quartic equation in 58 non-negative integer variables.

[Jones (1982)], See discussion and additional references in [Köppe (2012)].

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Comparison 2: Two quadratic inequalities?

Exponential size solution!

Consider the system for $d = 5^{2n+1}$:

$$x^2 - dy^2 + 1 \le 0,$$

 $-x^2 + dy^2 - 1 \le 0$
 $x, y \in \mathbb{Z}.$

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Comparison 2: Two quadratic inequalities?

Exponential size solution!

Consider the system for $d = 5^{2n+1}$:

$$x^2 - dy^2 + 1 \le 0,$$

 $-x^2 + dy^2 - 1 \le 0$
 $x, y \in \mathbb{Z}.$

1. The binary encoding length of smallest integer solution with minimal binary encoding length has an encoding length of: $\Omega(5^n)$.

・ロット (雪) (き) (き)

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Comparison 2: Two quadratic inequalities?

Exponential size solution!

Consider the system for $d = 5^{2n+1}$:

$$x^2 - dy^2 + 1 \le 0,$$

 $-x^2 + dy^2 - 1 \le 0$
 $x, y \in \mathbb{Z}.$

 The binary encoding length of smallest integer solution with minimal binary encoding length has an encoding length of: Ω(5ⁿ).

2. The binary encoding length of instance: $\Theta(n)$.

[Lagarias (1980)], See discussion and additional references in [Köppe (2012)]

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Comparison 3: More convex quadratic inequalities?

Exponential size solution!

Consider the system:

$$\begin{array}{rcl} x_1 & \geq & 2 \\ x_j & \geq & x_{j-1}^2 \ \forall j \in \{2, \ldots, n\} \\ x_j & \in & \mathbb{Z} \ \forall j \in \{1, \ldots, n\}. \end{array}$$

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Comparison 3: More convex quadratic inequalities?

Exponential size solution!

Consider the system:

$$\begin{array}{rcl} x_1 & \geq & 2 \\ x_j & \geq & x_{j-1}^2 \ \forall j \in \{2, \dots, n\} \\ x_j & \in & \mathbb{Z} \ \forall j \in \{1, \dots, n\}. \end{array}$$

1. The binary encoding length of smallest size solution is: $\Omega(2^n)$.

イロン 不得 とくほ とくほう 二日

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Exponential size solution!

Consider the system:

$$\begin{array}{rcl} x_1 & \geq & 2 \\ x_j & \geq & x_{j-1}^2 \ \forall j \in \{2, \ldots, n\} \\ x_j & \in & \mathbb{Z} \ \forall j \in \{1, \ldots, n\}. \end{array}$$

1. The binary encoding length of smallest size solution is: $\Omega(2^n)$.

イロト イポト イヨト イヨト 一日

2. The binary encoding length of instance: $\Theta(n)$.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

In Conclusion...

1. In the presence of exactly one rational quadratic inequality, there exists "small" poly-size feasible solutions.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

In Conclusion...

1. In the presence of exactly one rational quadratic inequality, there exists "small" poly-size feasible solutions.

- 2. With even two inequality, the binary encoding of the smallest solution may be exponential in size.
- 3. With "many" inequalities, (a) the problem become undecidables with general quadratics, or (b) binary encoding of all solutions may be exponential in size in the convex quadratics case.

2 Proof Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step

Overview of the proof

$$\begin{array}{rcl} x^{\top}Qx + c^{\top}x + d & \leq & 0 \\ \hline Ax \leq b & & \dots \\ x & \in & \mathbb{Z}^n \end{array}$$

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Overview of the proof

$$\begin{array}{rcl} x^{\top}Qx + c^{\top}x + d & \leq & 0 \\ \hline Ax \leq b & & \dots \\ x & \in & \mathbb{Z}^n \end{array}$$

Definition: Simplicial cone

A simplicial cone is a cone generated by a simplex.

イロト イポト イヨト イヨト

э

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Overview of the proof

$$\begin{array}{rcl} x^{\top}Qx + c^{\top}x + d & \leq & 0 \\ \hline Ax \leq b & & \dots \\ x & \in & \mathbb{Z}^n \end{array}$$

Definition: Simplicial cone

A simplicial cone is a cone generated by a simplex.

Proof Steps

3

1. Step 1: It is sufficient to prove the result where \mathcal{P} is a full-dimensional simplicial cone.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Overview of the proof

$$\begin{array}{rcl} x^{\top}Qx + c^{\top}x + d & \leq & 0 \\ \hline Ax \leq b & & \dots \\ x & \in & \mathbb{Z}^n \end{array}$$

Definition: Simplicial cone

A simplicial cone is a cone generated by a simplex.

Proof Steps

- 1. Step 1: It is sufficient to prove the result where \mathcal{P} is a full-dimensional simplicial cone.
 - \rightarrow Standard techniques to show Integer linear programming is in NP.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- \rightarrow Carathéodory Theorem.
- \rightarrow Some careful rotation using (poly-size) unimodular matrices.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Overview of the proof

$$\begin{array}{rcl} x^{\top}Qx+c^{\top}x+d &\leq & 0 \\ \hline Ax\leq b & & \dots \\ x &\in & \mathbb{Z}^n \end{array}$$

Definition: Simplicial cone

A simplicial cone is a cone generated by a simplex.

Proof Steps

- 1. Step 1: It is sufficient to prove the result where \mathcal{P} is a full-dimensional simplicial cone.
 - \rightarrow Standard techniques to show Integer linear programming is in NP.
 - \rightarrow Carathéodory Theorem.
 - $\rightarrow\,$ Some careful rotation using (poly-size) unimodular matrices.
- 2. Step 2: Verify the result for the case where \mathcal{P} is a full-dimensional simplicial cone.

2.1 Step 2

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Getting Started

$$\begin{array}{rcl} x^{\top}Qx+c^{\top}x+d &\leq & 0\\ Ax &\leq & 0\\ x &\in & \mathbb{Z}^n \end{array}$$

1. $\{x \mid Ax \leq 0\}$ is a simplicial cone.

2. We may assume d > 0.

ヘロト ヘヨト ヘヨト ヘヨト

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

$\ensuremath{\mathcal{P}}$ is a full-dimensional simplicial cone.

▶ "Slice " the cone \mathcal{P} with a "carefully selected" hyperplane \mathcal{H}

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

$\ensuremath{\mathcal{P}}$ is a full-dimensional simplicial cone.

- \blacktriangleright "Slice " the cone $\mathcal P$ with a "carefully selected" hyperplane $\mathcal H$
- Let x* be a poly-size rational optimal solution to the problem

$$x^{* \top} Q x^{*} := \min x^{\top} Q x$$

s.t. $x \in \mathcal{P} \cap \mathcal{H}$

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

$\ensuremath{\mathcal{P}}$ is a full-dimensional simplicial cone.

- \blacktriangleright "Slice " the cone $\mathcal P$ with a "carefully selected" hyperplane $\mathcal H$
- Let x* be a poly-size rational optimal solution to the problem

$$x^{* \top} Q x^{*} := \min x^{\top} Q x$$

s.t. $x \in \mathcal{P} \cap \mathcal{H}$

The quadratic problem min{x[⊤] Vx | x ∈ rational polytope} (where V is a rational matrix) has a rational globally optimal solution of poly-size with respect to the size of the instance. [Vavasis 1990]

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case analysis based on sign of $x^{*\top}Qx^{*}$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�() ◆

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case 1: $x^{*\top}Qx^{*} < 0$

Scale and find a solution

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case 1: $x^{*\top}Qx^{*} < 0$

Scale and find a solution

1. First scale x^* to \bar{x} so that $\bar{x} \in \mathcal{P} \cap \mathbb{Z}^n$.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case 1: $x^{*\top}Qx^{*} < 0$

Scale and find a solution

1. First scale
$$x^*$$
 to \bar{x} so that $\bar{x} \in \mathcal{P} \cap \mathbb{Z}^n$.
2. $\bar{\lambda} = \left[\left| \frac{c^\top \bar{x}}{(\bar{x})^\top O \bar{x}} \right| + \sqrt{-\frac{d}{(\bar{x})^\top O \bar{x}}} \right]$
3. Then $\lambda \bar{x} \in \mathcal{P} \cap \mathbb{Z}^n$ and
 $(\bar{\lambda} \bar{x})^\top Q(\bar{\lambda} \bar{x}) + c^\top (\bar{\lambda} \bar{x}) + d \leq 0$.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case 2: $x^* T Q x^* > 0$

Question: Can $x^* T Q x^*$ be arbitrarily close to zero?

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case 2:
$$x^* \top Q x^* > 0$$

Question: Can $x^* T Q x^*$ be arbitrarily close to zero?

1. No. In fact $x^* T Q x^* \ge \frac{1}{G^2}$ where $G \le 2^{\text{size of } x^*}$ (Assuming Q is integral WLOG).

・ロト (日本・ヨー・ヨー・ショー・ショー)

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case 2:
$$x^* \top Q x^* > 0$$

Question: Can $x^* T Q x^*$ be arbitrarily close to zero?

- 1. No. In fact $x^{*\top}Qx^* \ge \frac{1}{G^2}$ where $G \le 2^{\text{size of }x^*}$ (Assuming Q is integral WLOG).
- 2. Let $x \in \mathcal{P}$ and $x = \lambda \tilde{x}$ where \tilde{x} belongs to slice of \mathcal{P} .

$$x^{\top}Qx + c^{\top}x + d = \lambda^{2}\tilde{x}^{\top}Q\tilde{x} + \lambda c^{\top}\tilde{x} + d$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case 2:
$$x^* \top Q x^* > 0$$

Question: Can $x^* T Q x^*$ be arbitrarily close to zero?

1. No. In fact $x^{*\top}Qx^* \ge \frac{1}{G^2}$ where $G \le 2^{\text{size of }x^*}$ (Assuming Q is integral WLOG).

2. Let $x \in \mathcal{P}$ and $x = \lambda \tilde{x}$ where \tilde{x} belongs to slice of \mathcal{P} .

$$x^{\top}Qx + c^{\top}x + d = \lambda^{2}\tilde{x}^{\top}Q\tilde{x} + \lambda c^{\top}\tilde{x} + d$$
$$\geq \lambda^{2}\frac{1}{G^{2}} - \lambda \|c\|M + d$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case 2:
$$x^* \top Q x^* > 0$$

Question: Can $x^* T Q x^*$ be arbitrarily close to zero?

1. No. In fact $x^{*\top}Qx^* \ge \frac{1}{G^2}$ where $G \le 2^{\text{size of }x^*}$ (Assuming Q is integral WLOG).

2. Let $x \in \mathcal{P}$ and $x = \lambda \tilde{x}$ where \tilde{x} belongs to slice of \mathcal{P} .

$$\begin{aligned} x^{\top}Qx + c^{\top}x + d &= \lambda^{2}\tilde{x}^{\top}Q\tilde{x} + \lambda c^{\top}\tilde{x} + d \\ &\geq \lambda^{2}\frac{1}{G^{2}} - \lambda \|c\|M + d \\ &> 0 \text{ for sufficiently large } \lambda \end{aligned}$$

イロン 不得 とくほ とくほう 二日

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Case 2:
$$x^{*\top}Qx^{*} > 0$$

Question: Can $x^{*\top}Qx^{*}$ be arbitrarily close to zero?

1. No. In fact $x^{*\top}Qx^* \ge \frac{1}{G^2}$ where $G \le 2^{\text{size of }x^*}$ (Assuming Q is integral WLOG).

2. Let $x \in \mathcal{P}$ and $x = \lambda \tilde{x}$ where \tilde{x} belongs to slice of \mathcal{P} .

$$\begin{aligned} x^{\top}Qx + c^{\top}x + d &= \lambda^{2}\tilde{x}^{\top}Q\tilde{x} + \lambda c^{\top}\tilde{x} + d \\ &\geq \lambda^{2}\frac{1}{G^{2}} - \lambda \|c\|M + d \\ &> 0 \text{ for sufficiently large } \lambda \end{aligned}$$

Bound size of all potential solution

If $||x|| > ||x^*|| ||c|| (R)^3$ and $x \in \mathcal{P}$, then $x^\top Qx + c^\top x + d > 0$ (*R* is the size of the largest extreme ray of \mathcal{P} .).

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Looking around $x^* \dots$

 $(x^{\top}Qx + c^{\top}x + d \leq 0)$

Del Pia, Dey, Molinaro

Accomplishing Step 2

Looking around $x^* \dots$

 $(x^\top Q x + c^\top x + d < 0)$

- 1. Not easy to bound size of feasible solution.
- 2. Not easy to find feasible solution of small size.

э

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

lf

So far we have

$$0 = \min x^T Q x$$

s.t. $x \in \text{slice of } \mathcal{P}$

(ロ) (四) (E) (E) (E) (E)

then we need to tread more cautiously ...

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

lf

So far we have

$$0 = \min x^T Q x$$

s.t. $x \in$ slice of \mathcal{P}

ヘロト ヘヨト ヘヨト ヘヨト

3

then we need to tread more cautiously ...

Lets see one possible approach.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Decomposing ${\mathcal P}$ further

Lemma

Let \mathcal{P} be a full-dimensional simplicial cone such that $x^{\top}Qx \ge 0$ for every $x \in C$. Let \mathcal{H} be a hyperplane such that $\mathcal{P} \cap \mathcal{H}$ is a simplex. Then there exist a finite family of full-dimensional simple cones C^i , $i \in I$ such that

(a)
$$\bigcup_{i\in I} C^i = \mathcal{P},$$

(b) for every $i \in I$, if a face F of C^i satisfies $\min\{x^\top Hx : x \in F \cap \mathcal{H}\} = 0$, then there exists an extreme ray vof F with $v^\top Hv = 0$,

・ロット (雪) (き) (き)

э

(c) for every $i \in I$, the size of C^i is polynomial in the size of \mathcal{P} .

Del Pia, Dey, Molinaro

Accomplishing Step 2

Illustration of Lemma

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Illustration of Lemma

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Working with one of these cones $\ensuremath{\mathcal{C}}$

1. C has *n* extreme rays r^1, \ldots, r^n .

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Working with one of these cones $\ensuremath{\mathcal{C}}$

- 1. C has *n* extreme rays r^1, \ldots, r^n .
- 2. Let $J \subseteq \{1, \ldots, n\}$ such that $(r^j)^\top Qr^j = 0$ for all $j \in J$.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Working with one of these cones \mathcal{C}

1. C has n extreme rays r^1, \ldots, r^n . 2. Let $J \subseteq \{1, \ldots, n\}$ such that $(r^j)^\top Qr^j = 0$ for all $j \in J$. 3. $x \in C \cap \mathbb{Z}^n$, then

$$x = \underbrace{x_0}_{\text{polysize integer point}} + \sum_{j=1}^n r^j y_j, \ y_j \in \mathbb{Z}_+ \ \forall j \in \{1, \dots, n\}.$$

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Working with one of these cones $\ensuremath{\mathcal{C}}$

1. C has n extreme rays r^1, \ldots, r^n . 2. Let $J \subseteq \{1, \ldots, n\}$ such that $(r^j)^\top Qr^j = 0$ for all $j \in J$. 3. $x \in C \cap \mathbb{Z}^n$, then

$$x = \underbrace{x_0}_{\text{polysize integer point}} + \sum_{j=1}^n r^j y_j, \ y_j \in \mathbb{Z}_+ \ \forall j \in \{1, \dots, n\}.$$

4. Using (2) and (3) above:

イロン 不得 とくほ とくほう 二日

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Working with one of these cones \mathcal{C}

1. C has n extreme rays r^1, \ldots, r^n . 2. Let $J \subseteq \{1, \ldots, n\}$ such that $(r^j)^\top Qr^j = 0$ for all $j \in J$. 3. $x \in C \cap \mathbb{Z}^n$, then

$$x = \underbrace{x_0}_{\text{polysize integer point}} + \sum_{j=1}^n r^j y_j, \ y_j \in \mathbb{Z}_+ \ \forall j \in \{1, \dots, n\}.$$

- 4. Using (2) and (3) above: For each $j \in J$ either
 - 4.1 We can directly construct a small size solution or $[y_j > 0$ in this solution]
 - 4.2 If a solution exists, then there exist another solution with $y_i = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Working with one of these cones \mathcal{C}

1. C has n extreme rays r^1, \ldots, r^n . 2. Let $J \subseteq \{1, \ldots, n\}$ such that $(r^j)^\top Qr^j = 0$ for all $j \in J$. 3. $x \in C \cap \mathbb{Z}^n$, then

$$x = \underbrace{x_0}_{\text{polysize integer point}} + \sum_{j=1}^n r^j y_j, \ y_j \in \mathbb{Z}_+ \ \forall j \in \{1, \dots, n\}.$$

- 4. Using (2) and (3) above: For each $j \in J$ either
 - 4.1 We can directly construct a small size solution or $[y_j > 0$ in this solution]
 - 4.2 If a solution exists, then there exist another solution with $y_i = 0$.
- 5. If we are not in case (4.1) above for all $j \in J$ then: If $x \in C \cap \mathbb{Z}$ and $x^{\top}Qx + c^{\top}x + d \leq 0$, then there exists $\tilde{x} \in C \cap \mathbb{Z}$ such that

$$x = x_0 + \sum_{j=1}^n r^j y_j, y_j \in \mathbb{Z}_+ \ \forall j \in \{1, \ldots, n\} \setminus J.$$

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Working with one of these cones $\ensuremath{\mathcal{C}}$

1. *C* has *n* extreme rays r^1, \ldots, r^n . 2. Let $J \subseteq \{1, \ldots, n\}$ such that $(r^j)^\top Qr^j = 0$ for all $j \in J$. 3. $x \in C \cap \mathbb{Z}^n$, then

$$x = \underbrace{x_0}_{\text{polysize integer point}} + \sum_{j=1}^n r^j y_j, \ y_j \in \mathbb{Z}_+ \ \forall j \in \{1, \dots, n\}.$$

- 4. Using (2) and (3) above: For each $j \in J$ either
 - 4.1 We can directly construct a small size solution or $[y_j > 0$ in this solution]
 - 4.2 If a solution exists, then there exist another solution with $y_j = 0$.
- 5. If we are not in case (4.1) above for all $j \in J$ then: If $x \in C \cap \mathbb{Z}$ and $x^{\top}Qx + c^{\top}x + d \leq 0$, then there exists $\tilde{x} \in C \cap \mathbb{Z}$ such that

$$x = x_0 + \sum_{j=1}^n r^j y_j, y_j \in \mathbb{Z}_+ \ \forall j \in \{1, \ldots, n\} \setminus J.$$

6. Finally, using the structure of the cone, (5) implies all the solutions are bounded, where the bound is polynomial size.

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Open Problem

Is Integer Quadratic Programming in P for fixed dimension?

(ロ) (四) (E) (E) (E) (E)

Del Pia, Dey, Molinaro

Introduction and Main Result

Proof Outline

Accomplishing Step 2

Thank You!

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで