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Integer Quadratic Program: Definition

Definition (IQP)

min x>Qx + c>x

s.t. Ax ≤ b

x ∈ Zn,

We do no assume that x>Qx is convex i.e., Q is not necessarily
positive semi-definite.

Decision Version of IQP
Does there exist x satisfying:

x>Qx + c>x + d ≤ 0
Ax ≤ b

x ∈ Zn,

 F(Q, c, d ,A, b)

where we assume all the data is rational.
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Main Result

Theorem
Let n,m ∈ Z++. Let Q ∈ Qn×n, c ∈ Qn, d ∈ Q, A ∈ Qm×n,
b ∈ Qm.

If F(Q, c,d ,A,b) is non-empty, then there exists
x0 ∈ F(Q, c,d ,A,b) such that the binary encoding size of x0 is
bounded from above by a polynomial function of the size of
binary encoding of Q, c, d , A, b.

Consequences

1. Integer Quadratic Programming is in NP . In particular, the
decision version of IQP is NP-complete.

2. Broadly speaking, this implies that these exists an algorithm to
solve IQP, i.e. not undecidable.
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Comparison 1: More quadratic inequalities?

Undecidable!
Determing the feasibility of a system with

1. Number of quadratic inequalities: 2
((58

2

)
+ 58 + 1

)
= 3424.

2. Number of linear inequalities: 58

3. Number of integer variables:
((58

2

)
+ 2 ∗ 58

)
= 1769.

is Undecidable.

Reduction from undecidability of determining the feasibility of a
quartic equation in 58 non-negative integer variables.

[Jones (1982)], See discussion and additional references in [Köppe
(2012)].
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Comparison 2: Two quadratic inequalities?

Exponential size solution!
Consider the system for d = 52n+1:

x2 − dy2 + 1 ≤ 0,

−x2 + dy2 − 1 ≤ 0

x , y ∈ Z.

1. The binary encoding length of smallest integer solution with
minimal binary encoding length has an encoding length of: Ω(5n).

2. The binary encoding length of instance: Θ(n).

[Lagarias (1980)], See discussion and additional references in
[Köppe (2012)]
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Comparison 3: More convex quadratic inequalities?

Exponential size solution!
Consider the system:

x1 ≥ 2

xj ≥ x2
j−1 ∀j ∈ {2, . . . , n}

xj ∈ Z ∀j ∈ {1, . . . , n}.

1. The binary encoding length of smallest size solution is: Ω(2n).

2. The binary encoding length of instance: Θ(n).
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In Conclusion...

1. In the presence of exactly one rational quadratic inequality, there
exists “small" poly-size feasible solutions.

2. With even two inequality, the binary encoding of the smallest
solution may be exponential in size.

3. With “many" inequalities, (a) the problem become undecidables
with general quadratics, or (b) binary encoding of all solutions
may be exponential in size in the convex quadratics case.
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Overview of the proof

x>Qx + c>x + d ≤ 0

Ax ≤ b . . . . . . . . . . . . (P)

x ∈ Zn

Definition: Simplicial cone
A simplicial cone is a cone generated by a simplex.

Proof Steps

1. Step 1: It is sufficient to prove the result where P is a
full-dimensional simplicial cone.
→ Standard techniques to show Integer linear programming is in NP.
→ Carathéodory Theorem.
→ Some careful rotation using (poly-size) unimodular matrices.

2. Step 2: Verify the result for the case where P is a full-dimensional
simplicial cone.
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Getting Started

x>Qx + c>x + d ≤ 0

Ax ≤ 0 . . . . . . . . . . . . (P)

x ∈ Zn

1. {x |Ax ≤ 0} is a simplicial cone.

2. We may assume d > 0.
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P is a full-dimensional simplicial cone.
I "Slice " the cone P with a "carefully selected" hyperplane H

I Let x∗ be a poly-size rational optimal solution to the problem

x∗>Qx∗ := min x>Qx

s.t. x ∈ P ∩H

I The quadratic problem min{x>Vx | x ∈ rational polytope} (where
V is a rational matrix) has a rational globally optimal solution of
poly-size with respect to the size of the instance. [Vavasis 1990]

P
“Carefully 
selected” 
Hyperplane
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Case analysis based on sign of x∗>Qx∗

x∗>Qx∗ := min x>Qx

s.t. x ∈ P ∩H

P
“Carefully 
selected” 
Hyperplane

Poly‐size 
rational 
optimal 
solution x*
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Case 1: x∗>Qx∗ < 0

Scale and find a solution

1. First scale x∗ to x̄ so that x̄ ∈ P ∩ Zn.

2. λ̄ =
⌈∣∣∣ c> x̄

(x̄)>Qx̄

∣∣∣+
√
− d

(x̄)>Qx̄

⌉
3. Then λx̄ ∈ P ∩ Zn and

(λ̄x̄)>Q(λ̄x̄) + c>(λ̄x̄) + d ≤ 0.

P
“Carefully 
selected” 
Hyperplane

Poly‐size 
rational 
optimal 
solution x*

34



Integer Quadratic
Programming is in NP

Del Pia, Dey, Molinaro

Introduction and Main
Result

Proof Outline
Accomplishing Step 2

Case 1: x∗>Qx∗ < 0

Scale and find a solution

1. First scale x∗ to x̄ so that x̄ ∈ P ∩ Zn.

2. λ̄ =
⌈∣∣∣ c> x̄

(x̄)>Qx̄

∣∣∣+
√
− d

(x̄)>Qx̄

⌉
3. Then λx̄ ∈ P ∩ Zn and

(λ̄x̄)>Q(λ̄x̄) + c>(λ̄x̄) + d ≤ 0.

P
“Carefully 
selected” 
Hyperplane

Poly‐size 
rational 
optimal 
solution x*

35



Integer Quadratic
Programming is in NP

Del Pia, Dey, Molinaro

Introduction and Main
Result

Proof Outline
Accomplishing Step 2

Case 1: x∗>Qx∗ < 0

Scale and find a solution

1. First scale x∗ to x̄ so that x̄ ∈ P ∩ Zn.

2. λ̄ =
⌈∣∣∣ c> x̄

(x̄)>Qx̄

∣∣∣+
√
− d

(x̄)>Qx̄

⌉
3. Then λx̄ ∈ P ∩ Zn and

(λ̄x̄)>Q(λ̄x̄) + c>(λ̄x̄) + d ≤ 0.

P
“Carefully 
selected” 
Hyperplane

Poly‐size 
rational 
optimal 
solution x*

36



Integer Quadratic
Programming is in NP

Del Pia, Dey, Molinaro

Introduction and Main
Result

Proof Outline
Accomplishing Step 2

Case 2: x∗>Qx∗ > 0

Question: Can x∗>Qx∗ be arbitrarily close to zero?

1. No. In fact x∗>Qx∗ ≥ 1
G2 where G ≤ 2size of x∗ (Assuming Q is

integral WLOG).

2. Let x ∈ P and x = λx̃ where x̃ belongs to slice of P.

x>Qx + c>x + d = λ2x̃>Qx̃ + λc>x̃ + d

≥ λ2 1
G2 − λ||c||M + d

> 0 for sufficiently large λ

Bound size of all potential solution
If ||x || > ||x∗||||c||(R)3 and x ∈ P, then x>Qx + c>x + d > 0 (R is the
size of the largest extreme ray of P.).
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Case 3: x∗>Qx∗ = 0

P
“Carefully 
selected” 
Hyperplane

x* such that 
x*TQx* = 0
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Looking around x∗ . . .

(x>Qx + c>x + d ≤ 0)

cTx = 0

cTx ≈< 0
xTQx ≈> 0

cTx ≤ 0

1. Not easy to
bound size
of feasible
solution.

2. Not easy to
find feasible
solution of
small size.
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So far we have

If

0 = min xT Qx

s.t. x ∈ slice of P

then we need to tread more cautiously ...

Lets see one possible approach.
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Decomposing P further

Lemma
Let P be a full-dimensional simplicial cone such that x>Qx ≥ 0 for
every x ∈ C. Let H be a hyperplane such that P ∩H is a simplex.
Then there exist a finite family of full-dimensional simple cones C i ,
i ∈ I such that

(a)
⋃

i∈I C i = P,

(b) for every i ∈ I, if a face F of C i satisfies
min{x>Hx : x ∈ F ∩H} = 0, then there exists an extreme ray v
of F with v>Hv = 0,

(c) for every i ∈ I, the size of C i is polynomial in the size of P.
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Working with one of these cones C
1. C has n extreme rays r 1, . . . , r n.

2. Let J ⊆ {1, . . . , n} such that (r j )>Qr j = 0 for all j ∈ J.

3. x ∈ C ∩ Zn, then

x = x0︸︷︷︸
polysize integer point

+
n∑

j=1

r jyj , yj ∈ Z+ ∀j ∈ {1, . . . , n}.

4. Using (2) and (3) above: For each j ∈ J either
4.1 We can directly construct a small size solution or [yj > 0 in this

solution]
4.2 If a solution exists, then there exist another solution with yj = 0.

5. If we are not in case (4.1) above for all j ∈ J then: If x ∈ C ∩ Z
and x>Qx + c>x + d ≤ 0, then there exists x̃ ∈ C ∩ Z such that

x = x0 +
n∑

j=1

r jyj , yj ∈ Z+ ∀j ∈ {1, . . . , n} \ J.

6. Finally, using the structure of the cone, (5) implies all the
solutions are bounded, where the bound is polynomial size.
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Open Problem

Is Integer Quadratic Programming in P for fixed
dimension?
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Thank You!
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