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Scope

Dynamic math optim under uncertainty

A MINLP Branch-and-Fix Coordination: Exact parallel algo
Asynchronous parallel algos:

Fix-and-Relax Coordination
Stochastic Dynamic Programming

Some computational experience for MILP.
Large scale instances

Suggestion for efficiency increasing
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MINLP under uncertainty. Can be done?
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MINLP under uncertainty. Can be done?

Perhaps a strong statement: Stochastic programming
machinery is ready for MILP models. See below some
computational results.

It is possible for MINLP models. Why and what:
First, deterministic MINLP models up to the following #
vars can be solved:

Convex MINLP: 500 (nonconvex: 100)
Convex NLP: 5 × 104 (nonconvex: 100)
Convex SOCP: 105 (nonconvex: 150)
Convex MIQP: 1000 (nonconvex: 300)
Convex QP: 5 × 105 (nonconvex: 300)

Source: MT 2 Mixed Integer Nonlinear Optimization by
Layffer-Linderoth-Luedtke, SIAM OPT’14
(if I took it correctly).

Laureano F. Escudero Universidad Rey Juan Carlos, Mostoles (Madrid), Spain laureano.escudero@urjc.es Joint work w/ Araceli Garin,D-SMINLP



MINLP under uncertainty. Can be done? (c)

Second, some types of MINLP problems exhibit this type of
model:

máx η

s.t. f ξ0 (x , y) ≥ η

f ξi (x , y) ≤ 0 ∀i ∈ I

x ∈ {0,1}n01, yg ∈ R
+nc ,

(1)

where ξ represents the uncertainty in the parameters

and third, exist a broad application field (e.g., stochastic
networks, EGTCEP, SCM, PP),
provided that non-optimal solns are also accepted:

Dynamic models along a horizon
f (x , y) (smooth?) convex functions
non-very high number of 0-1 vars and
non-high number of scenarios to represent parameters’
uncertainty.
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Dynamic math optim under uncertainty

Multistage scenario tree

A stage of a given horizon is a set of consecutive time
units where the realization of the uncertain parameters
takes place.

A scenario is a realization of the uncertain parameters
along the stages of a given horizon.

A scenario group for a given stage is the set of scenarios
with the same realization of the uncertain parameters up to
the stage.
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Figura: Multistage nonsymmetric scenario tree

Laureano F. Escudero Universidad Rey Juan Carlos, Mostoles (Madrid), Spain laureano.escudero@urjc.es Joint work w/ Araceli Garin,D-SMINLP



Notation

T , set of the T stages along the horizon.

Ω, set of scenarios.

G, set of scenario groups, so that we have a directed graph
where G is the set of nodes.

Gt , set of scenario groups in stage t , for t ∈ T (Gt ⊆ G).

Ωg, set of scenarios in group g, for g ∈ G (Ωg ⊆ Ω).

t(g), stage to which scenario group g belongs to, for g ∈ G.

wω, likelihood or weight assigned by the user to scenario
ω ∈ Ω.

wg, weight assigned by modeler to scenario group g ∈ G. It is
computed as wg =

∑
ω∈Ω wω

Ag, set of ancestor nodes (scenario groups) in the scenario
tree to node (scenario) g (including itself), for g ∈ G. Note:
Any scenario group g from last stage is a singleton and,
since ω ∈ Ωg for g ∈ GT , then let us consider g ≡ ω.
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Multistage MINLP DEM: Risk neutral
Compact representation

zRN = máx η

s.t.
∑

g∈G

wgf g
0 (x

g′

, yg′

∀g′ ∈ Ag) ≥ η

f g
i (x

g′

, yg′

∀g′ ∈ Ag) ≤ 0 ∀i ∈ I, g ∈ G

xg ∈ {0,1}nx(g), yg ∈ R
+ny(g) ∀g ∈ G.

(2)
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Scenario clustering as a framework for MINLP
problem solving

Break stage t∗, t∗−decomposition
Number of clusters, |C|,
1 < |C| ≤ |Ω|, |C| MINLP submodels:

If t∗ = 1 then, |C| = 2 cluster
submodels.

If t∗ = 2 then, |C| = 4 cluster
submodels.

If t∗ = 3 then, |C| = 7 cluster
submodels.
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Scenario clustering as a framework for MINLP
problem solving

Break stage t∗, t∗−decomposition
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Scenario clustering as a framework for MINLP
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Scenario clustering as a framework for MINLP
problem solving

Break stage t∗, t∗−decomposition
Number of clusters, |C|,
1 < |C| ≤ |Ω|, |C| MINLP submodels:

If t∗ = 1 then, |C| = 2 cluster
submodels.
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Scenario clustering

Definition

A break stage t∗ is a stage such that the set of scenario
clusters is C = |Gt∗+1|, where t∗ + 1 ∈ T . In this case, any
cluster c ∈ C is induced by a group g ∈ Gt∗+1 and contains all
the scenarios belonging to that group.

Definition

The MINLP scenario cluster submodels are those that result
from the relaxation of the NAC until break stage t∗.

Let set T = T1 ∪ T2, where T1 = {1, ..., t∗} and T2 = T \ T1.
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MINLP submnodel for cluster c ∈ C

zc = máx ηc

s.t.
∑

g∈Gc

wg
c f g

0 (x
g′

c , yg′

c ∀g′ ∈ Ag) ≥ ηc

f g
i (x

g′

c , yg′

c ∀g′ ∈ Ag) ≤ 0 ∀i ∈ I, g ∈ Gc

xg
c ∈ {0,1}nx(g), yg

c ∈ R
+ny(g) ∀g ∈ Gc .

(3)

where wg
c =

∑

ω∈Ωg∩Ωc

wω, such that

wg
c = wg′

being g′ ∈ Gt∗+1 ∩ Gc for g : t(g) ∈ T1, and
wg

c = wg for g : t(g) ∈ T2.

Note: Implicit NAC (compact repr.) for each cluster.
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NAC for linking cluster submodels

xg
c − xg

c′ = 0, yg
c − yg

c′ = 0 ∀c, c′ ∈ Cg , g ∈ Gt , t ∈ T1. (4)

Note: Gc ∩ Gc′ is non-empty for c, c′ ∈ Cg , g ∈ Gt for t ∈ T1

Laureano F. Escudero Universidad Rey Juan Carlos, Mostoles (Madrid), Spain laureano.escudero@urjc.es Joint work w/ Araceli Garin,D-SMINLP



Cluster splitting-compact repr. of DEM MINLP (2)

zRN = máx η

s.t.
∑

c∈C

∑

g∈Gc

wg
c f g

0 (x
g′

c , yg′

c ∀g′ ∈ Ag) ≥ η

f g
i (x

g′

c , yg′

c ∀g′ ∈ Ag) ≤ 0 ∀i ∈ I, g ∈ Gc , c ∈ C

xg
c − xg

c′ = 0, yg
c − yg

c′ = 0 ∀c, c′ ∈ Cg , g ∈ Gt , t ∈ T1

xg
c ∈ {0,1}nx(g), yg

c ∈ R
+ny(g) ∀g ∈ Gc , c ∈ C.

(5)

Branch-and-Fix Coordination (BFC) methodology: Relax from
the model the explicit NAC (splitting variable repr.) between
clusters , but it algorithmically takes care of those NAC for the
x- variables, see LFE-Garı́n-Merino-Pérez COR’10,12.

What about the explicit NAC for the y-variables?
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MINLP under uncertainty. Still it can be possible?

It depends on the modeler-driven value of break stage t∗.
t∗ = 0: Full compact model (2): only one scenario cluster
MINLP model, too big, no NAC relaxation. difficult!
t∗ = T − 1: Full splitting model (5): Singleton scenario
cluster MINLP models, too many NAC (4) on y-variables
up to break stage t∗ to relax in a first shot, risky!.
Best value for t∗: Smallest one such the largest scenario
cluster MINLP model (3) is up to the following # vars:

Convex MINLP: 500 (nonconvex: 100)
Convex NLP: 5 × 104 (nonconvex: 100)
Convex SOCP: 105 (nonconvex: 150)
Convex MIQP: 1000 (nonconvex: 300)
Convex QP: 5 × 105 (nonconvex: 300)

Source: Layffer-Linderoth-Luedtke, SIAM OPT’14.
Reason: The MINLP models (3) ∀c ∈ C can be solved in a
coordinated parallel mode for (algorithmically) satisfying
the NAC (4) on the x-variables that have been relaxed up
to break stage t∗.
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BFC methodoology 1/3

Scenario cluster based Branch-and-Fix (BF) tree is the
Branch-and-Bound tree for a scenario cluster, such that
the optimization of the submodel (3) for any scenario
cluster c ∈ C is performed in a coordinated way with the
submodels for the other clusters.

The BFC algorithm implicitly satisfies the NAC (4) on the x-
and y-variables for the set of stages in set T2, respectively,
by using the engine of choice for solving the MINLP
scenario cluster models themselves (3) at each iteration.

On the other hand, the NAC (4) on the x-variables for the
stages in T1 are relaxed from the original DEM (2), but their
satisfaction is performed algorithmically.

Additionally, the NAC (4) on the y-variables for the stages
in T1 are not considered until a TNF integer set is reached.

Laureano F. Escudero Universidad Rey Juan Carlos, Mostoles (Madrid), Spain laureano.escudero@urjc.es Joint work w/ Araceli Garin,D-SMINLP



BFC methodoology 2/3

Scenario cluster submodels (3) ∀c ∈ C can be solved in a
coordinated serial mode and even having the deterministic
MINLP engine of choice as a ’subroutine’ for the approach.
Better proposal:

Running in coordinated parallel mode the |C| BnC phases
for solving the scenario cluster MINLP submodels (3),
So, imbedding the decomposition scheme into MINLP
solver for strong interfacing between submodels
branching. Then, sharing:

Fixing and bound tightening on the 0-1 x vars and the
continuous y vars for the stages in set T1.
Valid inequalities generation and appending where only
vars for the stages in set T1 are involved.
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BFC methodoology 3/3

The branching on the 0-1 x-variables related to the
scenario groups g ∈ Gt for all stages in set T1 (i.e., stages
up to break stage t∗) should be coordinated while solving
in parallel the |C| MINLP submodels, such that the replicas
(one per each submodel) of each of those x-variables
should be branched in the same direction (either 0 or 1)
to algorithmically satisfying the related NAC (4)

Solution’ feasibility . For each coordinated feasible
solution to the scenario cluster submodels (3) ∀c ∈ C, a
feasible solution for the original RN model (2) could be
obtained by fixing the x-variables to their current 0-1
values, such that the NAC (4) on the y-variables for the
stages in T1 are implicitly satisfied in the resulting NLP
model:
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Solution’ feasibility

z feas
RN = máx η

s.t.
∑

g∈G

wgf g
0 (x

g′

, yg′

∀g′ ∈ Ag) ≥ η

f g
i (x

g′

, yg′

∀g′ ∈ Ag) ≤ 0 ∀i ∈ I, g ∈ G
xg = x̂g ∀g ∈ G

yg ∈ R
+ny(g) ∀g ∈ G.

(6)
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Scope

Dynamic math optim under uncertainty

A MINLP Branch-and-Fix Coordination: Exact parallel algo
Asynchronous parallel algos:

Fix-and-Relax Coordination
Stochastic Dynamic Programming

Some computational experience for MILP.
Large scale instances

Suggestion for efficiency increasing
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Problem #1. Randomly generated instances

BFC-SDC-TC strategy. |PT−1| = 2, |PT | = 4, |T | = 5.

HW/SW: WS Precision T7600, Linux (version
Debian2.6.32-48) with 64 bits, processor Intel(R) Xeon(R)
CPU E5-2630 @ 2.3 GHz, 12 Gb of RAM and 8 threads.

C++ experimental code.

|Ω|=574 (844) scenarios.

P8 (P9): m=22650 (32184) cons, n01=6580 (9390) 0-1
vars, nc=14480 (20550) continuous vars.

Elapsed time: 291 (1208) secs, GG% = 0.13 (<0.01)
optimality gap versus plain use CPLEX.

CPLEX v.12.5 (default options) obtains optimal sol but in 6
hours cannot prove it.

Ref. LFE-Garı́n-Merino-Pérez, submitted 2014.
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Problem #2. Tactical supply chain planning under
uncertainty

Risk averse SDC .
PC with a 2.5 GHz dual-core Intel Core i5 processor, 8 Gb
of RAM and the operating system was OS X 10.9.
Metaheuristic S-SDP (Serial Stochastic Dynamic
Programming) .
P3 (P12): T =7 (10) periods, E=3 (3) stages, Ω=64 (512)
scenarios.
P3 (P12): m=7827 (212544) cons, n01=1408 (36864) 0-1
vars, nc=4653 (124596) continuous vars.
P3 (P12): nprob=544 (1258) MILP subproblems, elapsed
time=610 (6540.56) secs, GG%=1.82 (.) optimality gap
versus plain use CPLEX v.12.5,
CPLEX v12.5: P3 (P12): Elapsed time 17480 secs (> 8
hours).
Ref. LFE-Monge-Romero-Morales, submitted 2014.
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Problem #3. Tactical portfolio planning in the Natural
Gas Supply Chain

Risk neutral .

XPRESS, CPLEX v12.2 failed to find a feas sol in several
hours.

SUN WS, 2.6Ghz, 16Gb RAM, Linux.

BFC-MS.

|Ω|=1000 scenarios, m=98456 cons, n01=34680 0-1 vars,
nc=22221 continuous vars.

Elapsed time = 182 secs.

Optimal soln .

Ref. LFE-Garı́n-Merino-Pérez, COR’12.
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Problem #4. Multi-stage location-assignment problem
under uncertainty

Pure combinatorial model: SLOC .

Risk neutral. Metaheuristic FRC .

HW/SW: Core 2 Duo, 2.60Ghz, 3Gb RAM. C++ v6.0.

CPLEX v12.3 Running out-of-memory at 38705 sec
elapsed time (no soln).

Pilot case: |I| = 15 facilities, |J | = 75 customers, |T | = 4.

|Ω| = 98, m = 203384 cons, n = 175525 0-1 vars.

FRC elapsed time=4040 sec. Optimality GAP = 2.81%.

Ref.
Albareda.Sambola-Alonso.Ayuso-LFE-Fernández-Pizarro,
COR’13.
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Problem #5. Copper extraction planning under
uncertainty in future cooper prices

CPLEX v.12.2 has problems for obtaining optimal soln.
Decomposition approaches are a must.

Many risk averse measures .

Big HW/SW platform: 2 quad-core Xeon E5450.3 3Ghz
64-bit processors with 6Mb of cache each.

|Ω|=45 scenarios, m=480490 cons, n01=167951 0-1 vars,
nc=823 continuous vars.

Elapsed time: from 398 to 29892 secs.

Optimal soln .

Ref. Alonso.Ayuso-Carvallo-LFE-Guiganrd-Pi-Puranmalka-
Weintraub,
EJOR’14.
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Problem #6. Airline Revenue Management

Risk neutral .

PC, 2.33hz, 8.5Gb RAM, Linux.

Continuous model .

Plain CPLEX v9 failed to find a feas sol in several hours.

Metaheuristic SDP .

|Ω|=6561 scenarios, m=2296300 cons, nc=2624400
continuous vars.

Elapsed time = 71 secs.

Optimality GAP=1.22 %.

Ref. LFE-Monge-Romero.Morales-Wang, TS’13.
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Problem #7. Production planning under uncertainty

Serial, Inner, Outer, Outer-Inner asynchronous parallel
metaheuristic SDP (Stochastic Dynamic Programming).
Risk neutral . CPLEX v12.5 for solving independent
scenario cluster MILP subproblems.
MPI: Message Passing Interface.
Big computing cluster, SGI/IZO-SGIker at UPV/EHU, used
16 xeon cores (8 or 12 treads each), 48 Gb each.
T =16 periods, Randomly generated Ω=7766.
P86 (P85): m=5.56 (57.8) M cons, n01=1.41 (15.04) M 0-1
varis, nc=3.49 (38.5) M continuous vars.
P86 (P85): nprob=28997 (5177) MILP subproblems,
elapsed time=978 (26180) secs.
P-SDP: incumbent sol value with GG%=0.16 (.).
Effciency=61.64 (89.15) %.
Plain CPLEX: running out of memory (35Gb) after 8274
secs, sol value with OG%=0.78 (.) optimality gap.
Ref. Aldasoro-LFE-Merino-Pérez, submitted 2014.
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Scope

Dynamic math optim under uncertainty

A MINLP Branch-and-Fix Coordination: Exact parallel algo
Asynchronous parallel algos:

Fix-and-Relax Coordination
Stochastic Dynamic Programming

Some computational experience for MILP.
Large scale instances

Suggestion for efficiency increasing
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Suggestion for efficiency increasing

Imbedding decomposition scheme into MINLP solver.

Running in coordinated parallel mode the BnC phases of
the scenario cluster MINLP submodels (3).
Strong interfacing between submodels branching. So,
sharing:

Fixings and bound tightening on the 0-1 x vars and the
continuous y vars for the stages in set T1.
Valid inequalities generation and appending where only
vars for the stages in set T1 are evolved.
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