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Some Facts about Paper and Recycling
(sources: Valkama, 2007 & Wikipedia)

• Newspapers, journals, books, packing material, hygienic articles,... 
are all made of paper and carton.

• Per year Germany consumes 21 million tons of paper and carton. 
That is, every person consumes ~250kg paper/year.

• Paper is one of the best-recycled products: 15.5 millions tons are reused.
• An increasing rate of today 67% of the fibers come from these sources.



Steps in the Recovered Paper Production
(see Valkama, 2007)

• Recycling fibres from waste paper consists of several steps:
• Manual removal of contaminent materials.
• Hackle paper into small pieces.
• Resolve pieces in water and obtain pulp.
• Clean the pulp from paper clips, plastic materials, and stickies.
• De-ink the pulp.
• The recovered paper suspension (fibres) is layed on grids and dried.
• New paper rolls can now be produced.

• Too many stickies reduce the quality of the recovered paper, and can even 
break the rolls during production.

• Estimated production loss due to stickies: 265 mill. €.



Sticky Sorting in Practice
• Sorters (screeners, separators) come in 

various types and sizes.
• Differences:

• Capacity (amount of pulp per time).
• Sieves (size, slot type and width).
• Max. admissible operating pressure.

feed

accept

reject



The Plug Flow Model
• Each sorter has one inflow feed, 

and two outflows, accept and reject.
• Mass is conserved:                                   .
• Several components (~12) are in the pulp flow; 

we restrict here to two, fibers and stickies.

• The separation efficiency for component     is                    .

The total mass reject loss (the reject rate) is                   .

• Kubát and Steenberg developed in the
1950‘s the plug flow model. According to
their model the coupling                   holds
for each   . Parameters       depend on the 
sorter and the component. They are 
obtained by measurements.
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From Single Sorters to Systems of Sorters
• The sticky-sorter facility consists of 

3-5 sorters and pipelines.
• Several examples of such systems are 

known: 
• feed forward, 
• partial cascade, and 
• full cascade.

• The pulp flow is sent through pipelines 
from one sorter to the next.

• The amount per commodity in the 
total inflow is known.

• The system has a total accept and a 
total reject.

• Goal: maximize stickies in total reject 
and fibers in total accept. 



A Nonlinear Mathematical Model (NLP)
• Sets: pipes    , sorters    , components     .
• Parameters 

• Component             inflow mass:                .
• Pipe from accept/reject of sorter     to inflow of     ?
• Gain/loss per unit of     in total accept/reject:
• Sorter‘s beta parameter vector:

• Variables
• Mass flow of    into/out of sorter   :
• Mass flow to total accept/reject:
• Reject rate of sorter   :

• Constraints
• Mass conservation:
• Plug flow:
• Network topology:

• Objective:
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Including the Topology
• There are many ways to connect the sorters.

• Topological decisions can be taken into the model.
Instead of parameters           and           we introduce a binary variables.
Expressions                       and                       then are also nonlinear.
They have to be linearized again.

• See also Floudas (1987, 1995), Nath, Motard (1981), Nishida, 
Stephanopoulos, Westerberg (1981), Friedler, Tarjan, Huang, Fan (1993), 
Grossmann, Caballero, Yeomans (1999), and many more.

#sorters #topologies
1 1
2 8
3 318
4 26,688
5 3,750,240
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Solving the Model
• We want to obtain global optimal solutions.
• Linear programming based branch-and-bound

methods can find global optimal solutions.
• But: the model is nonlinear, nonconvex.
• Problematic constraints are                                  , 

i.e., plug flow.
• To apply them here, the nonlinear constraints

have to be approximated by piecewise linear ones.
• We implemented several different approaches.
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2d Approximation
• Approximation by triangulation.
• Equidistant (regular):

• Irregular:

• Inclusion into the MIP model by higher-dimensional generalization of 
incremental method (Wilson, 1998) or special ordered sets (Moritz, 
2006).
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Transformation from 2d to 1d
• We transform the 2d nonlinear function into several

1d functions.
• Using an idea of John Napier (1614)... logarithms!
• From                                   we thus obtain

• Introduce new variables                           and replace the
nonlinear constraint                                   by the 
following constraint system:
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Adaptive Linear Approximation
• The previous 1d and 2d methods have some disadvantages in common: 

• The number of location of interpolants is determined beforehand. 
• The locations are selected might be selected in a nonequidistant 

way (i.e., more interpolants where the function is „interesting“, less 
where it is „boring“), but it is not related to the location of the 
optimal solution. 

• No further adaptation takes place, once the MILP solution process 
has been started.

• Solution:
• Start with a coarse linear approximation of the nonlinear function.
• Refine it during the branch-and-bound solution process by spatial 

branching and refined linear approximations.



The Convex Envelope
• Bivariate function                           with                 on 
• Convex envelope (Tawarmalani, Sahinidis 2001, 2002; Benson 2004):
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The Concave Envelope
• Bivariate function                           with                 on 
• Concave envelope (Tawarmalani, Sahinidis 2001, 2002; 

Jach, Michaels, Weismantel 2008; Khagavira, Sahinidis 2013):
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Computational Results
• Objective function:
• Given topology: 

• Optimized topology:
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Runtime Comparison
• SCIP 3.0.1 & SoPlex 1.7.1 on Intel Core i7 CPU @ 2.93 GHz, 16 GB.
• CPU times for different linearization methods:

• 2d (best of: convex, incremental, sos2, logarithmical)
• 37 sec (epsilon = 0.1)
• 15357 sec (epsilon = 0.01)
• - (epsilon = 0.001)

• 1d (best of: convex, incremental, sos2, logarithmical)
• 16 sec (eps = 0.1)
• 89 sec (eps = 0.01)
• 278 sec (eps = 0.001)

• Envelope-cuts & spatial branching
• 5 sec (eps = 0.0001)



Conclusions
• There are many ways to handle nonlinear functions within a branch-

and-cut framework.
• If CPU time matters:

• Never use additional binary variables!
• Never work with a fixed approximation of the nonlinear functions!
• Always compute concave/convex over/underestimators, and 

adaptive refinements during the branch-and-bound search!
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