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ZIB � Fast Algorithms, Fast Computers

Zuse Institute Berlin is a research institute and computing center of the
State of Berlin with research units:

I Numerical Analysis and Modeling

I Visualization and Data Analysis

I Optimization: Energy�Tra�c�Telecommunication�Linear and Nonlinear IP

I Scienti�c Information Systems

I Computer Science and High Performance Computing
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What is SCIP?

SCIP (Solving Constraint Integer Programs) . . .

. integrates

. CP features (domain propagation)

. MIP features (cutting planes, LP relaxation)

. SAT-solving features (con�ict analysis, restarts)

. is a branch-cut-and-price framework

. has an modular structure

. can be extended via plugins

. is free for academic purposes

. and is available in source-code under http://scip.zib.de

. provides a full-scale MIP and MINLP solver
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789 choose 475

Collection of 789 publicly available MINLP instances

. MINLPLib2α: MINLPLib+minlp.org+Bonmin+. . .

Hardware

. Dell PowerEdge M1000e, 48GB RAM, Intel Xeon X5672@3.2GHz

Software

. SCIP 3.1.0.1

. SoPlex 2.0

. Ipopt 3.11.8

. CppAD 20140000.1

475 test instances, 15 settings, 1 hour time limit

. 314 instances not solved by default within 2 hours
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Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, . . .

, time to optimality

. arithmetic average: dominated by large times

. geometric average: weights trivial and hard instances equally

. shifted geometric average: which shift?

Some results are not distinguished by performance pro�les alone:

inst A B

1 10s 2s
2 10s 2s
3 10s 50s
4 10s 50s
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Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, . . . , time to optimality

. arithmetic average: dominated by large times

. geometric average: weights trivial and hard instances equally

. shifted geometric average: which shift?

Some results are not distinguished by performance pro�les alone:
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Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, . . . , time to optimality

. arithmetic average: dominated by large times

. geometric average: weights trivial and hard instances equally

. shifted geometric average: which shift?

Some results are not distinguished by performance pro�les alone:

inst A B

1 10s 2s
2 20s 100s
3 50s 10s
4 100s 500s
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Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

t 7→
µ({tA,i : max{tA,i , tB,i} ≥ t})
µ({tB,i : max{tA,i , tB,i} ≥ t})
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[See also Achterberg and Wunderling 2013]
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Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

t 7→
µ({NA,i : max{tA,i , tB,i} ≥ t})
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Separation

MIP cutting planes

. general: Gomory, cMIR, {0, 12}-cuts, . . .

. problem-speci�c: knapsack, clique,
multi commodity �ow, . . .

Gradient cuts for convex terms

. feasibility enforced without branching

. exploit integer information for univariate
convex terms

Convex underestimators for nonconvex terms

. secant, signed power, McCormick, . . .

Alternative setting: o� during fractional branching
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Separation

0 600 1,200 1,800 2,400 3,000 3,600
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mip cuts o� nonlin sepa o�

all maxtime ≥ 100

setting solved time nodes time nodes

mip cuts o� −39 +65% +107% +333% +395%

nonlin sepa o� −102 +302% +695% +1964% +5569%
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Reformulation

Expression graph reformulation

. decompose into Smith normal form

. identify common terms

. merge expressions, e.g., polynomials
i1

[200,200]

x3

[0,100]

i2

[200,200]

900+c0^2

[40900,40900]

c0

7200+c0^2

[47200,47200]

c0

2960.88+18505.5*c0^2

[7.4e+08,7.4e+08]

c0

-c0c1c3+420.169c2^0.5

[-3.91503e+06,84974]

c3c0 c1

c2

/

[15682.7,15682.7]

c1 c0

0.0471c0c1^0.5

[1906.04,1906.04]

c0

c1

Products with binary variables

. linearize using big-M

x ·
∑

k
akyk with x ∈ {0, 1}

↓
MLx ≤ w ≤ MUx ,∑

k
akyk −MU(1− x) ≤ w ≤

∑
k
akyk −ML(1− x)
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Reformulation

0 600 1,200 1,800 2,400 3,000 3,600
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bin reform o�

all maxtime ≥ 100

setting solved time nodes time nodes

expr reform o� −69 +160% +322% +1386% +3631%

bin reform o� −9 +8% −11% +20% −21%
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Reformulation
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Primal Heuristics

Besides waiting for feasible LP solutions . . .

Standard MIP heuristics applied to MIP relaxation

. rounding, diving, feasibility pump, . . .

NLP local search

. for integer and LP feasible solutions

. �x integers and solve remaining NLP

MINLP heuristics

. NLP diving

. RENS [Berthold 2013]

. Undercover [Berthold and G. 2013]

. . . .

min
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Primal Heuristics

0 600 1,200 1,800 2,400 3,000 3,600
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heur o� only nlp heur aggr

all maxtime ≥ 100

setting solved time nodes time nodes

heur o� −19 +7% +36% +84% +144%

only nlp −11 −4% +22% +33% +22%

heur aggr −2 +27% −4% +28% +86%
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Branching

Reliability (MIP) Inference (CP) VSIDS (SAT)

1. on �fractional� integer vars

2. on vars in violated nonlinear terms

pseudo-cost (GO)

Alternative settings for spatial branching

I inference, most infeasible, random

[See Tawarmalani and Sahinidis 2002, Achterberg and Berthold 2009, Belotti et al. 2009, . . . ]
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Reliability (MIP) Inference (CP) VSIDS (SAT)

1. on �fractional� integer vars

2. on vars in violated nonlinear terms

pseudo-cost (GO)

Alternative settings for spatial branching

I inference, most infeasible, random
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Spatial Branching
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inference most inf random

all maxtime ≥ 100

setting solved time nodes time nodes

inference −27 +31% +34% +167% +176%

most inf −24 +30% +38% +165% +209%

random −24 +30% +28% +145% +130%
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Node selection

Tasks

I improve primal bound

I keep computational e�ort small

I improve global dual bound

Best estimate with plunging

I select node Q with best/minimal
(pseudo cost) estimate value for
feasible solution quality

z̄Q +
∑

k:x̄k fractional

min{Ψ−f −,Ψ+f +}

I plunge

Alternative setting: breadth �rst search
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Con�ict analysis/nogood learning

Analyse reason for pruning a node

I branchings and propagations

I infeasible and bound exceeding
LP relaxation: dual ray heuristic

I derive short nogoods/con�ict
constraints

Use subsequently

I to cut o� other nodes

I to enable further propagations

I for VSIDS in branching

x1 − x3 ≤ 0
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Node selection & con�ict analysis

0 600 1,200 1,800 2,400 3,000 3,600

0
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breadth �rst con�ict o�

all maxtime ≥ 100

setting solved time nodes time nodes

breadth �rst −22 +42% +29% +136% +81%

con�ict o� −2 +2% +9% +11% +27%
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Bound tightening/propagation

Particularly important for nonconvex MINLP

. branching on continuous variables/in�nite domains

. tight domains  tight relaxation

Primal and dual reductions

. reduced cost

. probing on binaries

. FBBT: feasibility-based bound tightening

. OBBT: optimization-based bound tightening
and Lagrangian variable bounds:

min xk

λ2

λ1

xk ≥
∑
i :ri>0

ri`i +
∑
i :ri<0

riui + µz∗ + λTb

[Ryoo and Sahinidis 1996, Belotti et al. 2009, G. and Weltge 2013, . . . ]
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Bound tightening/propagation

0 600 1,200 1,800 2,400 3,000 3,600
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prop o� obbt o�

all maxtime ≥ 100

setting solved time nodes time nodes

prop o� −48 +90% +129% +397% +461%

obbt o� −25 +47% +93% +303% +607%
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Bound tightening/propagation
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all maxtime ≥ 100

setting solved time nodes time nodes

prop o� −48 +90% +129% +332% +378%

obbt o� −25 +47% +93% +198% +396%
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Summary

all maxtime ≥ 100

setting solved time nodes time nodes

nonlin sepa o� −102 +302% +695% +1964% +5569%

expr reform o� −69 +160% +322% +1386% +3631%

prop o� −48 +90% +129% +397% +461%

mip cuts o� −39 +65% +107% +333% +395%

inference branching −27 +31% +34% +167% +176%

obbt o� −25 +47% +93% +303% +607%

most inf branching −24 +30% +38% +165% +209%

random branching −24 +30% +28% +145% +130%

breadth �rst −22 +42% +29% +136% +81%

heur o� −19 +7% +36% +84% +144%

heur only nlp −11 −4% +22% +33% +22%

bin reform o� −9 +8% −11% +20% −21%

heur aggr −2 +27% −4% +28% +86%

con�ict o� −2 +2% +9% +11% +27%
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Take-away messages

. SCIP is a global solver for nonconvex MINLPs

open-source and free for academic research: scip.zib.de

. �ltered performance diagrams

. crucial components

1. nonlinear separation
2. expression graph reformulation

. add-on components

1. propagation
2. MIP cutting planes
3. branching

Thank you very much for your attention!
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