Analyzing the computational impact of individual MINLP solver components

Ambros M. Gleixner

joint work with Stefan Vigerske

Zuse Institute Berlin \cdot MATHEON \cdot Berlin Mathematical School

MINLP 2014, June 4, Carnegie Mellon University

ZIB - Fast Algorithms, Fast Computers

Zuse Institute Berlin is a research institute and computing center of the State of Berlin with research units:

- Numerical Analysis and Modeling
- Visualization and Data Analysis
- Optimization: Energy–Traffic–Telecommunication–Linear and Nonlinear IP
- Scientific Information Systems
- Computer Science and High Performance Computing

SCIP (Solving Constraint Integer Programs)

- integrates
 - CP features (domain propagation)
 - ▷ MIP features (cutting planes, LP relaxation)
 - SAT-solving features (conflict analysis, restarts)
- ▷ is a branch-cut-and-price framework
- has an modular structure
- can be extended via plugins
- is free for academic purposes
- ▷ and is available in source-code under http://scip.zib.de
- provides a full-scale MIP and MINLP solver

Analyzing MINLP solver components

- Benchmarking methodology
- Separation
- Reformulation
- **Primal Heuristics**
- Tree search
- Propagation

Analyzing MINLP solver components

Benchmarking methodology

Separation

Reformulation

Primal Heuristics

Tree search

Propagation

Collection of 789 publicly available MINLP instances

▷ MINLPLib2 α : MINLPLib+minlp.org+Bonmin+...

Hardware

▷ Dell PowerEdge M1000e, 48 GB RAM, Intel Xeon X5672@3.2 GHz

Software

- ▷ SCIP 3.1.0.1
- ▷ SoPlex 2.0
- ▶ lpopt 3.11.8
- ▶ CppAD 20140000.1

475 test instances, 15 settings, 1 hour time limit

▷ 314 instances not solved by default within 2 hours

Instances vary widely in size, nonlinearity, ...

- arithmetic average: dominated by large times
- period geometric average: weights trivial and hard instances equally
- shifted geometric average: which shift?

- arithmetic average: dominated by large times
- geometric average: weights trivial and hard instances equally
- shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

inst	А	В	
1	10s	2s	
2	10s	2s	
3	10s	50s	
4	10s	50s	

- arithmetic average: dominated by large times
- geometric average: weights trivial and hard instances equally
- shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

inst	А	В	
1	5x	1x	
2	5x	1x	
3	1x	5x	
4	1x	5x	

- arithmetic average: dominated by large times
- geometric average: weights trivial and hard instances equally
- shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

inst	А	В	
1	10s	2s	
2	20s	100s	
3	50s	10s	
4	100s	500s	

Gradually exclude instances solved by A and B and compute speedup:

$$t \mapsto \frac{\mu(\{t_{A,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}{\mu(\{t_{B,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}$$

Gradually exclude instances solved by A and B and compute speedup:

$$t \mapsto \frac{\mu(\{t_{A,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}{\mu(\{t_{B,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}$$

[See also Achterberg and Wunderling 2013]

Gradually exclude instances solved by A and B and compute speedup:

$$t \mapsto \frac{\mu(\{N_{A,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}{\mu(\{N_{B,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}$$

[See also Achterberg and Wunderling 2013]

Analyzing MINLP solver components

- Benchmarking methodology
- Separation
- Reformulation
- **Primal Heuristics**
- Tree search
- Propagation

MIP cutting planes

- ▷ general: Gomory, cMIR, $\{0, \frac{1}{2}\}$ -cuts, ...
- problem-specific: knapsack, clique, multi commodity flow, ...

Gradient cuts for convex terms

- b feasibility enforced without branching
- exploit integer information for univariate convex terms

Convex underestimators for nonconvex terms

secant, signed power, McCormick, ...

Alternative setting: off during fractional branching

Separation

		а	II	maxtim	${ m e} \geq 100$
setting	solved	time	nodes	time	nodes
mip cuts off	-39	+65%	+107%	+333%	+395%
nonlin sepa off	-102	+302%	+695%	+1964%	+5569%

Analyzing MINLP solver components

- Benchmarking methodology
- Separation
- Reformulation
- **Primal Heuristics**
- Tree search
- Propagation

Reformulation

Expression graph reformulation

- decompose into Smith normal form
- identify common terms
- ▷ merge expressions, e.g., polynomials

Products with binary variables

linearize using big-M

$$\begin{aligned} x \cdot \sum_{k} a_{k} y_{k} & \text{with} \quad x \in \{0, 1\} \\ \downarrow \\ M^{L} x \leq w \leq M^{U} x, \\ \sum_{k} a_{k} y_{k} - M^{U} (1-x) \leq w \leq \sum_{k} a_{k} y_{k} - M^{L} (1-x) \end{aligned}$$

Reformulation

		а		maxtim	${ m e} \geq 100$
setting	solved	time	nodes	time	nodes
expr reform off	-69	+160%	+322%	+1386%	+3631%
bin reform off	_9	+8%	-11%	+20%	-21%

Analyzing MINLP solver components

- Benchmarking methodology
- Separation
- Reformulation
- **Primal Heuristics**
- Tree search
- Propagation

Besides waiting for feasible LP solutions . . .

Standard MIP heuristics applied to MIP relaxation > rounding, diving, feasibility pump, ...

NLP local search

- for integer and LP feasible solutions
- fix integers and solve remaining NLP

MINLP heuristics

- NLP diving
- RENS [Berthold 2013]
- Undercover [Berthold and G. 2013]

▷...

Primal Heuristics

		а	all		${\sf ne} \ge 100$
setting	solved	time	nodes	time	nodes
heur off	-19	+7%	+36%	+84%	+144%
only nlp	-11	−4%	+22%	+33%	+22%
heur aggr	-2	+27%	-4%	+28%	+86%

Analyzing MINLP solver components

- Benchmarking methodology
- Separation
- Reformulation
- **Primal Heuristics**
- Tree search
- Propagation

Alternative settings for spatial branching

inference, most infeasible, random

[See Tawarmalani and Sahinidis 2002, Achterberg and Berthold 2009, Belotti et al. 2009,]

Spatial Branching

		а	all		${ m ne}\geq 100$
setting	solved	time	nodes	time	nodes
inference	-27	+31%	+34%	+167%	+176%
most inf	-24	+30%	+38%	+165%	+209%
random	-24	+30%	+28%	+145%	+130%

Node selection

Tasks

- improve primal bound
- keep computational effort small
- improve global dual bound

Best estimate with plunging

 select node Q with best/minimal (pseudo cost) estimate value for feasible solution quality

$$ar{z}_Q + \sum_{k:ar{x}_k fractional} \min\{\Psi^- f^-, \Psi^+ f^+\}$$

plunge

Alternative setting: breadth first search

Analyse reason for pruning a node

- branchings and propagations
- infeasible and bound exceeding LP relaxation: dual ray heuristic
- derive short nogoods/conflict constraints

Use subsequently

- to cut off other nodes
- to enable further propagations
- for VSIDS in branching

22

 $x_1-x_3\leq 0$

Node selection & conflict analysis

Analyzing MINLP solver components

- Benchmarking methodology
- Separation
- Reformulation
- **Primal Heuristics**
- Tree search
- Propagation

Particularly important for nonconvex MINLP

- branching on continuous variables/infinite domains
- \triangleright tight domains \rightsquigarrow tight relaxation

Primal and dual reductions

- reduced cost
- probing on binaries
- FBBT: feasibility-based bound tightening
- OBBT: optimization-based bound tightening and Lagrangian variable bounds:

$$x_k \geq \sum_{i:r_i>0} r_i \ell_i + \sum_{i:r_i<0} r_i u_i + \mu z^* + \lambda^T b$$

[Ryoo and Sahinidis 1996, Belotti et al. 2009, G. and Weltge 2013, ...]

Bound tightening/propagation

		i	all	maxtim	${ m e} \geq 100$
setting	solved	time	nodes	time	nodes
prop off	-48	+90%	+129%	+397%	+461%
obbt off	-25	+47%	+93%	+303%	+607%

Bound tightening/propagation

		ä	all	maxtim	maxtime ≥ 100	
setting	solved	time	nodes	time	nodes	
prop off	-48	+90%	+129%	+332%	+378%	
obbt off	-25	+47%	+93%	+198%	+396%	

Summary

		all		maxtime ≥ 100	
setting	solved	time	nodes	time	nodes
nonlin sepa off	-102	+302%	+695%	+1964%	+5569%
expr reform off	-69	+160%	+322%	+1386%	+3631%
prop off	-48	+90%	+129%	+397%	+461%
mip cuts off	-39	+65%	+107%	+333%	+395%
inference branching	-27	+31%	+34%	+167%	+176%
obbt off	-25	+47%	+93%	+303%	+607%
most inf branching	-24	+30%	+38%	+165%	+209%
random branching	-24	+30%	+28%	+145%	+130%
breadth first	-22	+42%	+29%	+136%	+81%
heur off	-19	+7%	+36%	+84%	+144%
heur only nlp	-11	-4%	+22%	+33%	+22%
bin reform off	-9	+8%	-11%	+20%	-21%
heur aggr	-2	+27%	-4%	+28%	+86%
conflict off	-2	+2%	+9%	+11%	+27%

SCIP is a global solver for nonconvex MINLPs open-source and free for academic research: scip.zib.de

- SCIP is a global solver for nonconvex MINLPs open-source and free for academic research: scip.zib.de
- ▷ filtered performance diagrams

- SCIP is a global solver for nonconvex MINLPs open-source and free for academic research: scip.zib.de
- ▷ filtered performance diagrams
- ▷ crucial components
 - 1. nonlinear separation
 - 2. expression graph reformulation

▷ add-on components

- 1. propagation
- 2. MIP cutting planes
- 3. branching

- SCIP is a global solver for nonconvex MINLPs open-source and free for academic research: scip.zib.de
- ▷ filtered performance diagrams
- crucial components
 - 1. nonlinear separation
 - 2. expression graph reformulation

▷ add-on components

- 1. propagation
- 2. MIP cutting planes
- 3. branching

Thank you very much for your attention!