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Cutting Planes for MILP

LP

IP

Cut-off region

The region cut-off by the valid inequality is:

1. Strictly lattice-free

2. Convex
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Generating Cutting Planes Using Lattice Free Sets

• Relaxation minus a strictly lattice-free set gives a tighter relaxation.

Ex:

minus gives

.

• But a convexification step might be necessary:
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Outline

We will show that any valid inequality for P is a t-branch split cut for finite t.

• Chen, Kücükyavuz and Sen (2011) developed the ”cutting tree approach” to show the

same result

– for bounded P , and the number t depends on the data

• We remove dependence on data and the boundedness requirement.

• Our approach is similar to Lenstra’s polynomial time algorithm for MIPs in fixed

dimension.

This also gives a finite cutting-plane algorithm for MIPs

• Del Pia and Weismantel (2010) show the same result using integral lattice-free cuts.

How big is the finite t?

• We construct an example where t grows exponentially with the dimension of P .
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Introduction

Let

P =
{

(x, v) ∈ Zn ×Rk
: Ax+ Cv ≥ d

}
where A,C, d is rational and let PLP denote its continuous relaxation.

Let D = ∪k∈KDk where

Dk = {(x, y) ∈ Rn+l
: A

k
x ≤ bk} for k ∈ K

D is called a disjunction if Zn ×Rl ⊆ D (clearly D = Dx ×Rl)

The disjunctive hull of P with respect to D is

PD = conv
(
P
LP ∩D

)
= conv

( ⋃
k∈K

(P
LP ∩Dk)

)
Notice that PD = conv

(
PLP \ B

)
where B = Rn+l \D and it is strictly lattice-free.
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Split cuts, cross cuts, ...

• A split cut is an inequality valid for PLP \ S:

split cut

split set

• A cross cut is an inequality valid for PLP \ {S1 ∪ S2}:
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Valid inequalities as disjunctive cuts

Let cTx+ dTy ≥ f be a valid inequality for P and

V = {(x, y) ∈ PLP
: c

T
x+ d

T
y < f}.

Clearly V ∩ Zn ×Rl = ∅

Jörg (2007) observes that V x ⊆ int(B) where

• V x ⊂ Rn is the projection of V in the space of the integer variables

• B is a polyhedral lattice-free set defined by rational data

B = {x ∈ Rn
: π

T
i x ≥ γi, i ∈ K}

Therefore cTx+ dTy ≥ f is valid for conv
(
PLP \ int(B̂)

)
⊆ conv

(
PLP \ V̂ x

)
.

Based on this observation, Jörg then argues that

D =
⋃
i∈K

{(x, y) ∈ Rn+l
: π

T
i x ≤ γi}

is a valid disjunction and cTx+ dTy ≥ f can be derived from this disjunction.
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Valid inequalities as multi-branch split cuts

Let πi and γi be integral for i = 1, . . . , t and consider the split sets

S(πi, γi) = {(x, y) ∈ Rn+k
: γi < π

T
i x < γi + 1}

A multi-branch split cut is an inequality valid for PLP \
⋃
i S(πi, γi)

Remember the points cut off by the valid inequality cTx+ dTy ≥ f

V = {(x, y) ∈ PLP
: c

T
x+ d

T
y < f}.

Fact : Let S = ∪Si be a collection of split sets in Rn+k. If V ⊆ S, then

cTx+ dTy ≥ f is a multi-branch split cut obtained from S.

Question : Are all facet defining inequalities t-branch split cuts for finite t?

. (equivalently, can V be covered by a finite number of split sets?)
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Lattice width

• Given a closed, bounded, convex set (or convex body) B ⊆ Rn and a vector c ∈ Zn,

w(B, c) = max{cTx : x ∈ B} −min{cTx : x ∈ B}.
is the lattice width of B along the direction c.

• The lattice width of B is

w(B) = min
c∈Zn\{0}

w(B, c)

(If the set is not closed, we define its lattice width to be the lattice width of its closure)

• Khinchine’s flatness theorem: there exists a function f(·) : Z+ → R+ such that

for any strictly lattice-free bounded convex set B ⊆ Rn,

w(B) ≤ f(n)

where f(·) depends on the dimension of B (not on the complexity of B)

• Lenstra uses this result to construct a finite enumeration tree to solve the integer

feasibility problem.



9

Lattice-free sets in R2

Theorem : [ Hurkens (1990)] If B ∈ R2 is lattice-free, then w(B) ≤ 1+ 2√
3
≈ 2.1547.

Furthermore w(B) = 1 + 2√
3

if and only if B is a triangle with vertices q1, q2, q3 such

that (let q4 := q1)

1
√

3
qi + (1−

1
√

3
) qi+1 = bi, for i = 1, 2, 3.

where bi ∈ Z2 for i = 1, 2, 3.

The lattice-free triangle T when b1 = (0, 0)T , b2 = (0, 1)T , and b3 = (1, 0)T

x1

x2

q1

q2

q3

(this is a type 3 triangle)
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Lattice-free sets in R3

Averkov, Wagner and Weismantel (2011) enumerated all maximal lattice-free bodies in

R3 that are integral. These sets have the lattice width ≤ 3.

A tetrahedron H with lattice width 2 + 2/
√

3 ≈ 3.1547:

s4

s1

s2

s3

q1

q2

q3

← level 2 + 2/
√

3

← level 1

← level 0

where s4 = (0, 0, 2+2/
√

3), and q1, . . . , q3 ∈ R2 are the vertices of Hurken’s triangle.

We can also show that f(3) ≤ 4.25.
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Lattice width of lattice free convex bodies in Rn

• Given a lattice free convex body B ⊆ Rn the lattice width is

w(B) = min
c∈Zn\{0}

w(B, c) ≤ f(n)

• Lenstra (1983) showed that f(n) ≤ 2n
2

• Kannan and Lovász (1988) showed that f(n) ≤ c0(n+ 1)n/2 for some constant c0

(c0 = max{1, 4/c1} where c1 is another constant defined by Bourgain and Milman )

• Banaszczyk, Litvak, Pajor, and Szarek (1999) showed that O(n3/2)

• Rudelson (2000) showed that O(n4/3 logc n) for some constant c.
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Valid inequalities as multi-branch split cuts

Let πi and γi be integral for i = 1, . . . , t and consider the split sets

S(πi, γi) = {(x, y) ∈ Rn+k
: γi < π

T
i x < γi + 1}

A multi-branch split cut is an inequality valid for PLP \
⋃
i S(πi, γi)

Remember the points cut off by the valid inequality cTx+ dTy ≥ f

V = {(x, y) ∈ PLP
: c

T
x+ d

T
y < f}.

Fact : Let S = ∪Si be a collection of split sets in Rn+k. If V ⊆ S, then

cTx+ dTy ≥ f is a multi-branch split cut obtained from S.

Question : Are all facet defining inequalities t-branch split cuts for finite t?

(equivalently, can V be covered by a finite number of split sets?)
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Bounded case

Lemma : Let B be a bounded, strictly lattice-free convex set in Rn. Then B is

contained in the union of at most Πn
k=1(2 + df(k)e) split sets.

Proof : By Khinchine’s flatness result.

• There is an integer vector a ∈ Zn such that f(n) ≥ u− l where

u = max{aTx : x ∈ B} and l = min{aTx : x ∈ B}

• Therefore, B ⊆ {x ∈ Rn : blc ≤ aTx ≤ due}.

• Let U be the collection of the split sets S(a, b) for b ∈ V = {blc , . . . , due − 1}

B \
⋃
b∈V

S(a, b) =
⋃
b∈V̄

{x ∈ B : a
T
x = b}

where V̄ = {dle , . . . , buc}.

• All {x ∈ B : aTx = b} are strictly lattice-free and have dimension at most n− 1

• Repeating the same argument proves the claim.
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Unbounded case

Lemma : Let B be a strictly lattice-free, convex, unbounded set in Rn which is

contained in the interior of a maximal lattice-free convex set. Then B can be covered

by Πn
k=1(2 + df(k)e) split sets.

Proof :

• Let B′ be a maximal lattice free set containing B in its interior.

• Lovász (1989) and Basu, Conforti, Cornuejols, Zambelli (2010) showed that

B
′
= Q+ L

where Q is a polytope and L a rational linear space.

• Let dim(Q) = d and dim(L) = n− d > 0.

• After a unimodular transformation, L = Rn−d

• Use the result for the bounded case and the result follows.
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Combining the two cases

Theorem : Every facet-defining inequality for P is a t-branch split cut for

t = Πn
k=1(2 + df(k)e).

• Let cTx+ dTy ≥ f be valid for conv (P ) but not for PLP ,

• Let V ⊆ Rn+l be the set cut off by cTx+ dTy ≥ f and let V x be its the projection

on the space of the integer variables.

• V x is strictly lattice-free, and is non-empty.

• Jörg (2007) showed that V x is contained in the interior of a lattice-free rational

polyhedron and therefore in the interior of a maximal lattice-free convex set.

• Depending on whether V x is bounded or unbounded, we can use either of the previous

two lemmas to prove the claim.

Note that Jörg’s already observed that every facet-defining inequality is a disjunctive cut.

We show that these inequalities can be derived as structured (t-branch split) disjunctive

cuts.
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Solving mixed-integer programs

Theorem : The mixed-integer program

min{cTx+ d
T
y : (x, y) ∈ Zn ×Rl

, Ax+Gy ≥ b}

where the data is rational, can be solved in finite time via a pure cutting-plane

algorithm which generates only t-branch split cuts.

Proof : Let t = Πn
i=1(2 + df(i)e).

• Represent any t-branch split disjunction D(π1, . . . , πt, γ1, . . . , γt) by v ∈ Z(n+1)t.

• Let Ω = Z(n+1)t and arrange its members in a sequence {Ωi}, (by increasing norm)

• Let Di be the t-branch split disjunction defined by Ωi.

• Any facet-defining inequality of conv (P ), is a t-branch split cut defined by the

disjunction Dk for some (finite) k.

• Let k∗ be the largest index of a disjunction associated with facet-defining inequalities.

• Solve the relaxation of the MIP for Pi = Pi−1 ∩ conv (P0 ∩Di) . for i = 1, 2, . . .

Note: Validity of a given inequality can also be checked by changing the termination

criterion. In addition conv (P ), can also be computed the same way.
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How finite is this algorithm?

Theorem : The mixed-integer program

min{cTx+ d
T
y : (x, y) ∈ Zn ×Rl

, Ax+Gy ≥ b}

where the data is rational, can be solved in finite time via a pure cutting-plane algorithm

which generates only t-branch split cuts.

Proof : The algorithm cannot run forever

Stronger Result: The runtime of this algorithm is bounded.

Proof : The LP relaxation PLP has bounded complexity (number of bits to represent

facets defining inequalities)

⇒ Therefore conv (P ) has bdd complexity.

⇒ Therefore the set of points cut-off by a facet has bdd complexity.

⇒ Therefore the multi-branch disjunction needed to generate a facet has bdd complexity.

⇒ Order the disjunctions in increasing complexity.
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.

Part II

How finite is t?

• We showed that every facet-defining inequality for P is a t-branch split cut for

t = Πn
k=1(2 + df(k)e).

[best know bound f(k) ≤ O(k4/3 logc k) by Rudelson, 2000].

• It is easy to show that t ≥ Ω(n)

• We next show that t ≥ Ω(2n)



19

An exponential bound on t

Theorem : For any n ≥ 3 there exists a nonempty rational mixed-integer

polyhedral set in Zn×R with a facet-defining inequality that cannot be expressed

as a 3× 2n−2-branch split cut.

Proof : .
.

• Construct a full-dimensional rational, lattice-free polytope B ⊂ Rn such that

– Its interior cannot be covered by 3× 2n−2 split sets

– The integer hull of B ⊂ Rn has dimension n

• Define a mixed-integer polyhedral set PB as follows:

PB = {(x, y) ∈ Zn ×R : (x, y) ∈ B′}.

where

B
′
= conv ((B × {−1}) ∪ (B × {0}) ∪ (x̄× {1/2}))

and x̄ is a point in the interior of B.

• y ≤ 0 is a facet-defining inequality for conv (PB)

• To cover

V = {(x, y) ∈ PLP
B : y > 0}

one needs at least (3× 2n−2) split sets.
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How to construct the lattice-free polytope B ⊂ Rn

For ∆ ∈ {0, . . . , 2n−2 − 1}, let T∆ ∈ R2 be a (rational) lattice-free triangle and

cent(T∆) denote its centroid,

Let ∆ =
∑n−2

l=1 δl2
l−1 with δl ∈ {0, 1}

B := conv
(2n−2−1⋃

∆=0

(T∆ ∪ {pε,∆})
)

where

T∆ := {(δ1, . . . , δn−2, x, y)|(x, y) ∈ T∆}
and

pε,∆ := (δ1, . . . , δn−2, cent(T∆)) + ((2δ1 − 1)ε, . . . , (2δn−2 − 1)ε, 0, 0)

(For example, pε,0 = (−ε, . . . ,−ε, x̄, ȳ) where (x̄, ȳ) = cent(T0).)

B has the following properties: (i) it is rational, (ii) it is lattice-free, (iii) it has a

full-dimensional integer hull (iv) it contains T∆ in its interior for all ∆.

(to cover the interior of B, you need to cover all T∆)
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How to construct the triangles T∆

• T0 ∈ R2 is a rational Hurken’s triangle with w(T0) ≥ 2.15 that needs at least 3

split sets to cover.

• For ∆ ∈ {1, . . . , 2n−2 − 1},

T∆ = M∆T0

where M∆ is a 2x2 unimodular matrix with the property that:

* If a split set is useful in covering some T∆, it is not useful for T ′∆ unless ∆ = ∆′

when n = 3

∆=1

0

T1

x

y

∆=0

T
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How to construct the unimodular matrices M∆

1. Useful split sets are finite

For any compact set K ⊂ Rn and any number ε > 0, the collection of split sets

S(a, b) such that vol(K ∩ S(a, b)) ≥ ε is finite.

2. Useful sets are really necessary

For any fixed l ≥ 0, there exists a finite set Σ ⊂ Z2 such that if a collection of l split

sets cover T0, then at least 3 of them are contained in Σ.

3. Bending the triangles

Given any two finite sets of vectors V,W ⊆ Z2 \ {0}, there exists an unimodular

matrix M such that MV ⊆ Z2 \ {0} and MV ∩W = ∅.

Proof : Let q = maxv∈W ||v||∞ then

M =

(
1 µ

µ µ2 + 1

)
where µ = 3q
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thank you...


