Lattice-free sets, multi-branch disjunctions, and mixed-integer programming

Oktay Günlük

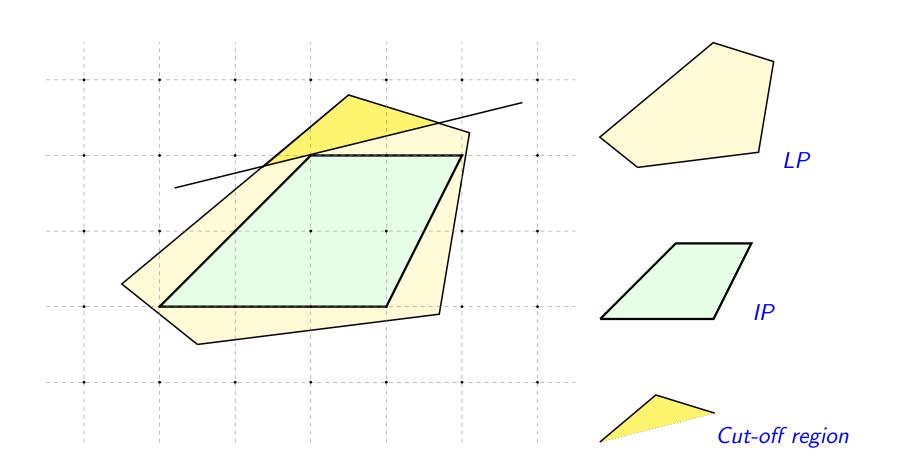
Math Sciences, IBM Research

(joint work with Sanjeeb Dash, Neil Dobbs, Tomasz J. Nowicki, and Grzegorz Świrszcz)

June 2014 – MINLP/CMU

Cutting Planes for MILP

1

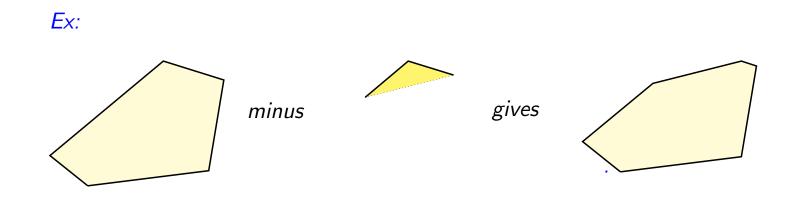


The region cut-off by the valid inequality is:

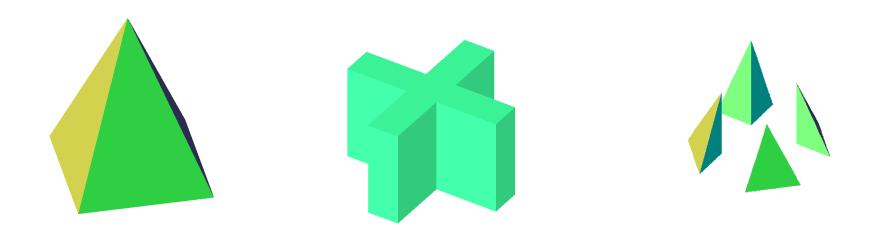
- 1. Strictly lattice-free
- 2. Convex

Generating Cutting Planes Using Lattice Free Sets

• Relaxation minus a strictly lattice-free set gives a tighter relaxation.



• But a convexification step might be necessary:



We will show that any valid inequality for P is a t-branch split cut for finite t.

- Chen, Kücükyavuz and Sen (2011) developed the "cutting tree approach" to show the same result
 - for bounded P, and the number t depends on the data
- We remove dependence on data and the boundedness requirement.
- Our approach is similar to Lenstra's polynomial time algorithm for MIPs in fixed dimension.

This also gives a finite cutting-plane algorithm for MIPs

• Del Pia and Weismantel (2010) show the same result using integral lattice-free cuts.

How big is the finite t?

• We construct an example where t grows exponentially with the dimension of P.

Let

$$P = \left\{ (x, v) \in \mathbb{Z}^n \times \mathbb{R}^k : Ax + Cv \ge d \right\}$$

where A, C, d is rational and let P^{LP} denote its continuous relaxation.

Let $D = \bigcup_{k \in K} D_k$ where

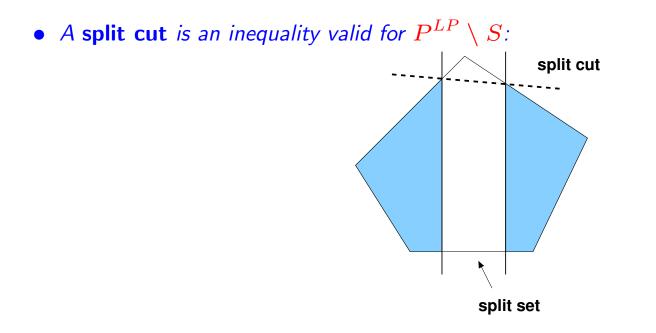
$$D_k = \{(x, y) \in \mathcal{R}^{n+l} : A^k x \le b^k\} \quad \text{for } k \in K$$

D is called a disjunction if $\mathcal{Z}^n \times \mathcal{R}^l \subseteq D$ (clearly $D = D^x \times \mathcal{R}^l$)

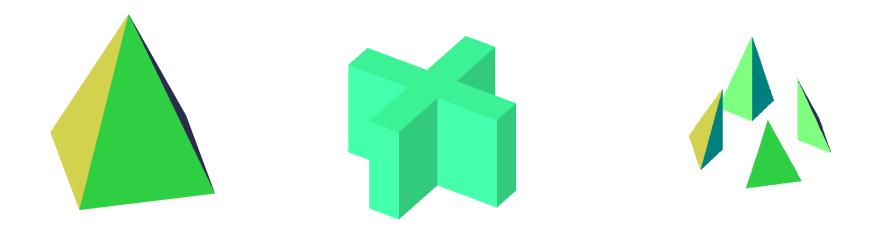
The disjunctive hull of P with respect to D is

$$P_D = \operatorname{conv}\left(P^{LP} \cap D\right) = \operatorname{conv}\left(\bigcup_{k \in K} (P^{LP} \cap D_k)\right)$$

Notice that $P_D = conv(P^{LP} \setminus B)$ where $B = \mathcal{R}^{n+l} \setminus D$ and it is strictly lattice-free.



• A cross cut is an inequality valid for $P^{LP} \setminus \{S_1 \cup S_2\}$:



Let $c^T x + d^T y \ge f$ be a valid inequality for P and

$$V = \{ (x, y) \in P^{LP} : c^T x + d^T y < f \}.$$

Clearly $V \cap \mathcal{Z}^n \times \mathcal{R}^l = \emptyset$

Jörg (2007) observes that $V^x \subseteq int(B)$ where

- $V^x \subset \mathcal{R}^n$ is the projection of V in the space of the integer variables
- B is a polyhedral lattice-free set defined by rational data

$$B = \{ x \in \mathcal{R}^n : \pi_i^T x \ge \gamma_i, i \in K \}$$

Therefore $c^T x + d^T y \ge f$ is valid for $\operatorname{conv}\left(P^{LP} \setminus \operatorname{int}(\hat{B})\right) \subseteq \operatorname{conv}\left(P^{LP} \setminus \hat{V}^x\right)$.

Based on this observation, Jörg then argues that

$$D = \bigcup_{i \in K} \{ (x, y) \in \mathcal{R}^{n+l} : \pi_i^T x \le \gamma_i \}$$

is a valid disjunction and $c^T x + d^T y \ge f$ can be derived from this disjunction.

Let π_i and γ_i be integral for $i = 1, \ldots, t$ and consider the split sets

$$S(\pi_i, \gamma_i) = \{ (x, y) \in \mathcal{R}^{n+k} : \gamma_i < \pi_i^T x < \gamma_i + 1 \}$$

A multi-branch split cut is an inequality valid for $P^{LP} \setminus \bigcup_i S(\pi_i, \gamma_i)$

Remember the points cut off by the valid inequality $c^T x + d^T y \ge f$

$$V = \{ (x, y) \in P^{LP} : c^T x + d^T y < f \}.$$

Fact : Let $S = \bigcup S_i$ be a collection of split sets in \mathbb{R}^{n+k} . If $V \subseteq S$, then $c^T x + d^T y \ge f$ is a multi-branch split cut obtained from S.

Question : Are all facet defining inequalities t-branch split cuts for finite t? . (equivalently, can V be covered by a finite number of split sets?) • Given a closed, bounded, convex set (or convex body) $B \subseteq \mathbb{R}^n$ and a vector $c \in \mathbb{Z}^n$,

$$w(B,c) = \max\{c^T x : x \in B\} - \min\{c^T x : x \in B\}.$$

is the lattice width of B along the direction c.

• The lattice width of B is

$$w(B) = \min_{c \in \mathcal{Z}^n \setminus \{\mathbf{0}\}} w(B, c)$$

(If the set is not closed, we define its lattice width to be the lattice width of its closure)

• Khinchine's flatness theorem: there exists a function $f(\cdot) : \mathbb{Z}_+ \to \mathbb{R}_+$ such that for any strictly lattice-free bounded convex set $B \subseteq \mathbb{R}^n$,

$$w(B) \le f(n)$$

where $f(\cdot)$ depends on the dimension of B (not on the complexity of B)

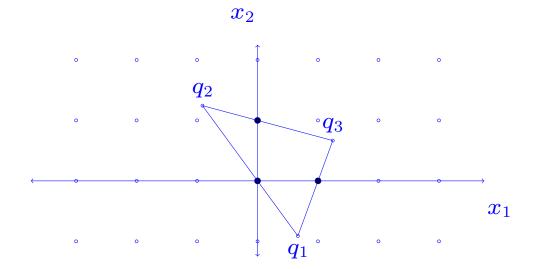
• Lenstra uses this result to construct a finite enumeration tree to solve the integer feasibility problem.

Theorem : [Hurkens (1990)] If $B \in \mathbb{R}^2$ is lattice-free, then $w(B) \leq 1 + \frac{2}{\sqrt{3}} \approx 2.1547$. Furthermore $w(B) = 1 + \frac{2}{\sqrt{3}}$ if and only if B is a triangle with vertices q_1, q_2, q_3 such that (let $q_4 := q_1$)

$$\frac{1}{\sqrt{3}}q_i + (1 - \frac{1}{\sqrt{3}})q_{i+1} = b_i, \text{ for } i = 1, 2, 3.$$

where $b_i \in \mathbb{Z}^2$ for i = 1, 2, 3.

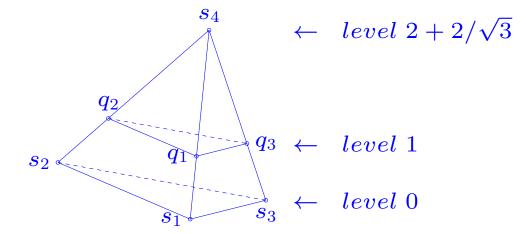
The lattice-free triangle T when $b_1 = (0,0)^T$, $b_2 = (0,1)^T$, and $b_3 = (1,0)^T$



(this is a type 3 triangle)

Averkov, Wagner and Weismantel (2011) enumerated all maximal lattice-free bodies in \mathcal{R}^3 that are integral. These sets have the lattice width ≤ 3 .

A tetrahedron H with lattice width $2 + 2/\sqrt{3} \approx 3.1547$:



where $s_4 = (0, 0, 2 + 2/\sqrt{3})$, and $q_1, \ldots, q_3 \in \mathbb{R}^2$ are the vertices of Hurken's triangle.

We can also show that $f(3) \leq 4.25$.

• Given a lattice free convex body $B \subseteq \mathcal{R}^n$ the lattice width is

$$w(B) = \min_{c \in \mathcal{Z}^n \setminus \{\mathbf{0}\}} w(B, c) \le f(n)$$

- Lenstra (1983) showed that $f(n) \leq 2^{n^2}$
- Kannan and Lovász (1988) showed that $f(n) \le c_0(n+1)n/2$ for some constant c_0 $(c_0 = \max\{1, 4/c_1\}$ where c_1 is another constant defined by Bourgain and Milman)
- Banaszczyk, Litvak, Pajor, and Szarek (1999) showed that $O(n^{3/2})$
- Rudelson (2000) showed that $O(n^{4/3} \log^c n)$ for some constant c.

Let π_i and γ_i be integral for $i = 1, \ldots, t$ and consider the split sets

$$S(\pi_i, \gamma_i) = \{ (x, y) \in \mathcal{R}^{n+k} : \gamma_i < \pi_i^T x < \gamma_i + 1 \}$$

A multi-branch split cut is an inequality valid for $P^{LP} \setminus \bigcup_i S(\pi_i, \gamma_i)$

Remember the points cut off by the valid inequality $c^T x + d^T y \ge f$

$$V = \{ (x, y) \in P^{LP} : c^T x + d^T y < f \}.$$

Fact : Let $S = \bigcup S_i$ be a collection of split sets in \mathbb{R}^{n+k} . If $V \subseteq S$, then $c^T x + d^T y \ge f$ is a multi-branch split cut obtained from S.

Question : Are all facet defining inequalities t-branch split cuts for finite t? (equivalently, can V be covered by a finite number of split sets?)

Lemma : Let B be a bounded, strictly lattice-free convex set in \mathbb{R}^n . Then B is contained in the union of at most $\prod_{k=1}^n (2 + \lceil f(k) \rceil)$ split sets.

Proof : By Khinchine's flatness result.

• There is an integer vector $a \in \mathbb{Z}^n$ such that $f(n) \ge u - l$ where

 $u = \max\{a^T x : x \in B\}$ and $l = \min\{a^T x : x \in B\}$

- Therefore, $B \subseteq \{x \in \mathcal{R}^n : \lfloor l \rfloor \leq a^T x \leq \lceil u \rceil\}.$
- Let U be the collection of the split sets S(a, b) for $b \in V = \{\lfloor l \rfloor, \ldots, \lceil u \rceil 1\}$

$$B \setminus \bigcup_{b \in V} S(a, b) = \bigcup_{b \in \overline{V}} \{ x \in B : a^T x = b \}$$

where $\overline{V} = \{ [l], \ldots, [u] \}.$

- All $\{x \in B : a^T x = b\}$ are strictly lattice-free and have dimension at most n 1
- Repeating the same argument proves the claim.

Lemma : Let *B* be a strictly lattice-free, convex, unbounded set in \mathbb{R}^n which is contained in the interior of a maximal lattice-free convex set. Then *B* can be covered by $\prod_{k=1}^n (2 + \lceil f(k) \rceil)$ split sets.

Proof:

- Let B' be a maximal lattice free set containing B in its interior.
- Lovász (1989) and Basu, Conforti, Cornuejols, Zambelli (2010) showed that

B' = Q + L

where Q is a polytope and L a rational linear space.

- Let dim(Q) = d and dim(L) = n d > 0.
- After a unimodular transformation, $L = \mathcal{R}^{n-d}$
- Use the result for the bounded case and the result follows.

Theorem : Every facet-defining inequality for P is a t-branch split cut for $t = \prod_{k=1}^{n} (2 + \lceil f(k) \rceil).$

- Let $c^T x + d^T y \ge f$ be valid for conv(P) but not for P^{LP} ,
- Let $V \subseteq \mathcal{R}^{n+l}$ be the set cut off by $c^T x + d^T y \ge f$ and let V^x be its the projection on the space of the integer variables.
- V^x is strictly lattice-free, and is non-empty.
- Jörg (2007) showed that V^x is contained in the interior of a lattice-free rational polyhedron and therefore in the interior of a maximal lattice-free convex set.
- Depending on whether V^x is bounded or unbounded, we can use either of the previous two lemmas to prove the claim.

Note that Jörg's already observed that every facet-defining inequality is a disjunctive cut. We show that these inequalities can be derived as structured (t-branch split) disjunctive cuts.

Theorem : The mixed-integer program

$$\min\{c^T x + d^T y : (x, y) \in \mathcal{Z}^n \times \mathcal{R}^l, Ax + Gy \ge b\}$$

where the data is rational, can be solved in finite time via a pure cutting-plane algorithm which generates only t-branch split cuts.

Proof : Let $t = \prod_{i=1}^{n} (2 + \lceil f(i) \rceil)$.

- Represent any t-branch split disjunction $D(\pi_1, \ldots, \pi_t, \gamma_1, \ldots, \gamma_t)$ by $v \in \mathcal{Z}^{(n+1)t}$.
- Let $\Omega = Z^{(n+1)t}$ and arrange its members in a sequence $\{\Omega_i\}$, (by increasing norm)
- Let D_i be the t-branch split disjunction defined by Ω_i .
- Any facet-defining inequality of conv(P), is a t-branch split cut defined by the disjunction D_k for some (finite) k.
- Let k^* be the largest index of a disjunction associated with facet-defining inequalities.
- Solve the relaxation of the MIP for $P_i = P_{i-1} \cap conv(P_0 \cap D_i)$. for $i = 1, 2, ... \blacksquare$

Note: Validity of a given inequality can also be checked by changing the termination criterion. In addition conv(P), can also be computed the same way.

Theorem : The mixed-integer program

 $\min\{c^T x + d^T y : (x, y) \in \mathbb{Z}^n \times \mathbb{R}^l, Ax + Gy \ge b\}$

where the data is rational, can be solved in finite time via a pure cutting-plane algorithm which generates only t-branch split cuts.

Proof : The algorithm cannot run forever

Stronger Result: The runtime of this algorithm is bounded.

Proof : The LP relaxation P^{LP} has bounded complexity (number of bits to represent facets defining inequalities)

- \Rightarrow Therefore conv (P) has bdd complexity.
- \Rightarrow Therefore the set of points cut-off by a facet has bdd complexity.
- ⇒ Therefore the multi-branch disjunction needed to generate a facet has bdd complexity.
- \Rightarrow Order the disjunctions in increasing complexity.

Part II

.

How finite is t?

- We showed that every facet-defining inequality for P is a t-branch split cut for $t = \prod_{k=1}^{n} (2 + \lceil f(k) \rceil).$ [best know bound $f(k) \leq O(k^{4/3} \log^c k)$ by Rudelson, 2000].
- It is easy to show that $t \ge \Omega(n)$
- We next show that $t \ge \Omega(2^n)$

Theorem : For any $n \ge 3$ there exists a nonempty rational mixed-integer polyhedral set in $\mathbb{Z}^n \times \mathbb{R}$ with a facet-defining inequality that cannot be expressed as a $3 \times 2^{n-2}$ -branch split cut.

Proof : .

- Construct a full-dimensional rational, lattice-free polytope $B \subset \mathcal{R}^n$ such that
 - Its interior cannot be covered by $3 \times 2^{n-2}$ split sets
 - The integer hull of $B \subset \mathcal{R}^n$ has dimension n
- Define a mixed-integer polyhedral set P_B as follows:

$$P_B = \{ (x, y) \in \mathcal{Z}^n \times \mathcal{R} : (x, y) \in B' \}.$$

where

$$B' = \operatorname{conv} \left((B \times \{-1\}) \cup (B \times \{0\}) \cup (\bar{x} \times \{1/2\}) \right)$$

and \bar{x} is a point in the interior of B.

- $y \leq 0$ is a facet-defining inequality for $conv(P_B)$
- To cover

$$V = \{(x, y) \in P_B^{LP} : y > 0\}$$
 one needs at least $(3 \times 2^{n-2})$ split sets.

20

For $\Delta \in \{0, \ldots, 2^{n-2} - 1\}$, let $T_{\Delta} \in \mathcal{R}^2$ be a (rational) lattice-free triangle and $\operatorname{cent}(T_{\Delta})$ denote its centroid,

Let $\Delta = \sum_{l=1}^{n-2} \delta_l 2^{l-1}$ with $\delta_l \in \{0,1\}$

$$B := \mathit{conv} \Big(igcup_{\Delta=0}^{2^{n-2}-1} (\mathbf{T}_\Delta \cup \{p_{arepsilon,\Delta}\}) \Big)$$

where

$$\mathbf{T}_{\Delta} := \{(\delta_1, \ldots, \delta_{n-2}, x, y) | (x, y) \in T_{\Delta}\}$$

and

$$p_{\varepsilon,\Delta} := (\delta_1, \dots, \delta_{n-2}, \operatorname{cent}(T_\Delta)) + ((2\delta_1 - 1)\varepsilon, \dots, (2\delta_{n-2} - 1)\varepsilon, 0, 0)$$

(For example, $p_{\varepsilon,0} = (-\varepsilon, \ldots, -\varepsilon, \bar{x}, \bar{y})$ where $(\bar{x}, \bar{y}) = \operatorname{cent}(T_0)$.)

B has the following properties: (i) it is rational, (ii) it is lattice-free, (iii) it has a full-dimensional integer hull (iv) it contains \mathbf{T}_{Δ} in its interior for all Δ .

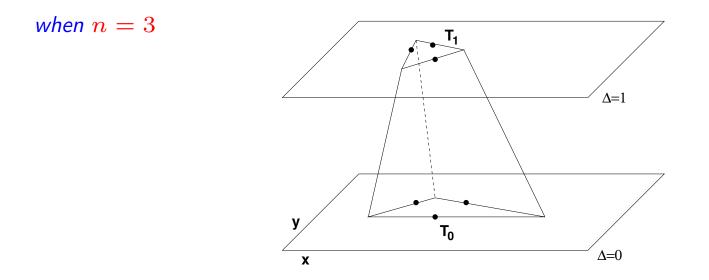
(to cover the interior of B, you need to cover all \mathbf{T}_{Δ})

- $\mathbf{T}_0 \in \mathcal{R}^2$ is a rational Hurken's triangle with $w(\mathbf{T}_0) \geq 2.15$ that needs at least 3 split sets to cover.
- For $\Delta \in \{1, \dots, 2^{n-2} 1\}$,

$$T_{\Delta} = M_{\Delta} \mathbf{T}_0$$

where M_{Δ} is a 2x2 unimodular matrix with the property that:

* If a split set is useful in covering some T_Δ , it is not useful for T'_Δ unless $\Delta=\Delta'$



1. Useful split sets are finite

For any compact set $K \subset \mathbb{R}^n$ and any number $\varepsilon > 0$, the collection of split sets S(a, b) such that $vol(K \cap S(a, b)) \ge \varepsilon$ is finite.

2. Useful sets are really necessary

For any fixed $l \ge 0$, there exists a finite set $\Sigma \subset \mathbb{Z}^2$ such that if a collection of l split sets cover \mathbf{T}_0 , then at least 3 of them are contained in Σ .

3. Bending the triangles

Given any two finite sets of vectors $V, W \subseteq \mathbb{Z}^2 \setminus \{\mathbf{0}\}$, there exists an unimodular matrix M such that $MV \subseteq \mathbb{Z}^2 \setminus \{\mathbf{0}\}$ and $MV \cap W = \emptyset$.

Proof : Let $q = \max_{v \in W} ||v||_{\infty}$ then

$$M = \begin{pmatrix} 1 & \mu \\ \mu & \mu^2 + 1 \end{pmatrix} \text{ where } \mu = 3q$$

thank you...