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Cutting Planes for MILP

- Cut-off region

The region cut-off by the valid inequality is:

1. Strictly lattice-free

2. Convex



Generating Cutting Planes Using Lattice Free Sets

e Relaxation minus a strictly lattice-free set gives a tighter relaxation.

Ex:

minus gives

e But a convexification step might be necessary:




QOutline

We will show that any valid inequality for P is a t-branch split cut for finite .
e Chen, Kiiciikyavuz and Sen (2011) developed the " cutting tree approach” to show the

same result
— for bounded P, and the number t depends on the data

e |We remove dependence on data and the boundedness requirement.

e Qur approach is similar to Lenstra’s polynomial time algorithm for MIPs in fixed
dimension.

This also gives a finite cutting-plane algorithm for MIPs
e Del Pia and Weismantel (2010) show the same result using integral lattice-free cuts.
How big is the finite ¢7?

e \We construct an example where t grows exponentially with the dimension of P.



Introduction

Let
P={(z,v) € 2" xR" : Az + Cv > d}

where A, C, d is rational and let PLT denote its continuous relaxation.

Let D = Upcr D). where

Dy ={(z,y) e R"": A2 <b"} forkeK

D is called a disjunction if Z" x R' C D (clearly D = D* x R')

The disjunctive hull of P with respect to D is

Pp = conv (PLP N D) = conv( U (PLP a Dk)>
keEK

Notice that Pp = conv (P"" \ B) where B = R""'\ D and it is strictly lattice-free.



Split cuts, cross cuts, ...

e A split cut is an inequality valid for P*¥ \ S:

split cut

3

split set

e A cross cut is an inequality valid for P*" \ {S, U Sy}:

w A




Valid inequalities as disjunctive cuts

Let ¢z + d¥y > f be a valid inequality for P and
V={(x,y) e P" : cz+dy<f}

Clearly VN Z" x Rl =0

Jorg (2007) observes that V¥ C int(B) where

o V' C R" is the projection of V' in the space of the integer variables
e B is a polyhedral lattice-free set defined by rational data

B={zeR":nla>~,icK)}
Therefore ¢’z 4+ d’y > f is valid for conv (PLP \ int(B)) C conv (PLP \ \7””> :

Based on this observation, Jorg then argues that

D = Uly) e R™ inlw <4}
€K

is a valid disjunction and ¢’ x + d'y > f can be derived from this disjunction.



Valid inequalities as multi-branch split cuts

Let m; and ~y; be integral fort = 1,...,t and consider the split sets

S(mi,vi) = {(x,y) € R"E L N < 7TZ~T£E < v+ 1}

A multi-branch split cut is an inequality valid for P*" \ |, S(m:, v:)

Remember the points cut off by the valid inequality ¢’ « + d*y > f

V={(x,y) e P’ : ca+dy<f}

Fact : Let S = US,; be a collection of split sets in R™™ . If V C S, then
¢z + d"y > f is a multi-branch split cut obtained from S.

Question : Are all facet defining inequalities t-branch split cuts for finite t7
(equivalently, can V' be covered by a finite number of split sets?)



Lattice width

Given a closed, bounded, convex set (or convex body) B C R"™ and a vector c € Z",

w(B,c) = max{c'z : z € B} — min{c' z : z € B}.
is the lattice width of B along the direction c.

The lattice width of B is

w(B) = Cerzrg\r}{o} w (B, c)

(If the set is not closed, we define its lattice width to be the lattice width of its closure)

Khinchine's flatness theorem: there exists a function f(-) : Z, — R, such that
for any strictly lattice-free bounded convex set B C R",

w(B) < f(n)
where f(-) depends on the dimension of B (not on the complexity of B)

Lenstra uses this result to construct a finite enumeration tree to solve the integer
feasibility problem.



Lattice-free sets in R?
9

Theorem : [ Hurkens (1990)] If B € R is lattice-free, then w(B) < 1—|—% ~~ 2.1547.

Furthermore w(B) = 1 + % if and only if B is a triangle with vertices q1, go, g3 such
that (let q4 := q1)

1 1
—q; + (1 ——) q
\/gq ( \/g)q—i-l

where b; € Z? fori =1, 2, 3.

= b;, fori=1,2,3.

The lattice-free triangle T when by = (0,0)", by = (0,1)", and b3 = (1,0)"

i)

q2
°q3

x1

q1°

(this is a type 3 triangle)



Lattice-free sets in R°
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Averkov, Wagner and Weismantel (2011) enumerated all maximal lattice-free bodies in
R?> that are integral. These sets have the lattice width < 3.

A tetrahedron H with lattice width 2 + 2/~/3 ~ 3.1547:

— level 2 + 2/\/§

— level 1

5 — level O

where s, = (0,0,242/+/3), and q1, . .., q3 € R* are the vertices of Hurken's triangle.

We can also show that f(3) < 4.25.



Lattice width of lattice free convex bodies in ‘R"
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Given a lattice free convex body B C R'" the lattice width is

w(B) = Ce%iﬁo}w(B’ c) < f(n)

2
Lenstra (1983) showed that f(n) < 2"

Kannan and Lovdsz (1988) showed that f(n) < co(n + 1)n/2 for some constant c
(co = max{1,4/ci} where cy is another constant defined by Bourgain and Milman )

Banaszczyk, Litvak, Pajor, and Szarek (1999) showed that O (n>/?)

Rudelson (2000) showed that O(n*'?1og®n) for some constant c.




Valid inequalities as multi-branch split cuts
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Let m; and ~y; be integral fort = 1,...,t and consider the split sets

S(mi,vi) = {(x,y) € R"E L N < 7TZ~T£E < v+ 1}

A multi-branch split cut is an inequality valid for P*" \ |, S(m:, v:)

Remember the points cut off by the valid inequality ¢’ « + d*y > f

V={(x,y) e P : cz+dy<f}

Fact : Let S = US; be a collection of split sets in R™"™ . If V C S, then
¢’z + d"y > f is a multi-branch split cut obtained from S.

Question : Are all facet defining inequalities t-branch split cuts for finite t7
(equivalently, can V' be covered by a finite number of split sets?)



Bounded case
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Lemma : Let B be a bounded, strictly lattice-free convex set in R". Then B is
contained in the union of at most II;_ (2 + [ f(k)]) split sets.

Proof : By Khinchine's flatness result.

e There is an integer vector a € Z" such that f(n) > u — | where

v =max{a'z:z € B} and | = min{a'z: z € B}

o Therefore, B C {x € R": |l| <a'xz < [u]}.

e Let U be the collection of the split sets S(a,b) forb € V = {[l]|,...,[u] — 1}
B\ JS(ab)=|J{zreB:a"z=1}
beV beV
where V.= {[1],...,|u]}.

o All {x € B : a’x = b} are strictly lattice-free and have dimension at most n — 1

® Repeating the same argument proves the claim. ]



Unbounded case
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Lemma : Let B be a strictly lattice-free, convex, unbounded set in R" which is
contained in the interior of a maximal lattice-free convex set. Then B can be covered

by II'_ (2 + [ f(k)]) split sets.

Proof :

e let B’ be a maximal lattice free set containing B in its interior.

e lovdsz (1989) and Basu, Conforti, Cornuejols, Zambelli (2010) showed that

B'=Q+L

where () is a polytope and L a rational linear space.
o Lletdim(Q) =danddim(L) =n —d > 0.
e After a unimodular transformation, L = R"™ ¢

e Use the result for the bounded case and the result follows.



Combining the two cases
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Theorem : Every facet-defining inequality for P is a t-branch split cut for
t =T (24 [f(k)]).

o Let 'z + d"y > f be valid for conv(P) but not for P,

o Let V C R"™ be the set cut off by ¢’ = + d¥y > f and let V* be its the projection
on the space of the integer variables.

e V7" is strictly lattice-free, and is non-empty.

e Jorg (2007) showed that V" is contained in the interior of a lattice-free rational
polyhedron and therefore in the interior of a maximal lattice-free convex set.

e Depending on whether V" is bounded or unbounded, we can use either of the previous
two lemmas to prove the claim. m

Note that Jorg's already observed that every facet-defining inequality is a disjunctive cut.
We show that these inequalities can be derived as structured (t-branch split) disjunctive
cuts.



Solving mixed-integer programs
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Theorem : The mixed-integer program
min{cTa: +dly (z,y) € Z" X R' Az + Gy > b}

where the data is rational, can be solved in finite time via a pure cutting-plane
algorithm which generates only t-branch split cuts.

Proof : Lett =11 (2+ [f(%)]).

® Represent any t-branch split disjunction D (7, ... 7, Yy1,...,7) by v € Zn+ht,

o Let O = Z"V and arrange its members in a sequence {);}, (by increasing norm)
e Let D; be the t-branch split disjunction defined by €2;.

e Any facet-defining inequality of conv(P), is a t-branch split cut defined by the
disjunction D, for some (finite) k.

e let k™ be the largest index of a disjunction associated with facet-defining inequalities.

e Solve the relaxation of the MIP for P, = P;_1 Nconv(Py N D;). fori =1,2,...m

Note: Validity of a given inequality can also be checked by changing the termination
criterion. In addition conv (P), can also be computed the same way.



How finite is this algorithm?
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Theorem : The mixed-integer program
min{c'z +d'y : (z,y) € 2" xR', Az + Gy > b}

where the data is rational, can be solved in finite time via a pure cutting-plane algorithm
which generates only t-branch split cuts.

Proof : The algorithm cannot run forever ]

Stronger Result: The runtime of this algorithm is bounded.

Proof : The LP relaxation P™" has bounded complexity (number of bits to represent
facets defining inequalities)

Therefore conv (P) has bdd complexity.

—

= T herefore the set of points cut-off by a facet has bdd complexity.

— Therefore the multi-branch disjunction needed to generate a facet has bdd complexity.
—

Order the disjunctions in increasing complexity. 0
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Part Il

How finite is t?

e We showed that every facet-defining inequality for P is a t-branch split cut for
t=1I0_ (24 [f(K)]).
[best know bound f(k) < O(k*?log® k) by Rudelson, 2000].

e |t is easy to show thatt > (2(n)

e We next show that t > Q(2")



An exponential bound on ¢
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Theorem : For any n > 3 there exists a nonempty rational mixed-integer
polyhedral set in Z™ X R with a facet-defining inequality that cannot be expressed
as a 3 x 2" “-branch split cut.

Proof : .
e Construct a full-dimensional rational, lattice-free polytope B C R" such that

— Its interior cannot be covered by 3 x 2" ? split sets
— The integer hull of B C R" has dimension n

e Define a mixed-integer polyhedral set Pp as follows:

Pg={(z,y) € 2" xR : (x,y) € B'}.

where
B' =conv((B x {—1}) U (B x {0}) U (& x {1/2}))

and x is a point in the interior of B.
e y < 0 is a facet-defining inequality for conv ( Pp)

e o cover
LP
V=A(z,y) € Py : y>0}
one needs at least (3 x 2"~ %) split sets.



How to construct the lattice-free polytope B C ‘R"
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For A € {0,...,2" % — 1}, let Ta € R* be a (rational) lattice-free triangle and
cent(T'A) denote its centroid,

Let A = S22 6,271 with 6, € {0,1}

oan—2_1
B := conv( U (Ta U {pg)A}))
A=0
where
Ta :={(1,...,0n_—2,z,y)|(x,y) € Tar}
and
Pen = (01,...,0n_2,cent(Ta)) + ((261 — 1)e, ..., (28,—2 — 1)&,0,0)

(For example, pc.o = (—¢,...,—e,Z,y) where (Z,y) = cent(71y).)

B has the following properties: (i) it is rational, (ii) it is lattice-free, (iii) it has a
full-dimensional integer hull (iv) it contains T o in its interior for all A.

(to cover the interior of B, you need to cover all Tx)



How to construct the triangles T A
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o Ty € R? is a rational Hurken's triangle with w(Ty) > 2.15 that needs at least 3
split sets to cover.

o For A e {1,...,2" % —1},
Ta = MAT,

where M A is a 2x2 unimodular matrix with the property that:

* If a split set is useful in covering some T, it is not useful for T\ unless A = A’

when n = 3

A=1

ﬁ




How to construct the unimodular matrices Ma
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1. Useful split sets are finite

For any compact set K C R" and any number € > 0, the collection of split sets
S(a,b) such that vol( K N S(a, b)) > € is finite.

2. Useful sets are really necessary

For any fixed | > 0, there exists a finite set > C Z* such that if a collection of | split
sets cover T, then at least 3 of them are contained in >.

3. Bending the triangles

Given any two finite sets of vectors V, W C Z?\ {0}, there exists an unimodular
matrix M such that MV C Z*\ {0} and MV N W = 0.

Proof : Let ¢ = max,cw ||v||o then

1 I
M = where 1 = 3
<u u2+1> SR
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thank you...



