POOLING PROBLEM: NEW IDEAS ON LOWER & UPPER BOUNDS

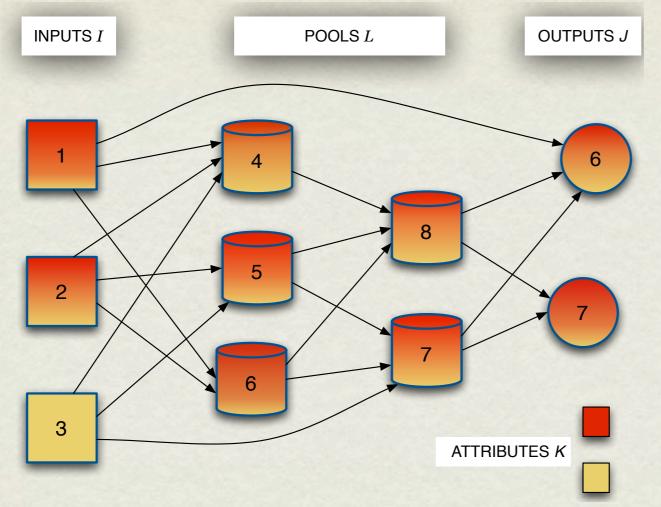
Akshay Gupte Mathematical Sciences, Clemson University

Co-author: Santanu Dey, ISyE, Georgia Tech

MINLP Workshop 2014

THE POOLING PROBLEM

• Type of multicommodity flow problem on tripartite graph



Attributes must satisfy lower/upper bounds at each output

- Bilinear equality and inequality constraints
- MILP relaxations due to piecewise linear estimators of bilinear terms
- MILP restrictions obtained by fixing subset of variables
 - 2

CONTRIBUTIONS

- New family of network flow MILP restrictions
- *Theoretical analysis* for standard problems: Let *n* = # of output nodes, *z*^{*} = global optimal value.

Theorem 1. For any pwl MILP relaxation S, let z^S be the optimal value of this MILP. Then,

- 1. $z^* \leq z^S \leq nz^*$
- 2. For any $\varepsilon > 0$, there exists a problem instance with $z^{S} \ge (n \varepsilon)z^{*}$

Theorem 2. For any $\tau \in \mathbb{Z}_{++}$, $\gamma \in \mathbb{R}^{\tau}$ s.t. $\sum_{t} \gamma_{t} = 1$, $\gamma \geq 0$, there is a MILP restriction $PQ(\tau,\gamma)$ with value $z(\tau,\gamma)$ s.t. $nz(\tau,\gamma) \geq z^{*}$ and this bound is tight for rational γ

• Empirically, the new MILPs yield *extremely good feasible solutions* on large-scale test instances