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Outline

@ Mixed integer conic optimization (MICP)

o Problem setting
e Motivation

@ Structure of linear valid inequalities
e K-minimal valid inequalities
e C-sublinear valid inequalities

e Disjunctive cuts for Lorentz cone (joint work with Sercan Yildiz (CMU))

e Structure of valid linear inequalities
e A class of valid convex inequalities
o Nice case and nasty case (with examples)
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A Disjunctive Perspective

Problem:
Study the closed convex hull of
S(AK,B)={xeE: Axe B, xe K}
where
@ E is a finite dimensional Euclidean space with inner product (-, )
@ Ais a linear map from E to R™

@ B C R™ is a given set of points (can be finite or infinite)

@ K C E is a full-dimensional, closed, convex and pointed cone [regular cone]
v
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A Disjunctive Perspective

Problem:
Study the closed convex hull of
S(AK,B)={xeE: Axe B, xe K}
where
@ E is a finite dimensional Euclidean space with inner product (-, )
@ Ais a linear map from E to R™

@ B C R™ is a given set of points (can be finite or infinite)

@ K C E is a full-dimensional, closed, convex and pointed cone [regular cone]
v

Most (if not all!) cutting planes (convexification techniques) in MILPs rely on
disjunctive formulations.
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Representation Flexibility

S(AK,B)={x€eE: Axe B, xe K}

This set captures the essential structure of MICPs
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Representation Flexibility

S(AK,B)={x€eE: Axe B, xe K}
This set captures the essential structure of MICPs
{ly,v) ERExZ9: Wy+Hv-beKk}

where K C E is a full-dimensional, closed, convex, pointed cone.
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Representation Flexibility

S(AK,B)={x€eE: Axe B, xe K}

This set captures the essential structure of MICPs

{ly,v) ERExZ9: Wy+Hv-beKk}

where K C E is a full-dimensional, closed, convex, pointed cone.
Define

x:<y>, A=W, -1d], and B=b—H 79,
V4

where Id is the identity map in E. Then we arrive at

S(AK',B) = {x € (R* x E): Ax€ B, x € (R x K)}
—_——
=K’
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Representation Flexibility

S(AK,B)={x€e E: Axe B, xc K}

Models traditional disjunctive formulations

Captures the essential non-convex structure of MICPs

Precisely contains famous Gomory's Corner Polyhedron (1969)

@ Arises in modeling complementarity relations

Can be used as a natural relaxation for sequential convexification

@ etc., etc...
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Questions of Interest

S(AK,B)={x€E: Axe B, xe K}

General Questions:
® When can we study/characterize conv(S(A, K, B)) explicitly?

@ Will (or when will) conv(S(A, K, B)) preserve the nice structural properties
we originally had?
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Questions of Interest

S(AK,B)={x€E: Axe B, xe K}

General Questions:
® When can we study/characterize conv(S(A, K, B)) explicitly?

@ Will (or when will) conv(S(A, K, B)) preserve the nice structural properties
we originally had?

@ Let's first see what we can find out about the structure of linear valid
inequalities...
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Structure of Valid Linear Inequalities

S(AK,B)={xeE:AxeB, xeK}

@ conv(S(A, K, B)) = intersection of all linear valid inequalities (v.i.)
(u, x)y > mo for S(A, K, B)
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Structure of Valid Linear Inequalities

S(AK,B)={xeE:AxeB, xeK}

@ conv(S(A, K, B)) = intersection of all linear valid inequalities (v.i.)
(u, x)y > mo for S(A, K, B)

C(A,K,B) = convex cone of all linear valid inequalities for S(A, K, B)
= ) : Ea 07 - S inf ’
{(u M) pn€E, p+# 00 < 1o xesEQ\,;c,B)<“ X>}

Goal: Study C(A, K, B) in order to characterize the properties of the linear v.i.,
and identify the necessary and/or sufficient ones defining conv(S(A, K, B)) J

F. Kiling-Karzan (CMU) Structure in Mixed Integer Conic Sets 7 /27



.
Which Inequalities Should We Really Care About?

S(AK,B)={xeE:AxeB, xeK}

C(A,K,B) = convex cone of (u; o) of all linear valid inequalities (1, x) > 1o

C(A K, B)
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.
Which Inequalities Should We Really Care About?

S(AK,B)={xe€ E: Axe B, xe K}

C(A,K,B) = convex cone of (u;n9) of all linear valid inequalities (i, x) > no

= Cone implied inequality, (8;0) for any 6 € K* \ {0}, is always valid.

Cone implied

inequalities
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.
Which Inequalities Should We Really Care About?

S(AK,B)={xe€ E: Axe B, xe K}

C(A,K,B) = convex cone of (u; o) of all linear valid inequalities (i, x) > no

Definition
An inequality (u; m0) € C(A, K, B) is a K-minimal valid inequality if for all p such
that p <x« v and p # p, we have pg < 1.
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.
Which Inequalities Should We Really Care About?

S(AK,B)={xe€ E: Axe B, xe K}

C(A,K,B) = convex cone of (u; o) of all linear valid inequalities (i, x) > no

Definition
An inequality (u; m0) € C(A, K, B) is a K-minimal valid inequality if for all p such
that p <x« v and p # p, we have pg < 1.

Cm(A,K,B) = cone of K-minimal valid inequalities
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.
Which Inequalities Should We Really Care About?

S(AK,B)={xe€ E: Axe B, xe K}
C(A,K,B) = convex cone of (u;19) of all linear valid inequalities (i, x) > no

Cm(A, K, B) = cone of K-minimal valid inequalities

Cone implied

inequalities
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KC-minimal Inequalities

Definition
An inequality (u;m0) € C(A, K, B) is a K-minimal valid inequality if for all p such
that p <x+~ w and p # u, we have py < 7.

= A K-minimal v.i. (1;70) cannot be written as a sum of a cone implied
inequality and another valid inequality.
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KC-minimal Inequalities

Definition
An inequality (u;m0) € C(A, K, B) is a K-minimal valid inequality if for all p such
that p <x+~ w and p # u, we have py < 7.

= A K-minimal v.i. (1;70) cannot be written as a sum of a cone implied
inequality and another valid inequality.

= Cone implied inequality (J;0) for any 6 € K* \ {0} is never minimal.
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KC-minimal Inequalities

Definition
An inequality (u;m0) € C(A, K, B) is a K-minimal valid inequality if for all p such
that p <x+~ w and p # u, we have py < 7.

= A KC-minimal v.i. (u; 10) cannot be written as a sum of a cone implied
inequality and another valid inequality.

= Cone implied inequality (J;0) for any 6 € K* \ {0} is never minimal.

= K-minimal v.i. exists if and only if A valid equations of form (J, x) = 0 with
6 € K\ {0}.
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KC-minimal Inequalities

Definition
An inequality (u;m0) € C(A, K, B) is a K-minimal valid inequality if for all p such
that p <x+~ w and p # u, we have py < 7.

= A K-minimal v.i. (1;70) cannot be written as a sum of a cone implied
inequality and another valid inequality.

= Cone implied inequality (J;0) for any 6 € K* \ {0} is never minimal.
= K-minimal v.i. exists if and only if A valid equations of form (J, x) = 0 with

§ € K\ {0}.

Theorem: [Sufficiency of C-minimal Inequalities]

Whenever C,,(A, K, B) # 0, K-minimal v.i. together with x € K constraint are
sufficient to describe conv(S(A, K, B)).
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Some Properties
We can show that

@ Every valid inequality (u;m0) € C(A, K, B) satisfies condition
(A.0) € Im(A*) + K.
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Some Properties

We can show that

@ Every valid inequality (u;m0) € C(A, K, B) satisfies condition
(A.0) € Im(A*) 4+ K*.

Remark

For any u € Im(A*) + K*,

= D,:={AeR": p—A*Xe L} #0; and

= for any no <infyc op, (b), where op, := support function of D,,,
we have (u;m0) € C(A, K, B).
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Some Properties

We can show that
@ Every valid inequality (u;m0) € C(A, K, B) satisfies condition
(A.0) € Im(A*) 4+ K*.
@ C-minimal inequalities have more structure, i.e., they are C-sublinear:
Definition
An inequality (u; 10) is a K-sublinear v.i. (G,(A, K, B)) if it satisfies
(A.1) 0 < {p,u) for all us.t. Au=0 and

(a, viu+v € K Vv € Ext(K) holds for some o € Ext(K*),
(A.2) no < (i, x) for all x € S(A, K, B).

Condition (A.1) implies (A.0).
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On Conditions for K-minimality and /C-sublinearity

@ We can establish necessary, and also sufficient conditions for an inequality
(14:m0) to be K-minimal or K-sublinear via its relation with support function
op, of the structured set D,,.
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On Conditions for K-minimality and /C-sublinearity

@ We can establish necessary, and also sufficient conditions for an inequality
(14:m0) to be K-minimal or K-sublinear via its relation with support function
op, of the structured set D,,.

@ When K = RY:

e /C-sublinear v.i. are identical to the class of subadditive v.i. defined by
Johnson'81, i.e., condition (A.1) is precisely condition (A.0Q) and

(A1) foralli=1,....n, p < {(u u)forallucR] st Au=A
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On Conditions for K-minimality and /C-sublinearity

@ We can establish necessary, and also sufficient conditions for an inequality
(14:m0) to be K-minimal or K-sublinear via its relation with support function
op, of the structured set D,,.

@ When K = R7:

e /C-sublinear v.i. are identical to the class of subadditive v.i. defined by
Johnson'81, i.e., condition (A.1) is precisely condition (A.0Q) and
(A1) foralli=1,....n, p < {(u u)forallucR] st Au=A
e Our sufficient condition for JC-sublinearity matches precisely our
necessary condition, resulting in
(imo) € G(AK,B) <= pi=op,(A") for all i.
= All R} -sublinear (and thus R’ -minimal) inequalities are generated by

sublinear functions (subadditive and positively homogeneous, in fact also
piecewise linear and convex), i.e., support functions op, (-) of D,..

[ This recovers a number of results from Johnson'81, and Conforti et al.’13. ]
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On Conditions for K-minimality and /C-sublinearity

@ We can establish necessary, and also sufficient conditions for an inequality
(14:m0) to be K-minimal or K-sublinear via its relation with support function
op, of the structured set D,,.

@ When K = R7:

e /C-sublinear v.i. are identical to the class of subadditive v.i. defined by
Johnson'81, i.e., condition (A.1) is precisely condition (A.0Q) and
(A1) foralli=1,....n, p < {(u u)forallucR] st Au=A
e Our sufficient condition for JC-sublinearity matches precisely our
necessary condition, resulting in
(imo) € G(AK,B) <= pi=op,(A") for all i.
= All R} -sublinear (and thus R’ -minimal) inequalities are generated by

sublinear functions (subadditive and positively homogeneous, in fact also
piecewise linear and convex), i.e., support functions op, (-) of D,..

[ This recovers a number of results from Johnson'81, and Conforti et al.’13. ]

=> This is underlies a cut generating function view for MILPs.

F. Kiling-Karzan (CMU) Structure in Mixed Integer Conic Sets 11 /27



On Conditions for K-minimality and /C-sublinearity

@ For general regular cones C other than R" , unfortunately there is a gap
between our current necessary condition and our sufficient condition for
KC-minimality.

@ Moreover, there is a simple example S(A, K, B) with K = L3, where a
necessary (in terms of convex hull description) family of C-minimal
inequalities cannot be generated by any class of cut generating functions.
This is in sharp contrast

o to MILP case, i.e., K =R], and,
e to the strong dual for MICP result of Moran et al."12, which studied a
more restrictive conic setup.
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Questions on Structure

S(AK,B)={x€E: Axe B, xe K}

General Questions:
@ When can we characterize conv(S(A, I, B)) explicitly?

@ Will (or when will) conv(S(A, K, B)) preserve the nice structural properties
we originally had?

F. Kiling-Karzan (CMU) Structure in Mixed Integer Conic Sets 13 /27



Questions on Structure

S(AK,B)={x€E: Axe B, xe K}

General Questions:
@ When can we characterize conv(S(A, I, B)) explicitly?

@ Will (or when will) conv(S(A, K, B)) preserve the nice structural properties
we originally had?

@ General case is too general for us to answer these questions...
@ In the rest of this talk, we will study a simple (?) yet interesting case

@ Joint work with S. Yildiz
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Disjunctive Cuts for Lorentz Cone, L”

@ Start with a simple set for x, i.e., a regular cone K C R”
@ Consider a two-term disjunction: either ¢/ x > c1 or ¢ x > ¢ o must hold.
@ Let G :={x: ¢'x>cio, xeEK}.

. e e e e .

el by « .

A special case is split disjunctions, i.e., c; = —7¢, for some 7 > 0, and
c10c2,0 > 0.
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Disjunctive Cuts for Lorentz Cone, L”

@ Start with a simple set for x, i.e., a regular cone K C R"
@ Consider a two-term disjunction: either ¢/ x > c1 or ¢ x > co must hold.

o Let C;:={x: c,Tx > cio, x € K}

By setting

o[ §) [ 0 fn ]

we arrive at

S(AK,B)={xeR":Ax € B, xe K} = G, U .
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Disjunctive Cuts for Lorentz Cone, L”

@ Start with a simple set for x, i.e., a regular cone K C R"

Consider a two-term disjunction: either ClTX > ¢y or C2TX > 2,0 must hold.

Let G :={x: ¢/x>cio, x €K}

By setting

=[] [ 0l o )

we arrive at
SAK,B)={xeR":Axe B, xe K} = GUCG.

We are interested in describing conv(S(A, KC, B)) in the original space of variables:
@ Is there any structure in conv(S(A, K, B))?

@ Can we preserve the simple conic structure we started out with?
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Disjunctive Cuts for Lorentz Cone, L”

Start with a simple set for x, i.e., a regular cone L C R"

Consider a two-term disjunction: either clTx > c1,0 OF C2TX > Cp,0 must hold.

Let G :={x: ¢'x>cio, x €K}

By setting

e[ oo {5 U ofon, )

we arrive at

S(AK,B)={xeR":Axe B, xe K} =G UG.

= Simple set we start out can be Y = {x € R": Qx — d € K} with Q € R™*"
having full row rank.
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Approach

@ Characterize the structure of KC-minimal and tight valid linear inequalities
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Approach

@ Characterize the structure of KC-minimal and tight valid linear inequalities

@ Using conic duality, we group these linear inequalities appropriately, and thus
derive a family of convex valid inequalities sufficient to describe the closed
convex hull
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Approach

@ Characterize the structure of KC-minimal and tight valid linear inequalities

@ Using conic duality, we group these linear inequalities appropriately, and thus
derive a family of convex valid inequalities sufficient to describe the closed
convex hull

@ Any structure beyond convexity?

= Understand when these convex inequalities are conic representable

F. Kiling-Karzan (CMU) Structure in Mixed Integer Conic Sets 15 / 27



Approach

@ Characterize the structure of KC-minimal and tight valid linear inequalities

@ Using conic duality, we group these linear inequalities appropriately, and thus
derive a family of convex valid inequalities sufficient to describe the closed
convex hull

@ Any structure beyond convexity?

= Understand when these convex inequalities are conic representable

@ When does a single inequality from this family suffice?

= Characterize when only single inequality from this family is sufficient to
describe the closed convex hull
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Setup for Conic Disjunctive Cuts

@ Start with a simple set for x, i.e.,
@ Consider a two-term disjunction: either clTx > ¢y or C2TX > Cp,0 must hold.

o Let C;:={xek: c,-TX > Cio}-
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Setup for Conic Disjunctive Cuts

@ Start with a simple set for x, i.e.,

@ Consider a two-term disjunction: either clTx > ¢y or C2TX > Cp,0 must hold.
o let GG:={xeK: ¢/x>cio}

@ WLOG we assume that

e C10,0,0 € {0,£1} and
o G # 0 and G # 0 (in fact we assume Gy, G, are strictly feasible)
° C1 ,@ Cz and C2 Z Cl.
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Setup for Conic Disjunctive Cuts

@ Start with a simple set for x, i.e.,

@ Consider a two-term disjunction: either clTx > ¢y or C2TX > Cp,0 must hold.
o let GG:={xeK: ¢/x>cio}

@ WLOG we assume that

e C10,0,0 € {0,£1} and
o G # 0 and G # 0 (in fact we assume Gy, G, are strictly feasible)
o (G € G and Gy € Cy. This assumption is equivalent to

Assumption

The disjunction ¢ x > c1 9 or ¢j x > a9 satisfies
o {BER): Bco> o, &—BaeK}=0, and
e {BER,: Bao>cio, a—PBaeK}=0.
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Structure of Valid Linear Inequalities

Disjunction on K: either ¢ x > 19 or ¢f x > ca0 With c1, c20 € {0, £1}

Standard Approach

For any valid linear inequality, ;" x > po for conv(CL U Gy)
there exists ag,ap € K, and 1, 52 € Ry s.t.
poo= aip+ Bia,
4 az + Baco,
po < min{ficio, f2c20}-
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Structure of Valid Linear Inequalities

Disjunction on K: either ¢/ x > ¢19 or ¢f x > ca0 With c1, c20 € {0, £1}

Proposition

For any K-minimal and tight valid linear inequality, u " x > pg for conv(C; U G)
there exists ay, an € bd(K), and f1, 82 € (R4 \ {0}) s.t.

po o= a1+ Bic,
po= o+ B,
min{c1001, 002} = po = min{cio, 0},

and at least one of 3; and 3, is equal to 1.
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Deriving a Nonlinear (but Convex) Valid Inequality when K = L"

Assume C1,0 > €0 = ﬂg =1
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Deriving a Nonlinear (but Convex) Valid Inequality when K = L"

Assume C1,0 > €0 = ﬂg =1
Consider the set of undominated v.i. " x > o for given By = 8> 0 and 3, =1,
i.e., Ho = min{cLo, C270} =0 and

ne M(ﬂ, l)Z:{M cR": day, as € bd L" st. n=a+ By = an + Cz}
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Deriving a Nonlinear (but Convex) Valid Inequality when K = L"

Assume C1,0 > €0 = ﬂg =1

Consider the set of undominated v.i. " x > o for given By = 8> 0 and 3, =1,
i.e., Ho = min{cLo, C270} =0 and

MEM(ﬁ,l)Z:{MERnZ day, ap € bdL" sit. /J,:Oél—i-,BCl :(X2+C2}
T e~ M-
—{neR (68 -8 nlcrn - can) =g [ Tl =i s |

where M := (82[|a]l3 — [[&13) — (8%t — c2.0)-
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Deriving a Nonlinear (but Convex) Valid Inequality when K = L"

Assume C1,0 > €0 = ﬂg =1

Consider the set of undominated v.i. " x > o for given By = 8> 0 and 3, =1,
i.e., Ho = min{cLo, C270} =0 and

ne M(ﬂ, l)Z:{M cR": day, as € bd L" st. n=a+ By = an + Cz}
S M
Z{MERni IUT(Bcl_C2)_,un(ﬁcl,n_c2,n):?7 ||M—5C1||2:Mn—ﬁc1,n}
where M := (B%||a3 — [[22l3) — (B°cin — &3.0)-

xew@w(GUG) = xeLand ' x> o Y€ M(B,1)
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Deriving a Nonlinear (but Convex) Valid Inequality when K = L"

Assume C1,0 > €0 = ﬂg =1
Consider the set of undominated v.i. " x > o for given By = 8> 0 and 3, =1,
i.e., Ho = min{cLo, C270} =0 and

MEM(ﬁ,l)Z:{MERnZ day, ap € bdL" st /J,:Oél—i-,BCl :(X2+C2}

S M
Z{MERni IUT(Bcl_C2)_,un(ﬁcl,n_c2,n):?7 ||M—5C1||2:Mn—ﬁc1,n}

where M := (8%[|a|l} — [[@[l3) — (6%ct» — ¢3.0).
xew@w(GUG) = xeLand ' x> o Y€ M(B,1)

&x € L™ and mf{u x: peM(B,1)} >
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Deriving a Nonlinear (but Convex) Valid Inequality when K = L"

Assume C1,0 > €0 = ﬂg =1

Consider the set of undominated v.i. " x > o for given B; = 8> 0and 3, =1
i.e., Ho = min{cLo, C270} =0 and

MEM(ﬁ,l)Z:{MERnZ day, ap € bdL" st /J,:Oé1+,8C1 :Oéz-‘rCz}

T e~ M-
—{neR (68 -8 nlcrn - can) =g [ Tl =i s |
where M= (13 - [&13) - (e, — ).

xew@w(GUG) = xeLand ' x> o Y€ M(B,1)
&x € L™ and mf{u x: peM(B,1)} >

&x € L™ and inf {u x: e M(B, 1)} > o
w
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Deriving a Nonlinear (but Convex) Valid Inequality when K = L"

Assume C1,0 > €0 = ﬂg =1
Consider the set of undominated v.i. u”x > pg for given /31
i.e., Ho = min{cLo, C270} =0 and

e M(B,1):={peR": Jag,a €bdL" st

—B>0and B =1,

p=a1+ fBc = az + a}
T e~ M-
—{neR (68 -8 nlcrn - can) =g [ Tl =i s |
where M := (&3 ~ [&I) ~ (5, ~ ).

xew@w(GUG) = xeLand ' x> o Y€ M(B,1)
&x € L™ and mf{u x: peM(B,1)} >

&x € L™ and inf {u x: e M(B, 1)} > o
N
M Be—C
n T . 1 2 _ n
<x € L" and rrlla}x{ﬂclp+27 Cp+T ( _Bevn+ con >x, peL }ZCZ,O
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Convex Disjunctive Cut for L = L"

Disjunction on second-order cone, £L" = {x € R" : x, > ||x|2}:
either ¢/ x > c1 9 or ¢ x > o with 10 > a0
Theorem

For any 5> 0s.t. Bcio > &0 and Sc — ¢ ¢ £int(L"), then the following
inequality is valid for conv(C; U Gy):

260 — (Ba + @) 'x < \/((5C1 — &) Tx)" + N(B) * (2 — ||%[13)
where N(3) := ||¢1 — &3 — (Ber.n — c2.0)?.
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From its construction, this inequality

@ exactly captures all undominated linear v.i. 7 x > po corresponding to
Br=pBand 2 =1, eg, o= o0 and p € M(3,1)
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260 — (Ba + @) 'x < \/((5C1 — &) Tx)" + N(B) * (2 — ||%[13)
where N(3) := ||¢1 — &3 — (Ber.n — c2.0)?.

From its construction, this inequality

@ exactly captures all undominated linear v.i. 7 x > po corresponding to
Br=pBand 2 =1, eg, o= o0 and p € M(3,1)
@ is valid and convex

@ reduces to the linear inequality ﬁclTx > 0 in L7 when Bc; — ¢ € £bd L
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Structure of Convex Valid Inequalities

200 — (fa+ ) x < \/((501 — @) Tx)"+ N(B) * (x3 — [IX[13)

Any further structure than convexity? )
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Structure of Convex Valid Inequalities

2620 — (Ber + &) Tx < \/(Ber — @) Tx) + N(B) + (<2 — %I3)

Any further structure than convexity? )

Proposition

An equivalent conic quadratic form given by

N(B)x +2(c) x — ca0) ( . gc?;f; n ) L

is valid whenever a symmetry condition, e.g.,

200+ (Ba + @) Tx < \/((Ba — &) Tx) + N(B) (<2 — [%])
holds for all x € Tonv(C; U Gy).
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Structure of Convex Valid Inequalities

200 — (fa+ ) x < \/((501 — @) Tx)"+ N(B) * (x3 — [IX[13)

Any further structure than convexity? )

a-3 )
N(ﬂ)x+2(c;xcz7o)( pame > er

An equivalent conic quadratic form is valid, e.g., symmetry condition holds, when
@ ;NG =10, ie., aproper split disjunction, or

@ {xEL" B x>, & x> caot={x€L" Bc]x=ca0, ¢ x=020}
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When does a Single Convex Inequality Suffice?

A parametric family of convex inequalities:
Forany 5> 0s.t. Bcig > @0 and o — o ¢ £int(L"),

260 — (Ber + &) Tx < \(Ber — @) Tx) + N(B) * (<2 — [%I3)

is valid for conv(G U G).
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When does a Single Convex Inequality Suffice?

A parametric family of convex inequalities:

Forany 5> 0s.t. Bcig > @0 and o — o ¢ £int(L"),

260 — (Ber + &) Tx < \(Ber — @) Tx) + N(B) * (<2 — [%I3)

is valid for conv(G U G).

Theorem

In certain cases such as
@ eLlL"orce L or

@ c10=0Cp € {£1} and conv(C U () is closed, e.g., in the case of split
disjunctions,

it is sufficient (for conv(C; U (,)) to consider only one inequality with 8 = 1.
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Example: Nice Case

Disjunction:  x3>1 or x3+x3>1

COW(C1UC2):{X€E32 2—(X1+2X3)§ X32—X22}
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Example: Nice Case

Disjunction: x3>1 or x3+x3>1

conv(G U G) = {x€£3: 2—(x1+2x3) < x32—x22}
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Not So Nice Case

There are cases when we need infinitely many convex inequalities from this family.

@ Recessive directions, and

@ conv(C; U () being non-closed,

play a key role in these cases.
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Not So Nice Case

There are cases when we need infinitely many convex inequalities from this family.

@ Recessive directions, and

@ conv(C; U () being non-closed,

play a key role in these cases.

We can still give expressions for a single inequality describing conv(C; U &), but
it is really nasty looking...
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Example: Nasty Case

Disjunction:  —x3>—-1 or —xx >0

y
y

b2tsiry

Piins
Vi

b i)

i

Y s
e

M(CLUG)=4x€ L3 x <1, 1+ x| —x3 < /1 —max{0, x2}2
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Final Remarks

Introduce and study the properties of K-minimal and K-sublinear inequalities for
conic MIPs
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Final Remarks

Introduce and study the properties of K-minimal and K-sublinear inequalities for
conic MIPs
For two-term disjunctions on Lorentz cone, L£"

@ Derive explicit expressions for disjunctive conic cuts

e Cover most of the recent results on conic MIR, split, and two-term
disjunctive inequalities for Lorentz cones (i.e., Belotti et al.’11, Andersen
& Jensen'13, Modaresi et aI.’13)

e Extends to elementary split disjunctions on p-order cones
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@ More intuitive and elegant derivations leading to new insights

e When we can have valid conic inequalities in the original space
e When a single convex inequality will suffice
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Final Remarks

Introduce and study the properties of K-minimal and K-sublinear inequalities for
conic MIPs
For two-term disjunctions on Lorentz cone, L£"

@ Derive explicit expressions for disjunctive conic cuts

e Cover most of the recent results on conic MIR, split, and two-term
disjunctive inequalities for Lorentz cones (i.e., Belotti et al.’11, Andersen
& Jensen'13, Modaresi et aI.’13)

e Extends to elementary split disjunctions on p-order cones

@ More intuitive and elegant derivations leading to new insights

e When we can have valid conic inequalities in the original space
e When a single convex inequality will suffice

@ Extends to disjunctions on cross-sections of the Lorentz cone (Joint work
with S. Yildiz and G. Cornuéjols)
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Thank you!
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A Simple Example for Insufficiency of Cut Generating Functions

K=1r3 A=]1,0,0] and B={-1,1}, ie,
S(AK,B)={xeR3: x € {-1,1}, x3 > /x2+ 3}

X2

conv(S(AK,B)) ={xeR3: —1<x <1, x3>/1+x35}
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A Simple Example for Insufficiency of Cut Generating Functions

K=1r3 A=]1,0,0and B={-1,1}, ie,
S(AK,B)={xeR3: x; € {-1,1}, x3 >/} + x3}
conv(S(AK,B)) = {x cR¥: —1<x <1, x3>/1+x3}
K-minimal inequalities are:
(a) ut) =(1;0;0) with n(()+) = —1and p() = (~1;0;0) with 77(_) =-1
(b) u® = (0;t; V2 +1) with n{) =1 for all t € R.
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(b) p!Y =(0;t; V2 + )Wlthn =1forall t € R.
(these can be expressed as a single conic inequality x3 > /1 + x3.)
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A Simple Example for Insufficiency of Cut Generating Functions

K=1r3 A=]1,0,0] and B={-1,1}, ie,

S(AK,B)={xeR3: x; € {-1,1}, x3 >/} + x3}

conv(S(AK,B)) = {x cR¥: —1<x <1, x3>/1+x3}

K-minimal inequalities are:

(a) ,LL(+) = (1,0;0) with n(()+) = —1and p() = (~1;0;0) with 77(()_) =-1

(b) p!Y =(0;t; V2 + )Wlthn =1forall t € R.
(these can be expressed as a single conic inequality x3 > /1 + x3.)

Linear inequalities in (b) cannot be generated by any cut generating function p(+),
ie., p(A) = ugt) is not possible for any function p(-).

[Sharp contrast to the strong conic IP dual result of Moran, Dey, & Vielma '12. ]
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