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A Disjunctive Perspective

Problem:

Study the closed convex hull of

S(A,K,B) = {x ∈ E : Ax ∈ B, x ∈ K}
where

E is a finite dimensional Euclidean space with inner product 〈·, ·〉

A is a linear map from E to Rm

B ⊂ Rm is a given set of points (can be finite or infinite)

K ⊂ E is a full-dimensional, closed, convex and pointed cone [regular cone]

Most (if not all!) cutting planes (convexification techniques) in MILPs rely on

disjunctive formulations.
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Representation Flexibility

S(A,K,B) = {x ∈ E : Ax ∈ B, x ∈ K}

This set captures the essential structure of MICPs

{(y , v) ∈ Rk
+ × Zq : W y + H v − b ∈ K}

where K ⊂ E is a full-dimensional, closed, convex, pointed cone.
Define

x =

(
y
z

)
, A =

[
W , −Id

]
, and B = b − H Zq,

where Id is the identity map in E . Then we arrive at

S(A,K′,B) = {x ∈ (Rk × E ) : Ax ∈ B, x ∈ (Rk
+ ×K)︸ ︷︷ ︸
:=K′

}
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Representation Flexibility

S(A,K,B) = {x ∈ E : Ax ∈ B, x ∈ K}

Models traditional disjunctive formulations

Captures the essential non-convex structure of MICPs

Precisely contains famous Gomory’s Corner Polyhedron (1969)

Arises in modeling complementarity relations

Can be used as a natural relaxation for sequential convexification

etc., etc...
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Questions of Interest

S(A,K,B) = {x ∈ E : Ax ∈ B, x ∈ K}

General Questions:

When can we study/characterize conv(S(A,K,B)) explicitly?

Will (or when will) conv(S(A,K,B)) preserve the nice structural properties
we originally had?

Let’s first see what we can find out about the structure of linear valid
inequalities...
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Structure of Valid Linear Inequalities

S(A,K,B) = {x ∈ E : Ax ∈ B, x ∈ K}

conv(S(A,K,B)) = intersection of all linear valid inequalities (v.i.)
〈µ, x〉 ≥ η0 for S(A,K,B)

C (A,K,B) = convex cone of all linear valid inequalities for S(A,K,B)

=

{
(µ; η0) : µ ∈ E , µ 6= 0, −∞ < η0 ≤ inf

x∈S(A,K,B)
〈µ, x〉

}

Goal: Study C (A,K,B) in order to characterize the properties of the linear v.i.,
and identify the necessary and/or sufficient ones defining conv(S(A,K,B))
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F. Kılınç-Karzan (CMU) Structure in Mixed Integer Conic Sets 7 / 27



Which Inequalities Should We Really Care About?

S(A,K,B) = {x ∈ E : Ax ∈ B, x ∈ K}

C (A,K,B) = convex cone of (µ; η0) of all linear valid inequalities 〈µ, x〉 ≥ η0

C (A,K,B)
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Which Inequalities Should We Really Care About?

S(A,K,B) = {x ∈ E : Ax ∈ B, x ∈ K}

C (A,K,B) = convex cone of (µ; η0) of all linear valid inequalities 〈µ, x〉 ≥ η0

⇒ Cone implied inequality, (δ; 0) for any δ ∈ K∗ \ {0}, is always valid.

C (A,K,B)

Cone implied
inequalities
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C (A,K,B) = convex cone of (µ; η0) of all linear valid inequalities 〈µ, x〉 ≥ η0

Definition

An inequality (µ; η0) ∈ C (A,K,B) is a K-minimal valid inequality if for all ρ such
that ρ �K∗ µ and ρ 6= µ, we have ρ0 < η0.

Cm(A,K,B) = cone of K-minimal valid inequalities
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K-minimal Inequalities

Definition

An inequality (µ; η0) ∈ C (A,K,B) is a K-minimal valid inequality if for all ρ such
that ρ �K∗ µ and ρ 6= µ, we have ρ0 < η0.

⇒ A K-minimal v.i. (µ; η0) cannot be written as a sum of a cone implied
inequality and another valid inequality.

⇒ Cone implied inequality (δ; 0) for any δ ∈ K∗ \ {0} is never minimal.

⇒ K-minimal v.i. exists if and only if 6 ∃ valid equations of form 〈δ, x〉 = 0 with
δ ∈ K∗ \ {0}.

Theorem: [Sufficiency of K-minimal Inequalities]

Whenever Cm(A,K,B) 6= ∅, K-minimal v.i. together with x ∈ K constraint are
sufficient to describe conv(S(A,K,B)).
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Some Properties

We can show that

Every valid inequality (µ; η0) ∈ C (A,K,B) satisfies condition

(A.0) µ ∈ Im(A∗) +K∗.

K-minimal inequalities have more structure, i.e., they are K-sublinear:

Definition

An inequality (µ; η0) is a K-sublinear v.i. (Ca(A,K,B)) if it satisfies

(A.1) 0 ≤ 〈µ, u〉 for all u s.t. Au = 0 and

〈α, v〉u + v ∈ K ∀v ∈ Ext(K) holds for some α ∈ Ext(K∗),
(A.2) η0 ≤ 〈µ, x〉 for all x ∈ S(A,K,B).

Condition (A.1) implies (A.0).
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F. Kılınç-Karzan (CMU) Structure in Mixed Integer Conic Sets 10 / 27



Some Properties

We can show that

Every valid inequality (µ; η0) ∈ C (A,K,B) satisfies condition

(A.0) µ ∈ Im(A∗) +K∗.

K-minimal inequalities have more structure, i.e., they are K-sublinear:

Definition

An inequality (µ; η0) is a K-sublinear v.i. (Ca(A,K,B)) if it satisfies

(A.1) 0 ≤ 〈µ, u〉 for all u s.t. Au = 0 and

〈α, v〉u + v ∈ K ∀v ∈ Ext(K) holds for some α ∈ Ext(K∗),
(A.2) η0 ≤ 〈µ, x〉 for all x ∈ S(A,K,B).

Condition (A.1) implies (A.0).
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On Conditions for K-minimality and K-sublinearity

We can establish necessary, and also sufficient conditions for an inequality
(µ; η0) to be K-minimal or K-sublinear via its relation with support function
σDµ of the structured set Dµ.

When K = Rn
+:

K-sublinear v.i. are identical to the class of subadditive v.i. defined by
Johnson’81, i.e., condition (A.1) is precisely condition (A.0) and

(A.1i) for all i = 1, . . . , n, µi ≤ 〈µ, u〉 for all u ∈ Rn
+ s.t. Au = Ai .

Our sufficient condition for K-sublinearity matches precisely our
necessary condition, resulting in

(µ; η0) ∈ Ca(A,K,B) ⇐⇒ µi = σDµ(Ai ) for all i .

⇒ All Rn
+-sublinear (and thus Rn

+-minimal) inequalities are generated by

sublinear functions (subadditive and positively homogeneous, in fact also

piecewise linear and convex), i.e., support functions σDµ(·) of Dµ.[
This recovers a number of results from Johnson’81, and Conforti et al.’13.

]
⇒ This is underlies a cut generating function view for MILPs.
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On Conditions for K-minimality and K-sublinearity

For general regular cones K other than Rn
+, unfortunately there is a gap

between our current necessary condition and our sufficient condition for
K-minimality.

Moreover, there is a simple example S(A,K,B) with K = L3, where a
necessary (in terms of convex hull description) family of K-minimal
inequalities cannot be generated by any class of cut generating functions.

This is in sharp contrast

to MILP case, i.e., K = Rn
+, and,

to the strong dual for MICP result of Moran et al.’12, which studied a
more restrictive conic setup.
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Questions on Structure

S(A,K,B) = {x ∈ E : Ax ∈ B, x ∈ K}

General Questions:

When can we characterize conv(S(A,K,B)) explicitly?

Will (or when will) conv(S(A,K,B)) preserve the nice structural properties
we originally had?

General case is too general for us to answer these questions...

In the rest of this talk, we will study a simple (?) yet interesting case

Joint work with S. Yıldız
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Disjunctive Cuts for Lorentz Cone, Ln

Start with a simple set for x , i.e., a regular cone K ⊆ Rn

Consider a two-term disjunction: either cT1 x ≥ c1,0 or cT2 x ≥ c2,0 must hold.

Let Ci := {x : cTi x ≥ ci,0, x ∈ K}.

C1 C2

A special case is split disjunctions, i.e., c1 = −τc2 for some τ > 0, and

c1,0c2,0 > 0.

By setting

A =

[
cT1
cT2

]
, and B =

{[
{c1,0}+ R+

R

]⋃[
R

{c2,0}+ R+

]}
we arrive at

S(A,K,B) = {x ∈ Rn : Ax ∈ B, x ∈ K} = C1 ∪ C2.
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R

]⋃[
R

{c2,0}+ R+

]}
we arrive at

S(A,K,B) = {x ∈ Rn : Ax ∈ B, x ∈ K} = C1 ∪ C2.

We are interested in describing conv(S(A,K,B)) in the original space of variables:

Is there any structure in conv(S(A,K,B))?

Can we preserve the simple conic structure we started out with?
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By setting

A =

[
cT1
cT2

]
, and B =

{[
{c1,0}+ R+

R

]⋃[
R

{c2,0}+ R+

]}
we arrive at

S(A,K,B) = {x ∈ Rn : Ax ∈ B, x ∈ K} = C1 ∪ C2.

⇒ Simple set we start out can be U = {x ∈ Rn : Qx − d ∈ K} with Q ∈ Rm×n

having full row rank.
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Approach

Characterize the structure of K-minimal and tight valid linear inequalities

Using conic duality, we group these linear inequalities appropriately, and thus
derive a family of convex valid inequalities sufficient to describe the closed
convex hull

Any structure beyond convexity?

⇒ Understand when these convex inequalities are conic representable

When does a single inequality from this family suffice?

⇒ Characterize when only single inequality from this family is sufficient to
describe the closed convex hull
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Setup for Conic Disjunctive Cuts

Start with a simple set for x , i.e., K

Consider a two-term disjunction: either cT1 x ≥ c1,0 or cT2 x ≥ c2,0 must hold.

Let Ci := {x ∈ K : cTi x ≥ ci,0}.

WLOG we assume that

c1,0, c2,0 ∈ {0,±1} and
C1 6= ∅ and C2 6= ∅ (in fact we assume C1,C2 are strictly feasible)
C1 6⊆ C2 and C2 6⊆ C1. This assumption is equivalent to

Assumption

The disjunction cT1 x ≥ c1,0 or cT2 x ≥ c2,0 satisfies

{β ∈ R+ : βc1,0 ≥ c2,0, c2 − βc1 ∈ K} = ∅, and

{β ∈ R+ : βc2,0 ≥ c1,0, c1 − βc2 ∈ K} = ∅.
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Structure of Valid Linear Inequalities

Disjunction on K: either cT1 x ≥ c1,0 or cT2 x ≥ c2,0 with c1,0, c2,0 ∈ {0,±1}

Standard Approach

For any valid linear inequality, µ>x ≥ µ0 for conv(C1 ∪ C2)
there exists α1, α2 ∈ K, and β1, β2 ∈ R+ s.t.

µ = α1 + β1c1,

µ = α2 + β2c2,

µ0 ≤ min{β1c1,0, β2c2,0}.
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Structure of Valid Linear Inequalities

Disjunction on K: either cT1 x ≥ c1,0 or cT2 x ≥ c2,0 with c1,0, c2,0 ∈ {0,±1}

Proposition

For any K-minimal and tight valid linear inequality, µ>x ≥ µ0 for conv(C1 ∪ C2)
there exists α1, α2 ∈ bd(K), and β1, β2 ∈ (R+ \ {0}) s.t.

µ = α1 + β1c1,

µ = α2 + β2c2,

min{c1,0β1, c2,0β2} = µ0 = min{c1,0, c2,0},

and at least one of β1 and β2 is equal to 1.
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Deriving a Nonlinear (but Convex) Valid Inequality when K = Ln

Assume c1,0 ≥ c2,0 ⇒ β2 = 1

Consider the set of undominated v.i. µT x ≥ µ0 for given β1 = β > 0 and β2 = 1,
i.e., µ0 = min{c1,0, c2,0} = c2,0 and

µ ∈M(β, 1):={µ ∈ Rn : ∃α1, α2 ∈ bdLn s.t. µ = α1 + βc1 = α2 + c2}

=

{
µ∈Rn : µ̃>(βc̃1−c̃2)−µn(βc1,n−c2,n)=

M

2
, ‖µ̃−βc̃1‖2 =µn−βc1,n

}
where M := (β2‖c̃1‖2

2 − ‖c̃2‖2
2)− (β2c2

1,n − c2
2,n).

x ∈ conv(C1 ∪ C2) ⇒ x ∈ Ln and µ>x ≥ c2,0 ∀µ ∈M(β, 1)

⇔x ∈ Ln and inf
µ

{
µ>x : µ ∈M(β, 1)

}
≥ c2,0

⇔x ∈ Ln and inf
µ

{
µ>x : µ ∈ M̂(β, 1)

}
≥ c2,0

⇔x ∈ Ln and max
ρ,τ

{
βc>1 ρ+

M

2
τ : ρ+τ

(
βc̃1−c̃2

−βc1,n + c2,n

)
=x , ρ∈Ln

}
≥c2,0
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Convex Disjunctive Cut for K = Ln

Disjunction on second-order cone, Ln = {x ∈ Rn : xn ≥ ‖x̃‖2}:
either cT1 x ≥ c1,0 or cT2 x ≥ c2,0 with c1,0 ≥ c2,0

Theorem

For any β > 0 s.t. βc1,0 ≥ c2,0 and βc1 − c2 /∈ ±int(Ln), then the following
inequality is valid for conv(C1 ∪ C2):

2c2,0 − (βc1 + c2)>x ≤
√

((βc1 − c2)>x)
2

+ N(β) ∗ (x2
n − ‖x̃‖2

2)

where N(β) := ‖βc̃1 − c̃2‖2
2 − (βc1,n − c2,n)2.

From its construction, this inequality

exactly captures all undominated linear v.i. µT x ≥ µ0 corresponding to
β1 = β and β2 = 1, e.g., µ0 = c2,0 and µ ∈M(β, 1)

is valid and convex

reduces to the linear inequality βc>1 x ≥ c2,0 in Ln when βc1 − c2 ∈ ± bdLn
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Structure of Convex Valid Inequalities

2c2,0 − (βc1 + c2)>x ≤
√

((βc1 − c2)>x)
2

+ N(β) ∗ (x2
n − ‖x̃‖2

2)

Any further structure than convexity?

N(β)x + 2(c>2 x − c2,0)

(
βc̃1 − c̃2

−βc1,n + c2,n

)
∈ Ln

An equivalent conic quadratic form is valid, e.g., symmetry condition holds, when

C1 ∩ C2 = ∅, i.e., a proper split disjunction, or

{x ∈ Ln : βc>1 x ≥ c2,0, c
>
2 x ≥ c2,0}={x ∈ Ln : βc>1 x = c2,0, c

>
2 x = c2,0}
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When does a Single Convex Inequality Suffice?

A parametric family of convex inequalities:

For any β > 0 s.t. βc1,0 ≥ c2,0 and βc1 − c2 /∈ ±int(Ln),

2c2,0 − (βc1 + c2)>x ≤
√

((βc1 − c2)>x)
2

+ N(β) ∗ (x2
n − ‖x̃‖2

2)

is valid for conv(C1 ∪ C2).

Theorem

In certain cases such as

c1 ∈ Ln or c2 ∈ Ln, or

c1,0 = c2,0 ∈ {±1} and conv(C1 ∪ C2) is closed, e.g., in the case of split
disjunctions,

it is sufficient (for conv(C1 ∪ C2)) to consider only one inequality with β = 1.
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disjunctions,

it is sufficient (for conv(C1 ∪ C2)) to consider only one inequality with β = 1.
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Example: Nice Case

Disjunction: x3 ≥ 1 or x1 + x3 ≥ 1

conv(C1 ∪ C2) =

{
x ∈ L3 : 2− (x1 + 2x3) ≤

√
x2

3 − x2
2

}
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Not So Nice Case

There are cases when we need infinitely many convex inequalities from this family.

Recessive directions, and

conv(C1 ∪ C2) being non-closed,

play a key role in these cases.

We can still give expressions for a single inequality describing conv(C1 ∪ C2), but
it is really nasty looking...
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Example: Nasty Case

Disjunction: −x3 ≥ −1 or −x2 ≥ 0

conv(C1 ∪ C2) =
{
x ∈ L3 : x2 ≤ 1, 1 + |x1| − x3 ≤

√
1−max{0, x2}2

}
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Final Remarks

Introduce and study the properties of K-minimal and K-sublinear inequalities for
conic MIPs

For two-term disjunctions on Lorentz cone, Ln

Derive explicit expressions for disjunctive conic cuts

Cover most of the recent results on conic MIR, split, and two-term
disjunctive inequalities for Lorentz cones (i.e., Belotti et al.’11, Andersen

& Jensen’13, Modaresi et al.’13)
Extends to elementary split disjunctions on p-order cones

More intuitive and elegant derivations leading to new insights

When we can have valid conic inequalities in the original space
When a single convex inequality will suffice

Extends to disjunctions on cross-sections of the Lorentz cone (Joint work
with S. Yıldız and G. Cornuéjols)
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Thank you!
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A Simple Example for Insufficiency of Cut Generating Functions

K = L3, A = [1, 0, 0] and B = {−1, 1}, i.e.,

S(A,K,B) = {x ∈ R3 : x1 ∈ {−1, 1}, x3 ≥
√
x2

1 + x2
2}

x1

(0, 0)

x2

x3

conv(S(A,K,B)) = {x ∈ R3 : −1 ≤ x1 ≤ 1, x3 ≥
√

1 + x2
2}
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√
x2

1 + x2
2}

conv(S(A,K,B)) = {x ∈ R3 : −1 ≤ x1 ≤ 1, x3 ≥
√

1 + x2
2}

K-minimal inequalities are:

(a) µ(+) = (1; 0; 0) with η
(+)
0 = −1 and µ(−) = (−1; 0; 0) with η

(−)
0 = −1;

(b) µ(t) = (0; t;
√
t2 + 1) with η

(t)
0 = 1 for all t ∈ R.

(these can be expressed as a single conic inequality x3 ≥
√

1 + x2
2 .)

Linear inequalities in (b) cannot be generated by any cut generating function ρ(·),

i.e., ρ(Ai ) = µ
(t)
i is not possible for any function ρ(·).

[Sharp contrast to the strong conic IP dual result of Moran, Dey, & Vielma ’12. ]
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