
Mathematical Programming:
Turing-completeness and

applications to code analysis

Leo Liberti

Joint work with F. Marinelli

IBM TJ Watson Research Center, Yorktown Heights, USA

LIX, École Polytechnique, France

CMU-MINLP, June 2014 – p. 2/35



Summary of Talk

Benchmarking code

finding difficult inputs (of given size) for given codes

Static analysis by abstract interpretation

finding overapproximations of the sets of values taken by

program variables during execution

(without actually executing the code)

⇒ “code relaxations”

CMU-MINLP, June 2014 – p. 3/35



Benchmarking code

CMU-MINLP, June 2014 – p. 4/35



The hardest input

Example: algorithm Mod(n, k): decides if n (mod k) = 0 for
given n, k with n > k

1: input n, k ∈ N

2: n← n− k;
3: if n = 0 then
4: return YES
5: else if n < 0 then
6: return NO
7: else
8: goto 2
9: end if

Find difficult instances for effective benchmarking

CMU-MINLP, June 2014 – p. 5/35



The hardest input

Example: algorithm Mod
t
(n, k): decides if n (mod k) = 0 for

given n, k with n > k

1: input n, k ∈ N; t = 0 (step counter)

2: n← n− k; t← t+ 2

3: if n = 0 then
4: t← t+ 2 ; return YES

5: else if n < 0 then
6: t← t+ 2 ; return NO

7: else
8: t← t+ 1 ; goto 2

9: end if

Maximize t over varying input

CMU-MINLP, June 2014 – p. 5/35



Optimizing over executions

C: a code

V(C): set of values taken by the program variables
during execution

Formalize the following optimization problem:

max
n,k,t

t

t ≤ T

n = (n0, . . . , nT )

k = (k0, . . . , kT )

n, k ∈ V(Modt(n0, k0))

|n0|+ |k0| ≤ some given size

where n0, k0 is the given input to the Modt code

CMU-MINLP, June 2014 – p. 6/35



Mathematical programming

Translate V(Modt(n0, k0)) to a set of constraints on n, k, t

= imperative→ declarative language

Use Mathematical Programming (MP)

Fundamental question:

Can we translate any code to MP?

CMU-MINLP, June 2014 – p. 7/35



Turing completeness

Notation:

P : a MP formulation

G(P ): set of global optima of P

Let C be a code for a Universal Turing Machine (UTM)

∃P ∈ MP x ∈ G(P )⇔ x ∈ V(C) ?

In other words, is MP a Turing complete language?

CMU-MINLP, June 2014 – p. 8/35



Turing completeness

Notation:

P : a MP formulation

G(P ): set of global optima of P

Let C be a code for a Universal Turing Machine (UTM)

∃P ∈ MP x ∈ G(P )⇔ x ∈ V(C) ?

In other words, is MP a Turing complete language?

YES

Universal Diophantine Equations (UDE):

Negative answer to Hilbert’s 10th problem

Cook’s theorem: SAT is NP-complete

CMU-MINLP, June 2014 – p. 8/35



Universal Diophantine Eqns

X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X

CMU-MINLP, June 2014 – p. 9/35



Universal Diophantine Eqns

X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X

there are countably many r.e. sets

Wn = {x ∈ N | TMn(x) ↓}

CMU-MINLP, June 2014 – p. 9/35



Universal Diophantine Eqns

X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X

there are countably many r.e. sets

Wn = {x ∈ N | TMn(x) ↓}

Imperative⇔ declarative: integer roots of polys in Z<ω[a]

Wn = {x ∈ N | x is composite} ⇔ ∃a1, a2 ∈ N (a1 + 2)(a2 + 2) = x

CMU-MINLP, June 2014 – p. 9/35



Universal Diophantine Eqns

X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X

there are countably many r.e. sets

Wn = {x ∈ N | TMn(x) ↓}

Imperative⇔ declarative: integer roots of polys in Z<ω[a]

Wn = {x ∈ N | x is composite} ⇔ ∃a1, a2 ∈ N (a1 + 2)(a2 + 2) = x

Thm. [Davis, Matiyasevich, Putnam, Robinson]:
∃ one polynomial encoding every r.e. set

CMU-MINLP, June 2014 – p. 9/35



Universal Diophantine Eqns

X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X

there are countably many r.e. sets

Wn = {x ∈ N | TMn(x) ↓}

Imperative⇔ declarative: integer roots of polys in Z<ω[a]

Wn = {x ∈ N | x is composite} ⇔ ∃a1, a2 ∈ N (a1 + 2)(a2 + 2) = x

Thm. [Davis, Matiyasevich, Putnam, Robinson]:
∃ one polynomial encoding every r.e. set

UDE : ∃ p(n, x, y1, . . . , yt) ∈ Z[n, x, y] s.t.

∀n ∈ N, x ∈ Wn ⇔ ∃y ∈ N
t p(n, x, y) = 0

CMU-MINLP, June 2014 – p. 9/35



Universal Diophantine Eqns

X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X

there are countably many r.e. sets

Wn = {x ∈ N | TMn(x) ↓}

Imperative⇔ declarative: integer roots of polys in Z<ω[a]

Wn = {x ∈ N | x is composite} ⇔ ∃a1, a2 ∈ N (a1 + 2)(a2 + 2) = x

Thm. [Davis, Matiyasevich, Putnam, Robinson]:
∃ one polynomial encoding every r.e. set

UDE : ∃ p(n, x, y1, . . . , yt) ∈ Z[n, x, y] s.t.

∀n ∈ N, x ∈ Wn ⇔ ∃y ∈ N
t p(n, x, y) = 0

⇒ ∃ (polynomial integer) MP encoding every TM

CMU-MINLP, June 2014 – p. 9/35



Cook’s theorem

Cook’s theorem: a reduction

[nondeterministic polytime bounded UTM]→ SAT

We need UTM→ MP, we have SAT→ MP

UTM→ SAT: generalized Cook’s reduction

Remove boundedness: get an infinite SAT

CMU-MINLP, June 2014 – p. 10/35



Practical computation?

UDE:

tradeoff between #vars and degree

large coefficients

SAT:

SAT solver: no objective
(we need it to optimize t)

MP solver: high degree polynomials
(boolean “and”⇔ product of binary variables)

CMU-MINLP, June 2014 – p. 11/35



MP is Turing complete
A new proof

CMU-MINLP, June 2014 – p. 12/35



Approach

A simple universal register machine

Register = program variable

Imperative→ declarative: use MP constraints

rjt = value of register j at iteration t

Objective function maximizes number of steps

CMU-MINLP, June 2014 – p. 13/35



Minsky’s Register Machine

Infinitely many registers Rj

Each Rj holds an arbitrary natural number

Two types b of instructions: given j,

1. b = 0: increase Rj, go to instruction c = k

2. b = 1: if Rj > 0 decrease Rj, go to c = k; else go to
c = ℓ

3. Thm.: the MRM is a Universal Turing Machine

Each instruction is a quadruplet (j, b, k, ℓ)

CMU-MINLP, June 2014 – p. 14/35



MRM Example

Problem: Given n ≥ k ∈ N, is n (mod k) = 0?
Algorithm: Modt(n, k)

1: n← n− k

2: if n = 0 then return YES

3: else if n < 0 then return NO

4: else go to 1

R1 = n, R2 = k, R3 = k′ (k backup), R4 = a (output: 1 iff k|n) input (n, k, 0, 0)

Line (j, b, k, ℓ) Meaning Comment

0 - - - - stop

1 2 1 2 4 if k > 0 decrease k and goto 2, else 4 start here

2 3 0 3 0 increase k′ and goto 3 invariant: k + k′

3 1 1 1 0 if n > 0 decrease n and goto 1, else 0 n = 0 before k ⇒ k 6 |n

4 1 1 5 8 if n > 0 decrease n and goto 5, else 8 n, k = 0: ⇒ k|n

5 1 0 6 0 increase n and goto 6

6 3 1 7 1 if k′ > 0 decrease k′ and goto 7, else 1 restore k using k′

7 2 0 6 0 increase k and goto 6

8 4 0 0 0 increase a and goto 0 set a = 1

CMU-MINLP, June 2014 – p. 15/35



MP (essentially)

b = 0 ⇒ (Rj = Rj + 1) ∧ (c = k)

(b = 1) ∧Rj = 0 ⇒ c = ℓ

(b = 1) ∧Rj > 0 ⇒ (Rj = Rj − 1) ∧ (c = k)

Encode by means of decision vars and constraints

infinite number of variables and constraints

polynomials of degree ≤ 3 (some trilinear terms)

if bounded, can be reformulated to finite MILP

integer linear feasibility problem

can be solved with CPLEX in practice

Yet another Thm: MP is Turing complete

CMU-MINLP, June 2014 – p. 16/35



Some details

Decision variables

rjt ∈ N+: content of register j at time t

ρjt ∈ {0, 1}: 1 iff Rj = 0 at time t

xit ∈ {0, 1}: 1 iff c = i at time t

Examples of constraints:

if c = i, b = 0, set Rj = Rj + 1:

∀t, i xi,t−1(1− b)rjt = xi,t−1(1− b)(rj,t−1 + 1)

if c = i, b = 1 and Rj > 0, set c = k:
∀t, i xi,t−1bρj,t−1xkt = xi,t−1bρj,t−1

if c = 0, stop
∀t x0tx0,t−1 = x0,t−1

Correctness proof: by induction on t

CMU-MINLP, June 2014 – p. 17/35



Back to benchmarking

input values for registers: decision variables

xit = 1 iff instruction i executed at time t

instruction 0: stop (by convention)

minimize
∑

t∈N

x0t

Sanity check

Modt(n, k) yields k = 1 for all tested values of n

Issue: MRM too simple to run meaningful codes

CMU-MINLP, June 2014 – p. 18/35



Code relaxations

CMU-MINLP, June 2014 – p. 19/35



The trace of a code

[Böhm & Jacopini ’66]: language Turing-complete if it has:

1. Tests

2. Loops

3. Juxtaposition of commands

L : a Turing complete language

C(x): a program code in L involving variables x = (x1, . . . , xn)

∀i ≤ n, X̄i sequence of values taken by xi during execution of C

X̄ = (X̄1, . . . , X̄n): the trace of C(x)

The trace is not computable

CMU-MINLP, June 2014 – p. 20/35



Semantics

Relaxation of Turing completeness: remove Property 3

∀i look at X̂i = set of values occurring in X̄i

Concrete semantics X̂ = (X̂1, . . . , X̂n): not computable

X: relaxation(=overapproximation) of X̂

E.g. X ∈ boxes, polyhedra, etc.

For some set classes, X is computable

Abstract semantics: assignment of X to x

CMU-MINLP, June 2014 – p. 21/35



Flowgraph of a code

//(1)

int x = 1; //(2)

//(3)

while(x <= 100){ //(4)

x = x + 1; //(5)

}

//(6)

1(E)

6(X)

2(A) 4(T)3(J)

5(A)

τ4=
[−∞,100]

φ2(x̄) = 1

φ5(x̄) = x̄+ 1

E=entry, X=exit, A=assignment, J=join, T=test

CMU-MINLP, June 2014 – p. 22/35



Semantic eqns. of a flowgraph

X11 = Id(input)

X21 = φ2(X11)

X31 = X21 ∪X61

X41 = X31 ∩ τ4

X51 = φ5(X41)

X61 = X31 ∩ (X r τ4)

In the abstract semantics:

X11 = [−∞,∞]

X21 = [1, 1]

X31 = [1, 1] ∪X61

X41 = X31 ∩ [−∞, 100]

X51 = X41 + [1, 1]

X61 = X31 ∩ [101,∞]

CMU-MINLP, June 2014 – p. 23/35



Fixed points

C: an abstract domain (intervals, polyhedra, etc.)

Semantic equations: ∀i ≤ m, j ≤ n Xij = Fij(X)

⇒ X = F (X)

Solutions in C are called fixed points (FP)

If X is a FP, then it is invariant w.r.t. F

⇒ action of the code C(·) on X does not change it

⇒ X ⊇ X̂

Tightest relaxation: least FP (LFP) w.r.t. set inclusion

CMU-MINLP, June 2014 – p. 24/35



Example

X11 = [−∞,∞]

X21 = [1, 1]

X31 = [1, 1] ∪X61

X41 = X31 ∩ [−∞, 100]

X51 = X31 ∩ [101,∞]

X61 = X41 + [1, 1].

X11 = [−∞,∞] X21 = [1, 1] X31 = [1, 101]

X41 = [1, 100] X51 = [101, 101] X61 = [2, 101]

CMU-MINLP, June 2014 – p. 25/35



Debugging

Suppose x is an index for an array y

Suppose y has > 100 allocated memory cells

LFP X41 = [1, 100]⇒ proves that 6 ∃ memory overflow
due to x

Automated debugging :

fundamental in critical system codes, e.g.:

Ariane rockets

A380

CMU-MINLP, June 2014 – p. 26/35



MP for semantic eqns

Fix a particular abstract domain, e.g. intervals

X = F (X): system of interval equations

Look for LFP: inf⊆{X | X ⊇ F (X)}

Model using MP

CMU-MINLP, June 2014 – p. 27/35



Decision variables

For each instruction i ≤ m and variable xj with j ≤ n:

Consider an interval Xij = [xLij , x
U
ij ]

Let x̄ij = 1 iff Xij = ∅

Represent Xij by triplet (xLij , x
U
ij , x̄ij)

CMU-MINLP, June 2014 – p. 28/35



Objective function

Define an interval width |Xij | = x̄ij(x
U
ij − xLij) + log x̄ij

If interval 6= ∅, | · | gives the interval length

If interval = ∅, | · | unbounded below (−∞)

Extend to |X| =
∑

i≤m

j≤n

|Xij |

Lemma: | · | monotonic with interval inclusion lattice

Objective function: min |X|

CMU-MINLP, June 2014 – p. 29/35



The interval MP

MP constraints to model the interval semantics of:

1. Assignments

constant assignment, identity assignment

positive and negative constant products

positive odd and even powers

general sum and products

also attempt to model division

2. Loops (by means of interval unions)

3. Tests (by means of interval intersections)

Get a MINLP (products, exps, binary, integer, continuous vars)

Solution? Forget it! But theoretical interest

CMU-MINLP, June 2014 – p. 30/35



Example of constraints

Consistency: ∀i ≤ m, j ≤ n xLij ≤ xUij

Sum: ∀i, k, ℓ ≤ m and j, h, f ≤ n

x̄ij = x̄khx̄ℓf

x̄ij → xLij ≤ xLkh + xLℓf

x̄ij → xUij ≥ xUkh + xUℓf .

Union: ∀i, k, ℓ ≤ m and j, h, f ≤ n

(1− x̄ij) = (1− x̄kh)(1− x̄ℓf )

x̄ij → xLij ≤ min(xLkh, x
L
ℓf )

x̄ij → xUij ≥ max(xUkh, x
U
ℓf )

CMU-MINLP, June 2014 – p. 31/35



Properties of the MP

P : interval MINLP modelling the LFP X∗ of X = F (X)

Thm: P is feasible and bounded iff X∗ is non-empty and
bounded

Thm: P is feasible and unbounded iff X∗ is empty and
bounded (empty box with bounded interval components)

Thm: P is infeasible iff X∗ is unbounded

Solving P ⇔ Determining X∗

CMU-MINLP, June 2014 – p. 32/35



Bounded codes

General MINLP : for universal computation

Given two additional assumptions:

1. X∗ is bounded (= execution terminates)

2. Solution to P approximates X∗ to a given ǫ > 0

⇒ ∃ MILP approximation
(lots of equality constraints and big Ms)

Solves reasonably fast

CMU-MINLP, June 2014 – p. 33/35



Computational results

Using MILP approximation with ⊤ = [−M,M ] = [−5000, 5000]

Instance MP PI

Instance Lines Vars CPU | · | |⊤| |¬⊤| CPU | · | |⊤| |¬⊤|

short 31 32 3 0.008 250002 25 2 0 250023 25 23
short 32 20 3 0.02 270077 27 77 0 270077 27 77
short 35 22 3 0.02 32028 3 2028 0 32028 3 2028
short 37 25 3 0.008 420000 42 0 0 470000 47 0
short 38 35 3 0.12 34501 3 4501 0 34501 3 4501

long 1 213 4 0.768 90000 9 0 0.004 90052 9 52
long 2 217 4 0.916 80000 8 0 0.008 90002 9 2
long 3 130 4 0.64 120426 12 426 0.06 4.36e+06 436 246
long 4 195 4 0.412 120000 12 0 0.008 120002 12 2
long 5 216 4 0.772 110000 11 0 0.004 120010 12 10

arrays 22 6 0.04 300139 30 139 - - - -
fun arrays 53 6 0.016 30000 3 0 - - - -
functions 62 7 0.112 101190 10 1190 - - - -

subway 62 34 9.25258 1.77e+07 1766 675 - - - -

WARNING: Comparison against research code, not commercial codes

CMU-MINLP, June 2014 – p. 34/35



It would be nice to

Benchmarking: model C instead of MRM

Answer more questions
E.g. “best nontrivial algorithm for given input/output”

Code relaxations: integrate black-boxes
(for the analysis of complex codes)

References:

1. [L. et al. ENDM 2010]

2. [Goubault et al., ENTCS 2010]

3. [L. and Marinelli, JOCO, OnlineFirst]

CMU-MINLP, June 2014 – p. 35/35


	Postdoc announcement
	Summary of Talk
	Benchmarking code
	The hardest input
	The hardest input

	Optimizing over executions
	Mathematical programming
	Turing completeness
	Turing completeness

	Universal Diophantine Eqns
	Universal Diophantine Eqns
	Universal Diophantine Eqns
	Universal Diophantine Eqns
	Universal Diophantine Eqns
	Universal Diophantine Eqns

	Cook's theorem
	Practical computation?
	MP is Turing complete \ A new proof
	Approach
	Minsky's Register Machine
	MRM Example
	MP (essentially)
	Some details
	Back to benchmarking
	Code relaxations
	The trace of a code
	Semantics
	Flowgraph of a code
	Semantic eqns.~of a flowgraph
	Fixed points
	Example
	Debugging
	MP for semantic eqns
	Decision variables
	Objective function
	The interval MP
	Example of constraints
	Properties of the MP
	Bounded codes
	Computational results
	It would be nice to

