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Summary of Talk

Benchmarking code

finding difficult inputs (of given size) for given codes

Static analysis by abstract interpretation

finding overapproximations of the sets of values taken by

program variables during execution

(without actually executing the code)

⇒ “code relaxations”
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Benchmarking code
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The hardest input

Example: algorithm Mod(n, k): decides if n (mod k) = 0 for
given n, k with n > k

1: input n, k ∈ N

2: n← n− k;
3: if n = 0 then
4: return YES
5: else if n < 0 then
6: return NO
7: else
8: goto 2
9: end if

Find difficult instances for effective benchmarking
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The hardest input

Example: algorithm Mod
t
(n, k): decides if n (mod k) = 0 for

given n, k with n > k

1: input n, k ∈ N; t = 0 (step counter)

2: n← n− k; t← t+ 2

3: if n = 0 then
4: t← t+ 2 ; return YES

5: else if n < 0 then
6: t← t+ 2 ; return NO

7: else
8: t← t+ 1 ; goto 2

9: end if

Maximize t over varying input
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Optimizing over executions

C: a code

V(C): set of values taken by the program variables
during execution

Formalize the following optimization problem:

max
n,k,t

t

t ≤ T

n = (n0, . . . , nT )

k = (k0, . . . , kT )

n, k ∈ V(Modt(n0, k0))

|n0|+ |k0| ≤ some given size

where n0, k0 is the given input to the Modt code
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Mathematical programming

Translate V(Modt(n0, k0)) to a set of constraints on n, k, t

= imperative→ declarative language

Use Mathematical Programming (MP)

Fundamental question:

Can we translate any code to MP?
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Turing completeness

Notation:

P : a MP formulation

G(P ): set of global optima of P

Let C be a code for a Universal Turing Machine (UTM)

∃P ∈ MP x ∈ G(P )⇔ x ∈ V(C) ?

In other words, is MP a Turing complete language?
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Turing completeness

Notation:

P : a MP formulation

G(P ): set of global optima of P

Let C be a code for a Universal Turing Machine (UTM)

∃P ∈ MP x ∈ G(P )⇔ x ∈ V(C) ?

In other words, is MP a Turing complete language?

YES

Universal Diophantine Equations (UDE):

Negative answer to Hilbert’s 10th problem

Cook’s theorem: SAT is NP-complete
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Universal Diophantine Eqns

X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X
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X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X

there are countably many r.e. sets

Wn = {x ∈ N | TMn(x) ↓}
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⇒ ∃ algorithm which terminates iff x ∈ X
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Imperative⇔ declarative: integer roots of polys in Z<ω[a]

Wn = {x ∈ N | x is composite} ⇔ ∃a1, a2 ∈ N (a1 + 2)(a2 + 2) = x
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Universal Diophantine Eqns

X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X

there are countably many r.e. sets

Wn = {x ∈ N | TMn(x) ↓}

Imperative⇔ declarative: integer roots of polys in Z<ω[a]

Wn = {x ∈ N | x is composite} ⇔ ∃a1, a2 ∈ N (a1 + 2)(a2 + 2) = x

Thm. [Davis, Matiyasevich, Putnam, Robinson]:
∃ one polynomial encoding every r.e. set

UDE : ∃ p(n, x, y1, . . . , yt) ∈ Z[n, x, y] s.t.

∀n ∈ N, x ∈ Wn ⇔ ∃y ∈ N
t p(n, x, y) = 0
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Universal Diophantine Eqns

X ⊆ N recursively enumerable

, ∃ algorithm for listing all members of X
⇒ ∃ algorithm which terminates iff x ∈ X

there are countably many r.e. sets

Wn = {x ∈ N | TMn(x) ↓}

Imperative⇔ declarative: integer roots of polys in Z<ω[a]

Wn = {x ∈ N | x is composite} ⇔ ∃a1, a2 ∈ N (a1 + 2)(a2 + 2) = x

Thm. [Davis, Matiyasevich, Putnam, Robinson]:
∃ one polynomial encoding every r.e. set

UDE : ∃ p(n, x, y1, . . . , yt) ∈ Z[n, x, y] s.t.

∀n ∈ N, x ∈ Wn ⇔ ∃y ∈ N
t p(n, x, y) = 0

⇒ ∃ (polynomial integer) MP encoding every TM
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Cook’s theorem

Cook’s theorem: a reduction

[nondeterministic polytime bounded UTM]→ SAT

We need UTM→ MP, we have SAT→ MP

UTM→ SAT: generalized Cook’s reduction

Remove boundedness: get an infinite SAT
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Practical computation?

UDE:

tradeoff between #vars and degree

large coefficients

SAT:

SAT solver: no objective
(we need it to optimize t)

MP solver: high degree polynomials
(boolean “and”⇔ product of binary variables)
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MP is Turing complete
A new proof
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Approach

A simple universal register machine

Register = program variable

Imperative→ declarative: use MP constraints

rjt = value of register j at iteration t

Objective function maximizes number of steps
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Minsky’s Register Machine

Infinitely many registers Rj

Each Rj holds an arbitrary natural number

Two types b of instructions: given j,

1. b = 0: increase Rj, go to instruction c = k

2. b = 1: if Rj > 0 decrease Rj, go to c = k; else go to
c = ℓ

3. Thm.: the MRM is a Universal Turing Machine

Each instruction is a quadruplet (j, b, k, ℓ)
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MRM Example

Problem: Given n ≥ k ∈ N, is n (mod k) = 0?
Algorithm: Modt(n, k)

1: n← n− k

2: if n = 0 then return YES

3: else if n < 0 then return NO

4: else go to 1

R1 = n, R2 = k, R3 = k′ (k backup), R4 = a (output: 1 iff k|n) input (n, k, 0, 0)

Line (j, b, k, ℓ) Meaning Comment

0 - - - - stop

1 2 1 2 4 if k > 0 decrease k and goto 2, else 4 start here

2 3 0 3 0 increase k′ and goto 3 invariant: k + k′

3 1 1 1 0 if n > 0 decrease n and goto 1, else 0 n = 0 before k ⇒ k 6 |n

4 1 1 5 8 if n > 0 decrease n and goto 5, else 8 n, k = 0: ⇒ k|n

5 1 0 6 0 increase n and goto 6

6 3 1 7 1 if k′ > 0 decrease k′ and goto 7, else 1 restore k using k′

7 2 0 6 0 increase k and goto 6

8 4 0 0 0 increase a and goto 0 set a = 1
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MP (essentially)

b = 0 ⇒ (Rj = Rj + 1) ∧ (c = k)

(b = 1) ∧Rj = 0 ⇒ c = ℓ

(b = 1) ∧Rj > 0 ⇒ (Rj = Rj − 1) ∧ (c = k)

Encode by means of decision vars and constraints

infinite number of variables and constraints

polynomials of degree ≤ 3 (some trilinear terms)

if bounded, can be reformulated to finite MILP

integer linear feasibility problem

can be solved with CPLEX in practice

Yet another Thm: MP is Turing complete
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Some details

Decision variables

rjt ∈ N+: content of register j at time t

ρjt ∈ {0, 1}: 1 iff Rj = 0 at time t

xit ∈ {0, 1}: 1 iff c = i at time t

Examples of constraints:

if c = i, b = 0, set Rj = Rj + 1:

∀t, i xi,t−1(1− b)rjt = xi,t−1(1− b)(rj,t−1 + 1)

if c = i, b = 1 and Rj > 0, set c = k:
∀t, i xi,t−1bρj,t−1xkt = xi,t−1bρj,t−1

if c = 0, stop
∀t x0tx0,t−1 = x0,t−1

Correctness proof: by induction on t
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Back to benchmarking

input values for registers: decision variables

xit = 1 iff instruction i executed at time t

instruction 0: stop (by convention)

minimize
∑

t∈N

x0t

Sanity check

Modt(n, k) yields k = 1 for all tested values of n

Issue: MRM too simple to run meaningful codes
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Code relaxations
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The trace of a code

[Böhm & Jacopini ’66]: language Turing-complete if it has:

1. Tests

2. Loops

3. Juxtaposition of commands

L : a Turing complete language

C(x): a program code in L involving variables x = (x1, . . . , xn)

∀i ≤ n, X̄i sequence of values taken by xi during execution of C

X̄ = (X̄1, . . . , X̄n): the trace of C(x)

The trace is not computable

CMU-MINLP, June 2014 – p. 20/35



Semantics

Relaxation of Turing completeness: remove Property 3

∀i look at X̂i = set of values occurring in X̄i

Concrete semantics X̂ = (X̂1, . . . , X̂n): not computable

X: relaxation(=overapproximation) of X̂

E.g. X ∈ boxes, polyhedra, etc.

For some set classes, X is computable

Abstract semantics: assignment of X to x
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Flowgraph of a code

//(1)

int x = 1; //(2)

//(3)

while(x <= 100){ //(4)

x = x + 1; //(5)

}

//(6)

1(E)

6(X)

2(A) 4(T)3(J)

5(A)

τ4=
[−∞,100]

φ2(x̄) = 1

φ5(x̄) = x̄+ 1

E=entry, X=exit, A=assignment, J=join, T=test
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Semantic eqns. of a flowgraph

X11 = Id(input)

X21 = φ2(X11)

X31 = X21 ∪X61

X41 = X31 ∩ τ4

X51 = φ5(X41)

X61 = X31 ∩ (X r τ4)

In the abstract semantics:

X11 = [−∞,∞]

X21 = [1, 1]

X31 = [1, 1] ∪X61

X41 = X31 ∩ [−∞, 100]

X51 = X41 + [1, 1]

X61 = X31 ∩ [101,∞]
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Fixed points

C: an abstract domain (intervals, polyhedra, etc.)

Semantic equations: ∀i ≤ m, j ≤ n Xij = Fij(X)

⇒ X = F (X)

Solutions in C are called fixed points (FP)

If X is a FP, then it is invariant w.r.t. F

⇒ action of the code C(·) on X does not change it

⇒ X ⊇ X̂

Tightest relaxation: least FP (LFP) w.r.t. set inclusion
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Example

X11 = [−∞,∞]

X21 = [1, 1]

X31 = [1, 1] ∪X61

X41 = X31 ∩ [−∞, 100]

X51 = X31 ∩ [101,∞]

X61 = X41 + [1, 1].

X11 = [−∞,∞] X21 = [1, 1] X31 = [1, 101]

X41 = [1, 100] X51 = [101, 101] X61 = [2, 101]
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Debugging

Suppose x is an index for an array y

Suppose y has > 100 allocated memory cells

LFP X41 = [1, 100]⇒ proves that 6 ∃ memory overflow
due to x

Automated debugging :

fundamental in critical system codes, e.g.:

Ariane rockets

A380
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MP for semantic eqns

Fix a particular abstract domain, e.g. intervals

X = F (X): system of interval equations

Look for LFP: inf⊆{X | X ⊇ F (X)}

Model using MP
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Decision variables

For each instruction i ≤ m and variable xj with j ≤ n:

Consider an interval Xij = [xLij , x
U
ij ]

Let x̄ij = 1 iff Xij = ∅

Represent Xij by triplet (xLij , x
U
ij , x̄ij)
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Objective function

Define an interval width |Xij | = x̄ij(x
U
ij − xLij) + log x̄ij

If interval 6= ∅, | · | gives the interval length

If interval = ∅, | · | unbounded below (−∞)

Extend to |X| =
∑

i≤m

j≤n

|Xij |

Lemma: | · | monotonic with interval inclusion lattice

Objective function: min |X|
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The interval MP

MP constraints to model the interval semantics of:

1. Assignments

constant assignment, identity assignment

positive and negative constant products

positive odd and even powers

general sum and products

also attempt to model division

2. Loops (by means of interval unions)

3. Tests (by means of interval intersections)

Get a MINLP (products, exps, binary, integer, continuous vars)

Solution? Forget it! But theoretical interest
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Example of constraints

Consistency: ∀i ≤ m, j ≤ n xLij ≤ xUij

Sum: ∀i, k, ℓ ≤ m and j, h, f ≤ n

x̄ij = x̄khx̄ℓf

x̄ij → xLij ≤ xLkh + xLℓf

x̄ij → xUij ≥ xUkh + xUℓf .

Union: ∀i, k, ℓ ≤ m and j, h, f ≤ n

(1− x̄ij) = (1− x̄kh)(1− x̄ℓf )

x̄ij → xLij ≤ min(xLkh, x
L
ℓf )

x̄ij → xUij ≥ max(xUkh, x
U
ℓf )
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Properties of the MP

P : interval MINLP modelling the LFP X∗ of X = F (X)

Thm: P is feasible and bounded iff X∗ is non-empty and
bounded

Thm: P is feasible and unbounded iff X∗ is empty and
bounded (empty box with bounded interval components)

Thm: P is infeasible iff X∗ is unbounded

Solving P ⇔ Determining X∗
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Bounded codes

General MINLP : for universal computation

Given two additional assumptions:

1. X∗ is bounded (= execution terminates)

2. Solution to P approximates X∗ to a given ǫ > 0

⇒ ∃ MILP approximation
(lots of equality constraints and big Ms)

Solves reasonably fast
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Computational results

Using MILP approximation with ⊤ = [−M,M ] = [−5000, 5000]

Instance MP PI

Instance Lines Vars CPU | · | |⊤| |¬⊤| CPU | · | |⊤| |¬⊤|

short 31 32 3 0.008 250002 25 2 0 250023 25 23
short 32 20 3 0.02 270077 27 77 0 270077 27 77
short 35 22 3 0.02 32028 3 2028 0 32028 3 2028
short 37 25 3 0.008 420000 42 0 0 470000 47 0
short 38 35 3 0.12 34501 3 4501 0 34501 3 4501

long 1 213 4 0.768 90000 9 0 0.004 90052 9 52
long 2 217 4 0.916 80000 8 0 0.008 90002 9 2
long 3 130 4 0.64 120426 12 426 0.06 4.36e+06 436 246
long 4 195 4 0.412 120000 12 0 0.008 120002 12 2
long 5 216 4 0.772 110000 11 0 0.004 120010 12 10

arrays 22 6 0.04 300139 30 139 - - - -
fun arrays 53 6 0.016 30000 3 0 - - - -
functions 62 7 0.112 101190 10 1190 - - - -

subway 62 34 9.25258 1.77e+07 1766 675 - - - -

WARNING: Comparison against research code, not commercial codes
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It would be nice to

Benchmarking: model C instead of MRM

Answer more questions
E.g. “best nontrivial algorithm for given input/output”

Code relaxations: integrate black-boxes
(for the analysis of complex codes)
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