Mathematical Programming: Turing-completeness and applications to code analysis

Leo Liberti
Joint work with F. Marinelli

IBM TJ Watson Research Center, Yorktown Heights, USA
LIX, École Polytechnique, France
Benchmarking code

- finding difficult inputs (of given size) for given codes

Static analysis by abstract interpretation

- finding overapproximations of the sets of values taken by program variables during execution
 (without actually executing the code)

⇒ “code relaxations”
Benchmarking code
The hardest input

Example: algorithm $\text{Mod}(n, k)$: decides if $n \mod k = 0$ for given n, k with $n > k$

1: input $n, k \in \mathbb{N}$
2: $n \leftarrow n - k$
3: if $n = 0$ then
4: return YES
5: else if $n < 0$ then
6: return NO
7: else
8: goto 2
9: end if

Find difficult instances for effective benchmarking
The hardest input

Example: algorithm $\text{Mod}_t(n, k)$: decides if $n \pmod{k} = 0$ for given n, k with $n > k$

1: input $n, k \in \mathbb{N}$; \hspace{1cm} $t = 0$ (step counter)
2: $n \leftarrow n - k$; \hspace{1cm} $t \leftarrow t + 2$
3: if $n = 0$ then
4: \hspace{1cm} $t \leftarrow t + 2$; return YES
5: else if $n < 0$ then
6: \hspace{1cm} $t \leftarrow t + 2$; return NO
7: else
8: \hspace{1cm} $t \leftarrow t + 1$; goto 2
9: end if

Maximize t over varying input
Optimizing over executions

- \(C \): a code
- \(\mathcal{V}(C) \): set of values taken by the program variables during execution

Formalize the following optimization problem:

\[
\begin{align*}
\text{max} & \quad t \\
\text{subject to} & \quad t \leq T \\
& \quad n = (n_0, \ldots, n_T) \\
& \quad k = (k_0, \ldots, k_T) \\
& \quad n, k \in \mathcal{V}(\text{Mod}_t(n_0, k_0)) \\
& \quad |n_0| + |k_0| \leq \text{some given size}
\end{align*}
\]

where \(n_0, k_0 \) is the given input to the \(\text{Mod}_t \) code
Translate $\forall (\text{Mod}_t(n_0, k_0))$ to a set of constraints on n, k, t

= imperative \rightarrow declarative language

Use Mathematical Programming (MP)

Fundamental question:

Can we translate any code to MP?
Turing completeness

Notation:
- P: a MP formulation
- $G(P)$: set of global optima of P

Let C be a code for a Universal Turing Machine (UTM)

$$\exists P \in \text{MP} \quad x \in G(P) \iff x \in \mathcal{V}(C)$$

In other words, is MP a Turing complete language?
Turing completeness

Notation:
- P: a MP formulation
- $G(P)$: set of global optima of P

Let C be a code for a Universal Turing Machine (UTM)

\[\exists P \in \text{MP} \quad x \in G(P) \iff x \in V(C) \]

In other words, is MP a Turing complete language?

YES

Universal Diophantine Equations (UDE):

Negative answer to Hilbert’s 10th problem

Cook’s theorem: SAT is NP-complete
Universal Diophantine Eqns

- $X \subseteq \mathbb{N}$ recursively enumerable
 - $\triangleq \exists$ algorithm for listing all members of X
 - $\Rightarrow \exists$ algorithm which terminates iff $x \in X$
Universal Diophantine Eqns

\[X \subseteq \mathbb{N} \text{ recursively enumerable} \]
\[\triangleq \exists \text{ algorithm for listing all members of } X \]
\[\Rightarrow \exists \text{ algorithm which terminates iff } x \in X \]

there are countably many r.e. sets
\[W_n = \{ x \in \mathbb{N} \mid \text{TM}_n(x) \downarrow \} \]
Universal Diophantine Eqns

- $X \subseteq \mathbb{N}$ recursively enumerable
 - $\triangleq \exists$ algorithm for listing all members of X
 - $\Rightarrow \exists$ algorithm which terminates iff $x \in X$

- there are countably many r.e. sets
 - $W_n = \{x \in \mathbb{N} | \text{TM}_n(x) \downarrow\}$

- Imperative \iff declarative: integer roots of polys in $\mathbb{Z}^{\omega}[a]$
 - $W_n = \{x \in \mathbb{N} | x \text{ is composite}\} \iff \exists a_1, a_2 \in \mathbb{N} \ (a_1 + 2)(a_2 + 2) = x$
Universal Diophantine Eqns

- \(X \subseteq \mathbb{N} \) recursively enumerable
 \[\triangleq \exists \text{ algorithm for listing all members of } X \]
 \[\Rightarrow \exists \text{ algorithm which terminates iff } x \in X \]

there are countably many r.e. sets
\[W_n = \{ x \in \mathbb{N} \mid \text{TM}_n(x) \downarrow \} \]

Imperative \(\iff \) declarative: integer roots of polys in \(\mathbb{Z}^{<\omega}[a] \)
\[W_n = \{ x \in \mathbb{N} \mid x \text{ is composite} \} \iff \exists a_1, a_2 \in \mathbb{N} \ (a_1 + 2)(a_2 + 2) = x \]

Thm. [Davis, Matiyasevich, Putnam, Robinson]:
\[\exists \text{ one polynomial encoding every r.e. set} \]
Universal Diophantine Eqns

- $X \subseteq \mathbb{N}$ recursively enumerable
 - $\triangleq \exists$ algorithm for listing all members of X
 - $\Rightarrow \exists$ algorithm which terminates iff $x \in X$

- There are countably many r.e. sets
 - $W_n = \{x \in \mathbb{N} \mid \text{TM}_n(x) \downarrow\}$

- Imperative \iff declarative: integer roots of polys in $\mathbb{Z}^{\omega}[a]$
 - $W_n = \{x \in \mathbb{N} \mid x \text{ is composite}\} \iff \exists a_1, a_2 \in \mathbb{N} (a_1 + 2)(a_2 + 2) = x$

- Thm. [Davis, Matiyasevich, Putnam, Robinson]:
 - \exists one polynomial encoding every r.e. set

- UDE: $\exists p(n, x, y_1, \ldots, y_t) \in \mathbb{Z}[n, x, y] \text{ s.t.}$
 - $\forall n \in \mathbb{N}, x \in W_n \iff \exists y \in \mathbb{N}^t \ p(n, x, y) = 0$
Universal Diophantine Eqns

- $X \subseteq \mathbb{N}$ recursively enumerable
 \[\triangleq \exists \text{ algorithm for listing all members of } X \]
 \[\Rightarrow \exists \text{ algorithm which terminates iff } x \in X \]

- there are countably many r.e. sets
 \[W_n = \{ x \in \mathbb{N} \mid \text{TM}_n(x) \downarrow \} \]

- Imperative \iff declarative: integer roots of polys in $\mathbb{Z}^{<\omega}[a]$
 \[W_n = \{ x \in \mathbb{N} \mid x \text{ is composite} \} \iff \exists a_1, a_2 \in \mathbb{N} \ (a_1 + 2)(a_2 + 2) = x \]

- Thm. [Davis, Matiyasevich, Putnam, Robinson]:
 \[\exists \text{ one polynomial encoding every r.e. set} \]

- **UDE**: \[\exists p(n, x, y_1, \ldots, y_t) \in \mathbb{Z}[n, x, y] \text{ s.t.} \]
 \[\forall n \in \mathbb{N}, x \in W_n \iff \exists y \in \mathbb{N}^t \ p(n, x, y) = 0 \]

- $\Rightarrow \exists$ (polynomial integer) MP encoding every TM
Cook’s theorem

Cook’s theorem: a reduction

[non-deterministic polytime bounded UTM] → SAT

- We need UTM → MP, we have SAT → MP
- UTM → SAT: generalized Cook’s reduction
- Remove boundedness: get an infinite SAT
Practical computation?

- **UDE:**
 - tradeoff between \#vars and degree
 - large coefficients

- **SAT:**
 - SAT solver: no objective

 \((\text{we need it to optimize } t)\)
 - MP solver: high degree polynomials

 \((\text{boolean “and” } \iff \text{ product of binary variables})\)
MP is Turing complete
A new proof
Approach

- A simple universal register machine
- Register = program variable
- Imperative \rightarrow declarative: use MP constraints
- $r_{jt} = \text{value of register } j \text{ at iteration } t$
- Objective function maximizes number of steps
Minsky’s Register Machine

- Infinitely many registers R_j
- Each R_j holds an arbitrary natural number
- Two types b of instructions: given j,
 1. $b = 0$: increase R_j, go to instruction $c = k$
 2. $b = 1$: if $R_j > 0$ decrease R_j, go to $c = k$; else go to $c = \ell$
- **Thm.**: the MRM is a Universal Turing Machine
- Each instruction is a quadruplet (j, b, k, ℓ)
MRM Example

Problem: Given $n \geq k \in \mathbb{N}$, is $n \mod k = 0$?

Algorithm: $\text{Mod}_t(n, k)$

1: $n \leftarrow n - k$
2: if $n = 0$ then return YES
3: else if $n < 0$ then return NO
4: else go to 1

$R_1 = n, R_2 = k, R_3 = k'$ (k backup), $R_4 = a$ (output: 1 iff $k|n$)

<table>
<thead>
<tr>
<th>Line</th>
<th>(j, b, k, ℓ)</th>
<th>Meaning</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>- - - -</td>
<td>stop</td>
<td>start here</td>
</tr>
<tr>
<td>1</td>
<td>2 1 2 4</td>
<td>if $k > 0$ decrease k and goto 2, else 4</td>
<td>invariant: $k + k'$</td>
</tr>
<tr>
<td>2</td>
<td>3 0 3 0</td>
<td>increase k' and goto 3</td>
<td>$n = 0$ before $k \Rightarrow k \nmid n$</td>
</tr>
<tr>
<td>3</td>
<td>1 1 1 0</td>
<td>if $n > 0$ decrease n and goto 1, else 0</td>
<td>$n, k = 0: \Rightarrow k</td>
</tr>
<tr>
<td>4</td>
<td>1 1 5 8</td>
<td>if $n > 0$ decrease n and goto 5, else 8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 0 6 0</td>
<td>increase n and goto 6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3 1 7 1</td>
<td>if $k' > 0$ decrease k' and goto 7, else 1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2 0 6 0</td>
<td>increase k and goto 6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4 0 0 0</td>
<td>increase a and goto 0</td>
<td></td>
</tr>
</tbody>
</table>

input $(n, k, 0, 0)$
MP (essentially)

\[
\begin{align*}
 b = 0 & \Rightarrow (R_j = R_j + 1) \land (c = k) \\
 (b = 1) \land R_j = 0 & \Rightarrow c = \ell \\
 (b = 1) \land R_j > 0 & \Rightarrow (R_j = R_j - 1) \land (c = k)
\end{align*}
\]

Encode by means of decision vars and constraints

- infinite number of variables and constraints
- polynomials of degree \(\leq 3 \) (some trilinear terms)
- if bounded, can be reformulated to finite MILP
- integer linear feasibility problem
- can be solved with CPLEX in practice
- *Yet another* **Thm**: MP is Turing complete
Some details

- **Decision variables**
 - $r_{jt} \in \mathbb{N}_+$: content of register j at time t
 - $\rho_{jt} \in \{0, 1\}$: 1 iff $R_j = 0$ at time t
 - $x_{it} \in \{0, 1\}$: 1 iff $c = i$ at time t

- **Examples of constraints:**
 - if $c = i$, $b = 0$, set $R_j = R_j + 1$:
 \[\forall t, i \quad x_{i,t-1}(1 - b)r_{jt} = x_{i,t-1}(1 - b)(r_{j,t-1} + 1) \]
 - if $c = i$, $b = 1$ and $R_j > 0$, set $c = k$:
 \[\forall t, i \quad x_{i,t-1}b\rho_{j,t-1}x_{kt} = x_{i,t-1}b\rho_{j,t-1} \]
 - if $c = 0$, stop
 \[\forall t \quad x_{0tx_{0,t-1}} = x_{0,t-1} \]

Correctness proof: by induction on t
input values for registers: decision variables

\[x_{it} = 1 \text{ iff instruction } i \text{ executed at time } t \]

instruction 0: stop (by convention)

minimize \[\sum_{t \in \mathbb{N}} x_{0t} \]

Sanity check

\[\text{Mod}_t(n, k) \text{ yields } k = 1 \text{ for all tested values of } n \]

Issue: MRM too simple to run meaningful codes
Code relaxations
The trace of a code

[Böhm & Jacopini ’66]: language Turing-complete if it has:

1. Tests
2. Loops
3. Juxtaposition of commands

Let \(L \) be a Turing complete language

Let \(C(x) \) be a program code in \(L \) involving variables \(x = (x_1, \ldots, x_n) \)

\(\forall i \leq n, \bar{X}_i \) sequence of values taken by \(x_i \) during execution of \(C \)

\(\bar{X} = (\bar{X}_1, \ldots, \bar{X}_n) \): the trace of \(C(x) \)

The trace is not computable
Semantics

- Relaxation of Turing completeness: remove Property 3
- $\forall i$ look at $\hat{X}_i = \text{set of values occurring in } \bar{X}_i$
- Concrete semantics $\hat{X} = (\hat{X}_1, \ldots, \hat{X}_n)$: not computable
- X: relaxation (or overapproximation) of \hat{X}
- E.g. $X \in$ boxes, polyhedra, etc.
- For some set classes, X is computable
- Abstract semantics: assignment of X to x
/**(1)**
int x = 1; /**(2)**
/**(3)**
while(x <= 100){ /**(4)**
 x = x + 1; /**(5)**
}
/**(6)**

E=entry, X=exit, A=assignment, J=join, T=test
Semantic eqns. of a flowgraph

\[X_{11} = \text{ld(input)} \]
\[X_{21} = \phi_2(X_{11}) \]
\[X_{31} = X_{21} \cup X_{61} \]
\[X_{41} = X_{31} \cap \tau_4 \]
\[X_{51} = \phi_5(X_{41}) \]
\[X_{61} = X_{31} \cap (X \setminus \tau_4) \]

In the abstract semantics:

\[X_{11} = [-\infty, \infty] \]
\[X_{21} = [1, 1] \]
\[X_{31} = [1, 1] \cup X_{61} \]
\[X_{41} = X_{31} \cap [-\infty, 100] \]
\[X_{51} = X_{41} + [1, 1] \]
\[X_{61} = X_{31} \cap [101, \infty] \]
Fixed points

- \mathcal{C}: an abstract domain (intervals, polyhedra, etc.)
- Semantic equations: $\forall i \leq m, j \leq n \quad X_{ij} = F_{ij}(X)$

 $\Rightarrow \quad X = F(X)$

- Solutions in \mathcal{C} are called fixed points (FP)
- If X is a FP, then it is invariant w.r.t. F

 \Rightarrow action of the code $C(\cdot)$ on X does not change it

 $\Rightarrow X \supseteq \hat{X}$

- Tightest relaxation: least FP (LFP) w.r.t. set inclusion
Example

\[
\begin{align*}
X_{11} &= [-\infty, \infty] \\
X_{21} &= [1, 1] \\
X_{31} &= [1, 1] \cup X_{61} \\
X_{41} &= X_{31} \cap [-\infty, 100] \\
X_{51} &= X_{31} \cap [101, \infty] \\
X_{61} &= X_{41} + [1, 1].
\end{align*}
\]
Suppose x is an index for an array y

Suppose y has > 100 allocated memory cells

LFP $X_{41} = [1, 100] \Rightarrow$ proves that $\not\exists$ memory overflow due to x

Automated debugging:

fundamental in critical system codes, e.g.:

- Ariane rockets
- A380
MP for semantic eqns

- Fix a particular abstract domain, e.g. intervals
- $X = F(X)$: system of interval equations
- Look for LFP: $\inf \subseteq \{ X \mid X \supseteq F(X) \}$
- Model using MP
For each instruction $i \leq m$ and variable x_j with $j \leq n$:

- Consider an interval $X_{ij} = [x_{ij}^L, x_{ij}^U]$
- Let $\bar{x}_{ij} = 1$ iff $X_{ij} = \emptyset$
- Represent X_{ij} by triplet $(x_{ij}^L, x_{ij}^U, \bar{x}_{ij})$
Objective function

- Define an interval width $|X_{ij}| = \bar{x}_{ij} (x^U_{ij} - x^L_{ij}) + \log \bar{x}_{ij}$
- If interval $\neq \emptyset$, $|\cdot|$ gives the interval length
- If interval $= \emptyset$, $|\cdot|$ unbounded below $(-\infty)$
- Extend to $|X| = \sum_{i \leq m}^{j \leq n} |X_{ij}|$

Lemma: $|\cdot|$ monotonic with interval inclusion lattice

Objective function: $\min |X|$
The interval MP

- MP constraints to model the interval semantics of:
 1. **Assignments**
 - constant assignment, identity assignment
 - positive and negative constant products
 - positive odd and even powers
 - general sum and products
 - also attempt to model division
 2. **Loops** (by means of interval unions)
 3. **Tests** (by means of interval intersections)

- Get a MINLP: *(products, exps, binary, integer, continuous vars)*

- Solution? **Forget it!** But theoretical interest
Example of constraints

- **Consistency:** \(\forall i \leq m, j \leq n \quad x_{ij}^L \leq x_{ij}^U \)

- **Sum:** \(\forall i, k, \ell \leq m \) and \(j, h, f \leq n \)
 \[
 \begin{align*}
 \bar{x}_{ij} &= \bar{x}_{kh} \bar{x}_{lf} \\
 \bar{x}_{ij} \rightarrow x_{ij}^L &\leq x_{kh}^L + x_{lf}^L \\
 \bar{x}_{ij} \rightarrow x_{ij}^U &\geq x_{kh}^U + x_{lf}^U.
 \end{align*}
 \]

- **Union:** \(\forall i, k, \ell \leq m \) and \(j, h, f \leq n \)
 \[
 \begin{align*}
 (1 - \bar{x}_{ij}) &= (1 - \bar{x}_{kh})(1 - \bar{x}_{lf}) \\
 \bar{x}_{ij} \rightarrow x_{ij}^L &\leq \min(x_{kh}^L, x_{lf}^L) \\
 \bar{x}_{ij} \rightarrow x_{ij}^U &\geq \max(x_{kh}^U, x_{lf}^U).
 \end{align*}
 \]
Properties of the MP

- **P**: interval MINLP modelling the LFP X^* of $X = F(X)$
- **Thm**: P is feasible and bounded iff X^* is non-empty and bounded
- **Thm**: P is feasible and unbounded iff X^* is empty and bounded (empty box with bounded interval components)
- **Thm**: P is infeasible iff X^* is unbounded

Solving $P \Leftrightarrow$ Determining X^*
Bounded codes

General MINLP: for \textit{universal computation}

Given two additional assumptions:

1. X^\ast is bounded (= execution terminates)
2. Solution to P approximates X^\ast to a given $\epsilon > 0$

$\Rightarrow \exists$ MILP approximation
(lots of equality constraints and big Ms)

Solves reasonably fast
Computational results

Using MILP approximation with $T = [-M, M] = [-5000, 5000]$

| Instance | Lines | Vars | CPU | \cdot | $|T|$ | $|-T|$ | CPU | \cdot | $|T|$ | $|-T|$ |
|------------|-------|------|-----|---------|------|-------|-----|---------|------|-------|
| short.31 | 32 | 3 | 0.008 | 250002 | 25 | 2 | 0 | 250023 | 25 | 23 |
| short.32 | 20 | 3 | 0.02 | 270077 | 27 | 77 | 0 | 270077 | 27 | 77 |
| short.35 | 22 | 3 | 0.02 | 32028 | 3 | 2028 | 0 | 32028 | 3 | 2028 |
| short.37 | 25 | 3 | 0.008 | 420000 | 42 | 0 | 0 | 470000 | 47 | 0 |
| short.38 | 35 | 3 | 0.12 | 34501 | 3 | 4501 | 0 | 34501 | 3 | 4501 |
| long.1 | 213 | 4 | 0.768 | 90000 | 9 | 0 | 0.004 | 90052 | 9 | 52 |
| long.2 | 217 | 4 | 0.916 | 80000 | 8 | 0 | 0.008 | 90002 | 9 | 2 |
| long.3 | 130 | 4 | 0.64 | 120426 | 12 | 426 | 0.06 | 4.36e+06 | 436 | 246 |
| long.4 | 195 | 4 | 0.412 | 120000 | 12 | 0 | 0.008 | 120002 | 12 | 2 |
| long.5 | 216 | 4 | 0.772 | 110000 | 11 | 0 | 0.004 | 120010 | 12 | 10 |
| arrays | 22 | 6 | 0.04 | 300139 | 30 | 139 | - | - | - | - |
| fun_arrays | 53 | 6 | 0.016 | 30000 | 3 | 0 | - | - | - | - |
| functions | 62 | 7 | 0.112 | 101190 | 10 | 1190 | - | - | - | - |
| subway | 62 | 34 | 9.25258 | 1.77e+07 | 1766 | 675 | - | - | - | - |

WARNING: Comparison against research code, not commercial codes
It would be nice to

- **Benchmarking**: model C instead of MRM
- **Answer more questions**

 E.g. “best nontrivial algorithm for given input/output”
- **Code relaxations**: integrate black-boxes
 (for the analysis of complex codes)

References:

1. [L. et al. ENDM 2010]
2. [Goubault et al., ENTCS 2010]
3. [L. and Marinelli, JOCO, OnlineFirst]