

Mathematical Programming: Turing-completeness and applications to code analysis

Leo Liberti

Joint work with F. Marinelli

IBM TJ Watson Research Center, Yorktown Heights, USA LIX, École Polytechnique, France

Summary of Talk

Benchmarking code

- *finding difficult inputs (of given size) for given codes*
- Static analysis by abstract interpretation
 - finding overapproximations of the sets of values taken by program variables during execution

(without actually executing the code)

⇒ "code relaxations"

Benchmarking code

The hardest input

Example: algorithm Mod(n, k): decides if $n \pmod{k} = 0$ for given n, k with n > k

- 1: input $n, k \in \mathbb{N}$
- 2: $n \leftarrow n k$;
- 3: if n = 0 then
- 4: return YES
- 5: else if n < 0 then
- 6: return NO
- 7: **else**
- 8: goto 2
- 9: end if

Find difficult instances for effective benchmarking

The hardest input

Example: algorithm Mod t(n,k): decides if $n \pmod{k} = 0$ for given n, k with n > k

1: input $n, k \in \mathbb{N}$; t = 0 (step counter)

2:
$$n \leftarrow n - k$$
; $t \leftarrow t + 2$

- 3: if n = 0 then
- 4: $t \leftarrow t+2$; return YES
- 5: else if n < 0 then
- 6: $t \leftarrow t+2$; return NO
- 7: **else**
- 8: $t \leftarrow t+1$; goto 2
- 9: end if

Maximize t over varying input

- C: a code
- $\mathcal{V}(C)$: set of values taken by the program variables during execution
- Formalize the following optimization problem:

where n_0, k_0 is the given input to the Mod_t code

- Translate $\mathcal{V}(\mathsf{Mod}_t(n_0, k_0))$ to a set of constraints on n, k, t= imperative \rightarrow declarative language
- Use Mathematical Programming (MP)

Fundamental question:

Can we translate *any* code to MP?

Turing completeness

Notation:

- *P*: a MP formulation
- G(P): set of global optima of P
- Let C be a code for a Universal Turing Machine (UTM)

$\exists P \in \mathsf{MP} \quad x \in G(P) \Leftrightarrow x \in \mathcal{V}(C) ?$

In other words, is MP a Turing complete language?

Turing completeness

Notation:

- *P*: a MP formulation
- G(P): set of global optima of P
- Let C be a code for a Universal Turing Machine (UTM)

 $\exists P \in \mathsf{MP} \quad x \in G(P) \Leftrightarrow x \in \mathcal{V}(C) ?$

In other words, is MP a Turing complete language?

YES

Universal Diophantine Equations (UDE):

Negative answer to Hilbert's 10th problem

Cook's theorem: SAT is NP-complete

IEM. Universal Diophantine Eqns

 $\triangleq \exists$ algorithm for listing all members of *X*

 $\Rightarrow \exists$ algorithm which terminates iff $x \in X$

IEM. Universal Diophantine Eqns

- $\textbf{ } \quad X \subseteq \mathbb{N} \text{ recursively enumerable }$
 - $\triangleq \exists$ algorithm for listing all members of *X*
 - $\Rightarrow \exists$ algorithm which terminates iff $x \in X$
- there are countably many r.e. sets $W_n = \{x \in \mathbb{N} \mid \mathsf{TM}_n(x) \downarrow\}$

IEM. Universal Diophantine Eqns

- - $\triangleq \exists$ algorithm for listing all members of *X*
 - $\Rightarrow \exists$ algorithm which terminates iff $x \in X$
- there are countably many r.e. sets $W_n = \{x \in \mathbb{N} \mid \mathsf{TM}_n(x) \downarrow\}$
- Imperative ⇔ declarative: integer roots of polys in $\mathbb{Z}^{<\omega}[a]$ W_n = {x ∈ ℕ | x is composite} ⇔ ∃a₁, a₂ ∈ ℕ (a₁ + 2)(a₂ + 2) = x

Universal Diophantine Eqns

- - $\triangleq \exists$ algorithm for listing all members of X
 - $\Rightarrow \exists$ algorithm which terminates iff $x \in X$
- there are countably many r.e. sets $W_n = \{x \in \mathbb{N} \mid \mathsf{TM}_n(x) \downarrow\}$
- Imperative ⇔ declarative: integer roots of polys in $\mathbb{Z}^{<\omega}[a]$ W_n = {x ∈ ℕ | x is composite} ⇔ ∃a₁, a₂ ∈ ℕ (a₁ + 2)(a₂ + 2) = x
- Thm. [Davis, Matiyasevich, Putnam, Robinson]:
 one polynomial encoding every r.e. set

Universal Diophantine Eqns

- - $\triangleq \exists$ algorithm for listing all members of X
 - $\Rightarrow \exists$ algorithm which terminates iff $x \in X$
- there are countably many r.e. sets $W_n = \{x \in \mathbb{N} \mid \mathsf{TM}_n(x) \downarrow\}$
- Imperative ⇔ declarative: integer roots of polys in $\mathbb{Z}^{<\omega}[a]$ W_n = {x ∈ ℕ | x is composite} ⇔ ∃a₁, a₂ ∈ ℕ (a₁ + 2)(a₂ + 2) = x
- Thm. [Davis, Matiyasevich, Putnam, Robinson]:

 <u>∃ one polynomial encoding every r.e. set</u>

• UDE:
$$\exists p(n, x, y_1, \dots, y_t) \in \mathbb{Z}[n, x, y]$$
 s.t.
 $\forall n \in \mathbb{N}, x \in W_n \quad \Leftrightarrow \quad \exists y \in \mathbb{N}^t \quad p(n, x, y) = 0$

Universal Diophantine Eqns

- - $\triangleq \exists$ algorithm for listing all members of *X*
 - $\Rightarrow \exists$ algorithm which terminates iff $x \in X$
- there are countably many r.e. sets $W_n = \{x \in \mathbb{N} \mid \mathsf{TM}_n(x) \downarrow\}$
- Imperative ⇔ declarative: integer roots of polys in $\mathbb{Z}^{<\omega}[a]$ W_n = {x ∈ ℕ | x is composite} ⇔ ∃a₁, a₂ ∈ ℕ (a₁ + 2)(a₂ + 2) = x
- Thm. [Davis, Matiyasevich, Putnam, Robinson]:

 <u>∃ one polynomial encoding every r.e. set</u>

• UDE:
$$\exists p(n, x, y_1, \dots, y_t) \in \mathbb{Z}[n, x, y]$$
 s.t.
 $\forall n \in \mathbb{N}, x \in W_n \quad \Leftrightarrow \quad \exists y \in \mathbb{N}^t \quad p(n, x, y) = 0$

■ $\Rightarrow \exists$ (polynomial integer) MP encoding every TM

Cook's theorem

- Cook's theorem: a reduction
 [nondeterministic polytime bounded UTM] \rightarrow SAT
- \checkmark We need UTM \rightarrow MP, we have SAT \rightarrow MP
- $\blacksquare \text{ UTM} \rightarrow \text{SAT: generalized Cook's reduction}$
- Remove boundedness: get an infinite SAT

Practical computation?

UDE:

- tradeoff between #vars and degree
- large coefficients
- SAT:
 - SAT solver: no objective (we need it to optimize t)
 - MP solver: high degree polynomials (boolean "and" \(\infty product of binary variables)

MP is Turing complete A new proof

A simple universal register machine

- Register = program variable
- Imperative \rightarrow declarative: use MP constraints
- r_{jt} = value of register j at iteration t
- Objective function maximizes number of steps

IBM. Minsky's Register Machine

- Infinitely many registers R_j
- **Solution** Each R_j holds an arbitrary natural number
- Two types b of instructions: given j,
 - 1. b = 0: increase R_j , go to instruction c = k
 - 2. b = 1: if $R_j > 0$ decrease R_j , go to c = k; else go to $c = \ell$
 - 3. Thm.: the MRM is a Universal Turing Machine
- Solution Each instruction is a quadruplet (j, b, k, ℓ)

MRM Example

Problem: Given $n \ge k \in \mathbb{N}$, is $n \pmod{k} = 0$? Algorithm: $Mod_t(n, k)$

- 1: $n \leftarrow n k$
- 2: if n = 0 then return YES
- 3: else if n < 0 then return NO
- 4: else go to 1

$R_1 = n, R_2 = k, R_3 = k'$ (k backup), R_4	= a (output: 1 iff $k n$)	input $(n,k,0,0)$
--	----------------------------	-------------------

Line	(j,b,k,ℓ)			Meaning	Comment			
0	-	-	-	-	stop			
1	2	1	2	4	if $k > 0$ decrease k and goto 2, else 4	start here		
2	3	0	3	0	increase k' and goto 3	invariant: $k + k'$		
3	1	1	1	0	if $n > 0$ decrease n and goto 1, else 0	$n = 0$ before $k \Rightarrow k \not n$		
4	1	1	5	8	if $n > 0$ decrease n and goto 5, else 8	$n, k = 0$: $\Rightarrow k n$		
5	1	0	6	0	increase n and goto 6			
6	3	1	7	1	if $k' > 0$ decrease k' and goto 7, else 1	restore k using k'		
7	2	0	6	0	increase k and goto 6			
8	4	0	0	0	increase a and goto o	set $a = 1$		

MP (essentially)

$$b = 0 \implies (R_j = R_j + 1) \land (c = k)$$
$$(b = 1) \land R_j = 0 \implies c = \ell$$
$$(b = 1) \land R_j > 0 \implies (R_j = R_j - 1) \land (c = k)$$

Encode by means of decision vars and constraints

- infinite number of variables and constraints
- polynomials of degree ≤ 3 (some trilinear terms)
- if bounded, can be reformulated to finite MILP
- integer linear feasibility problem
- can be solved with CPLEX in practice
- Yet another Thm: MP is Turing complete

Some details

- Decision variables
 - $r_{jt} \in \mathbb{N}_+$: content of register j at time t
 - $\rho_{jt} \in \{0, 1\}$: 1 iff $R_j = 0$ at time t
 - $x_{it} \in \{0, 1\}$: 1 iff c = i at time t
- Examples of constraints:
 - if c = i, b = 0, set $R_j = R_j + 1$: $\forall t, i \quad x_{i,t-1}(1-b)r_{jt} = x_{i,t-1}(1-b)(r_{j,t-1}+1)$
 - if c = i, b = 1 and $R_j > 0$, set c = k: $\forall t, i \quad x_{i,t-1}b\rho_{j,t-1}x_{kt} = x_{i,t-1}b\rho_{j,t-1}$

• if
$$c = 0$$
, stop
 $\forall t \quad x_{0t}x_{0,t-1} = x_{0,t-1}$

Correctness proof: by induction on t

Back to benchmarking

- input values for registers: decision variables
- $x_{it} = 1$ iff instruction *i* executed at time *t*
- instruction 0: stop (by convention)
- minimize $\sum_{t \in \mathbb{N}} x_{0t}$

Sanity check

 $Mod_t(n,k)$ yields k = 1 for all tested values of n

Issue: MRM too simple to run meaningful codes

Code relaxations

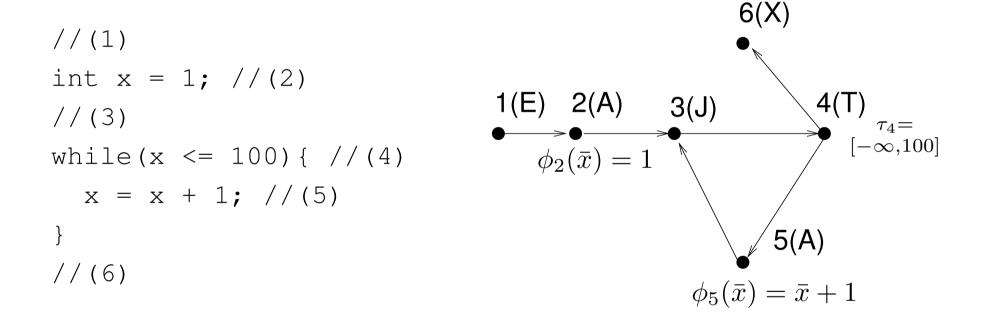
The trace of a code

- [Böhm & Jacopini '66]: language Turing-complete if it has:
 - 1. Tests
 - 2. Loops
 - 3. Juxtaposition of commands
- \checkmark \mathscr{L} : a Turing complete language
- C(x): a program code in *L* involving variables $x = (x_1, \ldots, x_n)$
- $\bar{X} = (\bar{X}_1, \dots, \bar{X}_n)$: the **trace** of C(x)
- The trace is not computable

Semantics

- Relaxation of Turing completeness: remove Property 3
- \checkmark $\forall i \text{ look at } \hat{X}_i = \text{set of values occurring in } \bar{X}_i$
- Concrete semantics $\hat{X} = (\hat{X}_1, \dots, \hat{X}_n)$: not computable
- X: relaxation(=overapproximation) of \hat{X}
- **Solution** E.g. $X \in$ boxes, polyhedra, etc.
- For some set classes, *X* is computable
- **•** Abstract semantics: assignment of X to x

Flowgraph of a code



E=entry, X=exit, A=assignment, J=join, T=test

IBM. Semantic eqns. of a flowgraph

$$X_{11} = \mathsf{Id}(\texttt{input})$$

$$X_{21} = \phi_2(X_{11})$$

$$X_{31} = X_{21} \cup X_{61}$$

$$X_{41} = X_{31} \cap \tau_4$$

$$X_{51} = \phi_5(X_{41})$$

$$X_{61} = X_{31} \cap (X \smallsetminus \tau_4)$$

In the abstract semantics:

$$X_{11} = [-\infty, \infty]$$

$$X_{21} = [1, 1]$$

$$X_{31} = [1, 1] \cup X_{61}$$

$$X_{41} = X_{31} \cap [-\infty, 100]$$

$$X_{51} = X_{41} + [1, 1]$$

$$X_{61} = X_{31} \cap [101, \infty]$$

Fixed points

- \checkmark C: an abstract domain (intervals, polyhedra, etc.)
- Semantic equations: $\forall i \leq m, j \leq n$ $X_{ij} = F_{ij}(X)$

$$\Rightarrow \quad X = F(X)$$

- Solutions in C are called fixed points (FP)
- If X is a FP, then it is invariant w.r.t. F
 - ⇒ action of the code $C(\cdot)$ on X does not change it
 - $\bullet \ \Rightarrow X \supseteq \hat{X}$
 - Tightest relaxation: least FP (LFP) w.r.t. set inclusion

Example

$$X_{11} = [-\infty, \infty]$$

$$X_{21} = [1, 1]$$

$$X_{31} = [1, 1] \cup X_{61}$$

$$X_{41} = X_{31} \cap [-\infty, 100]$$

$$X_{51} = X_{31} \cap [101, \infty]$$

$$X_{61} = X_{41} + [1, 1].$$

 $X_{11} = [-\infty, \infty]$ $X_{21} = [1, 1]$ $X_{31} = [1, 101]$ $X_{41} = [1, 100]$ $X_{51} = [101, 101]$ $X_{61} = [2, 101]$

- **Suppose** x is an index for an array y
- Suppose y has > 100 allocated memory cells
- LFP $X_{41} = [1, 100] \Rightarrow$ proves that $\not\exists$ memory overflow due to x
- Automated debugging :

fundamental in critical system codes, e.g.:

Ariane rockets

A380

MP for semantic eqns

- Fix a particular abstract domain, e.g. intervals
- X = F(X): system of interval equations
- Look for LFP: $\inf_{\subseteq} \{X \mid X \supseteq F(X)\}$
- Model using MP

Decision variables

- ▶ For each instruction $i \le m$ and variable x_j with $j \le n$:
- Consider an interval $X_{ij} = [x_{ij}^L, x_{ij}^U]$

• Let
$$\bar{x}_{ij} = 1$$
 iff $X_{ij} = \emptyset$

Solution Represent X_{ij} by triplet $(x_{ij}^L, x_{ij}^U, \bar{x}_{ij})$

Objective function

- Define an interval width $|X_{ij}| = \bar{x}_{ij}(x_{ij}^U x_{ij}^L) + \log \bar{x}_{ij}$
- If interval $\neq \emptyset$, $|\cdot|$ gives the interval length
- If interval = \emptyset , $|\cdot|$ unbounded below $(-\infty)$

• Extend to
$$|X| = \sum_{\substack{i \le m \\ j \le n}} |X_{ij}|$$

- **Lemma:** | · | monotonic with interval inclusion lattice
- Objective function: $\min |X|$

The interval MP

- MP constraints to model the interval semantics of:
 - 1. Assignments
 - constant assignment, identity assignment
 - positive and negative constant products
 - positive odd and even powers
 - general sum and products
 - also attempt to model division
 - 2. Loops (by means of interval unions)
 - 3. **Tests** (by means of interval intersections)
- **Get a MINLP** (products, exps, binary, integer, continuous vars)
- Solution? Forget it! But theoretical interest

Example of constraints

- Consistency: $\forall i \leq m, j \leq n$ $x_{ij}^L \leq x_{ij}^U$
- **Sum:** $\forall i, k, \ell \leq m \text{ and } j, h, f \leq n$

$$\bar{x}_{ij} = \bar{x}_{kh} \bar{x}_{\ell f}$$
$$\bar{x}_{ij} \rightarrow x_{ij}^L \leq x_{kh}^L + x_{\ell f}^L$$
$$\bar{x}_{ij} \rightarrow x_{ij}^U \geq x_{kh}^U + x_{\ell f}^U$$

• Union: $\forall i, k, \ell \leq m \text{ and } j, h, f \leq n$

$$(1 - \bar{x}_{ij}) = (1 - \bar{x}_{kh})(1 - \bar{x}_{\ell f})$$
$$\bar{x}_{ij} \rightarrow x_{ij}^L \leq \min(x_{kh}^L, x_{\ell f}^L)$$
$$\bar{x}_{ij} \rightarrow x_{ij}^U \geq \max(x_{kh}^U, x_{\ell f}^U)$$

Properties of the MP

- *P*: interval MINLP modelling the LFP X^* of X = F(X)
- Thm: P is feasible and bounded iff X* is non-empty and bounded
- Thm: P is feasible and unbounded iff X* is empty and bounded (empty box with bounded interval components)
- **•** Thm: *P* is infeasible iff X^* is unbounded

Solving $P \Leftrightarrow$ Determining X^*

Bounded codes

- General MINLP : for universal computation
- Given two additional assumptions:

1. X^* is bounded (= execution terminates)

2. Solution to *P* approximates X^* to a given $\epsilon > 0$

- \Rightarrow \exists MILP approximation
 (lots of equality constraints and big Ms)
- Solves reasonably fast

Computational results

			Using	MILP appro	ximation with	$\top = [-$	[M, M] =	= [-5000,	5000]		
Instance			MP				PI				
Instan	се	Lines	Vars	CPU	·		$ \neg\top $	CPU	·		$ \neg\top $
shor	t_31	32	3	0.008	250002	25	2	0	250023	25	23
shor	t_32	20	3	0.02	270077	27	77	0	270077	27	77
shor	t_35	22	3	0.02	32028	3	2028	0	32028	3	2028
shor	t_37	25	3	0.008	420000	42	0	0	470000	47	0
shor	t_38	35	3	0.12	34501	3	4501	0	34501	3	4501
long	_1	213	4	0.768	90000	9	0	0.004	90052	9	52
long	_2	217	4	0.916	80000	8	0	0.008	90002	9	2
long	_3	130	4	0.64	120426	12	426	0.06	4.36e+06	436	246
long	_4	195	4	0.412	120000	12	0	0.008	120002	12	2
long	-5	216	4	0.772	110000	11	0	0.004	120010	12	10
arra	ys	22	6	0.04	300139	30	139	_	-	-	-
fun_	arrays	53	6	0.016	30000	3	0	-	-	-	-
func	tions	62	7	0.112	101190	10	1190	-	-	-	-
subw	yay	62	34	9.25258	1.77e+07	1766	675	-	-	-	_

WARNING: Comparison against research code, not commercial codes

It would be nice to

- Benchmarking: model C instead of MRM
- Answer more questions
 E.g. "best nontrivial algorithm for given input/output"
- Code relaxations: integrate black-boxes (for the analysis of complex codes)

References:

- 1. [L. et al. ENDM 2010]
- 2. [Goubault et al., ENTCS 2010]
- 3. [L. and Marinelli, JOCO, OnlineFirst]