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Lindo Global Solver Overview

• LINDO API includes a range of solvers

– Primal and dual simplex method - Large scale LP

– Barrier method - Large scale LP, convex QP, SOCP and SDP

– GRG (Generalized Reduced Gradient) and SQP method - NLP

– Branch-and-bound and cuts IP solver works with MILP, convex MIQP and

MINLP

– Branch-and-bound global solver for non-convex NLP and MINLP
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Lindo Global Solver Overview (Cont’d)

• Lindo Global Solver is designed for the following MINLP problem

min f = f(x1, x2, · · · , xn)

s.t

fi(x1, x2, · · · , xn) = 0, i = 1, 2, · · · ,m
Lj ≤ xj ≤ Uj , j = 1, 2, · · · , n

xj is integer for j ∈ J

• Constraint types can be any of ≤, =, or ≥

• The objective can be either min or max, or NO objective

• Lindo Global Solver can find a mathematically guaranteed global optimum

within predefined tolerance
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Lindo Global Solver Overview (Cont’d)

• Lindo Global Solver fully supports all common math functions:

– Continuous and smooth: +, −, ×, ln(x), log(x), ex,
√
x, etc.

– Smooth, not quite continuous: x/y, xy , floor(x), mod(x, y), sign(x), etc.

– Continuous, not quite smooth: |x|, max(x, y), min(x, y), etc.

– Trigonometric: sin(x), cos(x), tan(x), arcsin(x), arccos(x), etc.

– Logical: IF, AND, OR, NOT, EQ, NE, GT, etc.

– Statistical: psn(x)(Normal CDF), normsinv(x)(inverse of Normal CDF),

psl(x)(Normal linear loss function), pel(x, n)(Erlang loss probability),

peb(x, n)(Erlang busy probability), pps(x, n)(Poisson CDF), etc.
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Lindo Global Solver Overview (Cont’d)

• Lindo Global Solver Methodology:

– Linearization: functions such as |x|, max(x, y), etc. get linearized using

0/1 variables, solved as MIP

– Multi-start: try several distinct starting points to quickly find a good local

optimum

– Relaxation and Branch

1. Relax non-convex/non-smooth problem into linear subproblem; for each

arbitrary nonlinear function, given current bounds on variables,

automatically construct linear relaxation of the function

2. Solve the relaxed linear subproblem and pray that solution is feasible to

the original model, otherwise branching, i.e. partition the feasible region

into two subregions, back to (1)
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Lindo Global Solver Overview (Cont’d)

• Core techniques: interval analysis, convex relaxation, algebraic reformulation,

constraint propagation, bound tightening, various cut scheme, etc.

• Convexification and Linearization

– Construct linear envelope to enclose non-convex/non-smooth domain

– LP is easier to solve

– Solution provides a good starting point for local MINLP/NLP solver

• Interval Analysis: bounds on the variables and functions

• Constraint Propagation: tighten bounds

• Algebraic Reformulation: tighten bounds and strong relaxations

• IP and NLP preprocessing: reducing model size and complexity
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Lindo Global Solver Overview (Cont’d)

• Multi-start local solver finding a “good” upper bound f̄ and solution x̄

• Model preprocessing, reformulation, bound tightening

• Branch-and-bound iteration

1. Pop a box from pool. Exit, if pool is empty.

2. Construct linear relaxed model and solve, obtain lower bound f̂ and

solution x̂

3. If f̂ ≥ f̄ , discard the box and go to (1); If x̂ is feasible to original model,

update f̄ and x̄ and go to (1); otherwise continue

4. If number of cuts not exceeding maximum allowed, add various valid

cutting planes to relaxation, and go to (2) for better lower bound

5. Local solver starting from x̂ for updating f̄ and x̄

6. Bound tightening procedure

7. Branching procedure, put resulting boxes into pool.
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Identify Convex and Concave Constraints

Based on known convexity and concavity rules to decide convexity of composite

function f ◦ g

• Rule 1 : If the function f depends on one argument only and is convex on the

range of its argument then

1. If the child function g is linear then f ◦ g is convex.

2. If the child function g is convex and f is monotonic increasing in the

interval of g then f ◦ g is convex.

3. If the child function g is concave and f is monotonic decreasing in the

interval of g then f ◦ g is convex.
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Identify Convex and Concave Constraints (Cont’d)

• Rule 2 : If the function f depends on one argument only and is concave on

the range of its argument then

1. If the child function g is linear then f ◦ g is concave.

2. If the child function g is convex and f is monotonic decreasing in the

interval of g then f ◦ g is concave.

3. If the child function g is concave and f is monotonic increasing in the

interval of g then f ◦ g is concave.
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Semidefinite Programming

• Semidefinite Programming allow positive semidefinite matrix to be used in

addition to scalar variables.

min cTx+

p
∑

j=1

< C̄j , X̄j >

s.t. Ax+

p
∑

j=1

< Āj , X̄j >= b

X̄j � 0, j = 1, . . . , p
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Semidefinite Programming (Cont’d)

• Applied to SDP relaxation of quadratic terms,

– Consider a quadratic term

r = xTQx, −∞ < l ≤ x ≤ u < +∞

– Introduce new variables Xij = xixj , then

r =< Q,X >

– Semidefinite programming (SDP) relaxation:

X = xxT � 0
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Perspective Reformulation

• Consider model with semi-continuous variables x

x ∈ {0} ∪ [l, u],

or with constraints

ly ≤ x ≤ uy, y ∈ {0, 1}

• The perspective of a function f(x) is

f̃(y, x) =







yf(x/y) if y > 0

0 if y = 0

• f̃ is convex if f is convex

• Perspective reformulation provides significantly stronger bounds than

continuous relaxation.
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Perspective Reformulation (Cont’d)

• Unit commitment problem with convex quadratic cost function

min
∑

i∈I

∑

t∈T

hitzit +
∑

i∈I

∑

t∈T

(aitx
2

it + bitxit)

s.t.
∑

i∈I

xit = dt ∀t ∈ T

lzit ≤ xit ≤ uzit ∀i ∈ I, ∀t ∈ T

zit ∈ {0, 1}, ∀i ∈ I, ∀t ∈ T,

• Introduce new variables yit and constraints

aitx
2

it + bitxit ≤ yit

• Replaced with its perspective

aitx
2

it + bitxitzit ≤ yitzit
• Represented using a rotated SOC constraints

aitx
2

it ≤ (yit − bitxit)zit
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Perspective Reformulation (Cont’d)

• Separable quadratic uncapacitated facility location problem

min
∑

i∈I

cizi +
∑

i∈I

∑

j∈J

qijx
2

ij

s.t. µzi ≤ xij ≤ zi ∀i ∈ I, ∀j ∈ J
∑

i∈I

xij = 1 ∀j ∈ J

zi ∈ {0, 1}, ∀i ∈ I.

• Introduce new variables yij and constraints

x2

ij ≤ yij

• Replaced with its perspective

x2

ij/zi ≤ yij
• Represented using a rotated SOC constraints

x2

ij ≤ yijzij
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Perspective Reformulation (Cont’d)

• Markowitz Mean-Variance Model with Minimum Buy-in Threshold

min xTQx

s.t. eTx = 1

αTx ≥ ρ

eT z ≤ K

lizi ≤ xi ≤ uizi, ∀i ∈ N

zi ∈ {0, 1}, ∀i ∈ N.

• Cannot directly apply perspective reformulation

• Find nonnegative diagonal matrix D, such that

R = Q−D � 0

• Apply perspective reformulation on term xTDx
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Perspective Reformulation (Cont’d)

• Find D using SDP solver

max
n
∑

i=1

di

s.t. Q−
n
∑

i=1

di(eie
T
i ) � 0

d ≥ 0,

or the dual

min < Q,X >

s.t. diag(X) ≥ e

X � 0.
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Concluding Remarks

• We present a brief overview of LINDO Global Solver

• We present recent developments with LINDO global solver

– Identify convexity of composite functions based on simple rules.

– Support semidefinite programming, which is applied to SDP relaxation of

quadratic terms, as well as perspective reformulation of convex quadratic

terms.

– Perspective reformulation improves performance on models with

semi-continuous variables.
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