Strong Convex Nonlinear Relaxations of the Pooling Problem ONE RELAXATION TO RULE THEM ALL?

CLAUDIA D'AMBROSIO LIX, École Polytechnique

> Jeff Linderoth Jim Luedtke

Dept. of Industrial and Systems Engineering Univ. of Wisconsin-Madison

> ANDREW MILLER UPS

MINLP 2014

Pittsburgh, PA

June 3, 2014

The Pooling Problem

- Nodes $N = I \cup L \cup J$
- Arcs A $(i,j) \in (I \times L) \cup (L \times J) \cup (I \times J)$ on which materials flow
- Material attributes: K

- Arc capacities: u_{ij}
- Node capacities: $C_{\mathfrak{i}},\,\mathfrak{i}\in N$
- Attribute requirements $\beta_{kj}, k \in K, j \in J$

Attribute Blending: Bilinear

- \bullet Inputs have associated attribute concentrations $\lambda_{k\mathfrak{i}},\ k\in K, \mathfrak{i}\in I$
- The concentration of an attribute in pool is the weighted average of the concentrations of its inputs—This results in bilinear constraints.

Attribute Blending: Bilinear

- \bullet Inputs have associated attribute concentrations $\lambda_{k\,i},\ k\in K, i\in I$
- The concentration of an attribute in pool is the weighted average of the concentrations of its inputs—This results in bilinear constraints.

Variables

- x_{ij} : Flow on $(i, j) \in A$
- $q_{i\ell}$: Proportion of flow to pool $\ell \in L$ from input $i \in I$. $(q_{i\ell} = \frac{x_{i\ell}}{\sum_{i \in I} x_{\ell i}})$
 - Note also that $\sum_{\mathfrak{i}\in I} \mathfrak{q}_{\mathfrak{i}\ell} = 1 \quad \forall \ell \in L$

• $w_{ilj} = q_{il} x_{lj}$ (flow from i through pool ℓ to output j)

$$x_{\mathfrak{i}\mathfrak{l}} = \sum_{j \in J} w_{\mathfrak{i}\ell j} \quad \forall \ell \in L, j \in J \qquad x_{\ell j} = \sum_{\mathfrak{i} \in I} w_{\mathfrak{i}\ell j}$$

Attribute Blending: Bilinear

- \bullet Inputs have associated attribute concentrations $\lambda_{k\,i},\ k\in K, i\in I$
- The concentration of an attribute in pool is the weighted average of the concentrations of its inputs—This results in bilinear constraints.

Variables

- x_{ij} : Flow on $(i, j) \in A$
- $q_{i\ell}$: Proportion of flow to pool $\ell \in L$ from input $i \in I$. $(q_{i\ell} = \frac{x_{i\ell}}{\sum_{i \in I} x_{\ell i}})$
 - Note also that $\sum_{\mathfrak{i}\in I} \mathfrak{q}_{\mathfrak{i}\ell} = 1 \quad \forall \ell \in L$

• $w_{ilj} = q_{il} x_{lj}$ (flow from i through pool ℓ to output j)

$$x_{\mathfrak{i}\mathfrak{l}} = \sum_{j\in J} w_{\mathfrak{i}\ell j} \quad \forall \ell \in L, j \in J \qquad x_{\ell j} = \sum_{\mathfrak{i}\in I} w_{\mathfrak{i}\ell j}$$

Start Strong!

We use the PQ-formulation (Sahinidis and Tawarmalani (2005) as our starting point

D'Ambrosio, Linderoth, Luedtke, Miller

• Since $w_{i\ell j} = q_{i\ell} x_{\ell j}$, the attribute constraints have the (linear) form

$$\sum_{i \in I} \lambda_{ki} x_{ij} + \sum_{i \in I} \sum_{\ell \in L} \lambda_{ki} w_{i\ell j} \leq \beta_{kj} \sum_{i \in I \cup L} x_{ij} \quad \forall k \in K, j \in J$$

• Since $w_{i\ell j} = q_{i\ell} x_{\ell j}$, the attribute constraints have the (linear) form

$$\sum_{i \in I} \lambda_{ki} x_{ij} + \sum_{i \in I} \sum_{\ell \in L} \lambda_{ki} w_{i\ell j} \leq \beta_{kj} \sum_{i \in I \cup L} x_{ij} \quad \forall k \in K, j \in J$$

• Since $x_{\ell j} = \sum_{i \in I} w_{i \ell j}$, we can write this as

$$\sum_{i\in I} (\lambda_{ki} - \beta_{kj}) x_{ij} + \sum_{i\in I} \sum_{\ell \in L} (\lambda_{ki} - \beta_{kj}) w_{i\ell j} \leq 0 \quad \forall k \in K, j \in J$$

• Since $w_{i\ell j} = q_{i\ell} x_{\ell j}$, the attribute constraints have the (linear) form

$$\sum_{i \in I} \lambda_{ki} x_{ij} + \sum_{i \in I} \sum_{\ell \in L} \lambda_{ki} w_{i\ell j} \leq \beta_{kj} \sum_{i \in I \cup L} x_{ij} \quad \forall k \in K, j \in J$$

• Since $x_{\ell j} = \sum_{i \in I} w_{i \ell j}$, we can write this as

$$\sum_{i \in I} (\lambda_{ki} - \beta_{kj}) x_{ij} + \sum_{i \in I} \sum_{\ell \in L} (\lambda_{ki} - \beta_{kj}) w_{i\ell j} \leq 0 \quad \forall k \in K, j \in J$$

• The only nonlinearities/nonconvexities in the problem are

$$w_{i\ell j} = q_{i\ell} x_{\ell j}, \quad \forall i \in I, \ell \in L, j \in J$$

• Since $w_{i\ell j} = q_{i\ell} x_{\ell j}$, the attribute constraints have the (linear) form

$$\sum_{i \in I} \lambda_{ki} x_{ij} + \sum_{i \in I} \sum_{\ell \in L} \lambda_{ki} w_{i\ell j} \leq \beta_{kj} \sum_{i \in I \cup L} x_{ij} \quad \forall k \in K, j \in J$$

• Since $x_{\ell j} = \sum_{i \in I} w_{i \ell j}$, we can write this as

$$\sum_{i\in I} (\lambda_{ki} - \beta_{kj}) x_{ij} + \sum_{i\in I} \sum_{\ell \in L} (\lambda_{ki} - \beta_{kj}) w_{i\ell j} \leq 0 \quad \forall k \in K, j \in J$$

• The only nonlinearities/nonconvexities in the problem are

$$w_{i\ell j} = q_{i\ell} x_{\ell j}, \quad \forall i \in I, \ell \in L, j \in J$$

 But the standard "McCormick relaxation" describes the convex hull of this non-convex set.

• Since $w_{i\ell j} = q_{i\ell} x_{\ell j}$, the attribute constraints have the (linear) form

$$\sum_{i \in I} \lambda_{ki} x_{ij} + \sum_{i \in I} \sum_{\ell \in L} \lambda_{ki} w_{i\ell j} \leq \beta_{kj} \sum_{i \in I \cup L} x_{ij} \quad \forall k \in K, j \in J$$

• Since $x_{\ell j} = \sum_{i \in I} w_{i \ell j}$, we can write this as

$$\sum_{i \in I} (\lambda_{ki} - \beta_{kj}) x_{ij} + \sum_{i \in I} \sum_{\ell \in L} (\lambda_{ki} - \beta_{kj}) w_{i\ell j} \leq 0 \quad \forall k \in K, j \in J$$

• The only nonlinearities/nonconvexities in the problem are

$$w_{i\ell j} = q_{i\ell} x_{\ell j}, \quad \forall i \in I, \ell \in L, j \in J$$

 But the standard "McCormick relaxation" describes the convex hull of this non-convex set.

Upshot

Improved relaxation will require looking at more of problem!

Our Quest-Seek Simple Sets

• Extract a simple but nontrivial set and attempt to convexify

Our Quest-Seek Simple Sets

• Extract a simple but nontrivial set and attempt to convexify

Intuition for Pooling

- Will need to include more than just the nonconvexity $w_{i\ell j} = q_{i\ell} x_{\ell j}$
- Attribute constraints on outputs are important
- Idea: Focus on a single output and attribute

Make It Easier. Focus on Single Output, Single Attribute.

Inputs I Pools L Output j

- Fix output j and attribute k.
 - (Drop these indices)
- Relevant constraints

$$\sum_{i \in I} \underbrace{(\lambda_i - \beta)}_{\gamma_i} x_i + \sum_{i \in I} \sum_{\ell \in L} \underbrace{(\lambda_i - \beta)}_{\gamma_i} w_{i\ell} \leq 0$$

$$\begin{split} &\sum_{i\in I\cup L} x_i \leq C \\ &\sum_{i\in I} q_{i\ell} = 1, \qquad \forall \ell \in L \\ & w_{i\ell} = q_{i\ell} x_\ell, \qquad \forall i\in I, \ell\in L \end{split}$$

Make It Easier. Focus on Single Output, Single Attribute.

Inputs I Pools L Output j

- Fix output j and attribute k.
 - (Drop these indices)
- Relevant constraints

$$\sum_{i \in I} \underbrace{(\lambda_i - \beta)}_{\gamma_i} x_i + \sum_{i \in I} \sum_{\ell \in L} \underbrace{(\lambda_i - \beta)}_{\gamma_i} w_{i\ell} \leq 0$$

$$\begin{split} &\sum_{i\in I\cup L} x_i \leq C \\ &\sum_{i\in I} q_{i\ell} = 1, \end{split} \qquad \forall \ell \in L \end{split}$$

 $w_{i\ell} = q_{i\ell} x_{\ell}, \quad \forall i \in I, \ell \in L$

Still Too Hard!

• Try to focus on a single pool $\ell \in L$ and consider rest as a single "by-pass"?

Make it Easier-er. Focus on Single Pool.

- \bullet Separate pool $\ell \in L$ from the rest
- Gray squiggles are now aggregated into variables y and z

$$\underbrace{\sum_{i\in I}\gamma_i x_i + \sum_{i\in I}\sum_{t\in L\setminus\{\ell\}}\gamma_i w_{it}}_{y} + \sum_{i\in I}\gamma_i w_{i\ell} \leq 0$$

$$\underbrace{\sum_{i\in I\cup L\setminus\{\ell\}}}_z x_i + x_\ell \leq C,$$

• $z \ge 0$, $\underline{\gamma}z \le y \le \overline{\gamma}z$, $\overline{\gamma} = \max_{i \in I} \gamma_i \ge 0 \underline{\gamma} = \min_{i \in I} \gamma_i \le 0$

Single Output, Single Pool Set

Inputs I Pool ℓ Output j

• Now also drop the index ℓ for the pool:

$$\begin{split} y + \sum_{i \in I} \gamma_i w_i &\leq 0, \\ z + x &\leq C, \\ \sum_{i \in I} q_i &= 1, \\ w_i &= q_i x, \quad \forall i \in I \\ \underline{\gamma z} &\leq y \leq \overline{\gamma} z \\ x, w, z, q \geq 0 \end{split}$$

Single Output, Single Pool Set

Inputs I Pool & Output j

 \bullet Now also drop the index ℓ for the pool:

$$\begin{split} y + \sum_{i \in I} \gamma_i w_i &\leq 0, \\ z + x &\leq C, \\ \sum_{i \in I} q_i &= 1, \\ w_i &= q_i x, \quad \forall i \in I \\ \underline{\gamma}z &\leq y \leq \overline{\gamma}z \\ x, w, z, q \geq 0 \end{split}$$

Argh! Still too hard

Let's assume only two inputs into the pool

Easiest-Single Output, Single Pool, Two Input Set

- We assume $\gamma_1 < 0$, $\gamma_2 > 0$ —Other cases are simpler
- Let P be set of points satisfying above

Easiest-Single Output, Single Pool, Two Input Set

- We assume $\gamma_1 < 0$, $\gamma_2 > 0$ —Other cases are simpler
- Let P be set of points satisfying above

One Relaxation To Rule Them AllWe would like to understand conv(P)

• Our "magic" for finding inequalities for nonlinear sets

• Our "magic" for finding inequalities for nonlinear sets

Teamwork!

 Andrew: Characterize extreme points of sets. Extreme points are solution to (1-D) parameterized system of equations

• Our "magic" for finding inequalities for nonlinear sets

Teamwork!

- Andrew: Characterize extreme points of sets. Extreme points are solution to (1-D) parameterized system of equations
- Claudia: Use characterization to create an approximating polyhedron and run PORTA

• Our "magic" for finding inequalities for nonlinear sets

Teamwork!

- Andrew: Characterize extreme points of sets. Extreme points are solution to (1-D) parameterized system of equations
- Claudia: Use characterization to create an approximating polyhedron and run PORTA
- Jim: Identify parameterized set of inequalities in PORTA output, and prove validity of conjectured inequality

• Our "magic" for finding inequalities for nonlinear sets

Teamwork!

- Andrew: Characterize extreme points of sets. Extreme points are solution to (1-D) parameterized system of equations
- Claudia: Use characterization to create an approximating polyhedron and run PORTA
- Jim: Identify parameterized set of inequalities in PORTA output, and prove validity of conjectured inequality
- Jeff: Confuse Things. Attempt Jokes for Talks.

Extreme Points 1,...,8

w_1	w_2	q ₁	q ₂	z	y
0	0	1	0	0	0
0	0	0	1	0	0
0	0	1	0	С	0
0	0	0	1	С	0
0	0	1	0	С	γC
0	0	0	1	С	$\overline{\underline{\gamma}}C$
С	0	1	0	0	0
$\frac{\gamma_2 C}{\gamma_2 - \gamma_1}$	$\frac{-\gamma_1 C}{\gamma_2 - \gamma_1}$	$\frac{\gamma_2}{\gamma_2 - \gamma_1}$	$\frac{-\gamma_1}{\gamma_2-\gamma_1}$	0	0

Extreme Points 1,...,8

w_1	w_2	q_1	q_2	z	y
0	0	1	0	0	0
0	0	0	1	0	0
0	0	1	0	С	0
0	0	0	1	С	0
0	0	1	0	С	γC
0	0	0	1	С	$\overline{\underline{\gamma}}C$
С	0	1	0	0	0
$\frac{\gamma_2 C}{\gamma_2 - \gamma_1}$	$\frac{-\gamma_1 C}{\gamma_2 - \gamma_1}$	$\frac{\gamma_2}{\gamma_2 - \gamma_1}$	$\frac{-\gamma_1}{\gamma_2-\gamma_1}$	0	0

• Let
$$q_1 = \alpha$$
, $\kappa_{\alpha} = \alpha \gamma_1 + (1 - \alpha) \gamma_2$

Extreme Points 9, ..., ∞ , $q_1 = \alpha$

	w_1	<i>w</i> ₂	q_1	q ₂	Z	y
$\alpha \in [0, \gamma_2/(\gamma_2-\gamma_1)](\kappa_\alpha \geq 0)$	$\frac{-\alpha \underline{\gamma} C}{\kappa_{\alpha} - \underline{\gamma}}$	$\frac{-(1-\alpha)\underline{\gamma}C}{\kappa_{\alpha}-\underline{\gamma}}$	α	$1-\alpha$	$\frac{\kappa_{\alpha}C}{\kappa_{\alpha}-\underline{\gamma}}$	$\frac{\underline{\gamma}\kappa_{\alpha}C}{\kappa_{\alpha}-\underline{\gamma}}$
$\alpha \in [\gamma_2/(\gamma_2-\gamma_1),1](\kappa_\alpha<0)$	$\frac{\alpha \overline{\gamma} C}{\overline{\gamma} - \kappa_{\alpha}}$	$\frac{(1-\alpha)\overline{\gamma}C}{\overline{\gamma}-\kappa_{\alpha}}$	α	$1-\alpha$	$\frac{-\kappa_{\alpha}C}{\overline{\gamma}-\kappa_{\alpha}}$	$rac{-\overline{\gamma}\kappa_{lpha}C}{\overline{\gamma}-\kappa_{lpha}}$

D'Ambrosio, Linderoth, Luedtke, Miller

It's Complicated

- Consider polyhedron defined by finite subset of these extreme points
- Use Porta (or other tool) to find inequality description

It's Complicated

- Consider polyhedron defined by finite subset of these extreme points
- Use Porta (or other tool) to find inequality description
- Look for parameterized set(s) of inequalities
- Stare at them a long time...

INEQUALITIES_SECTION (1) - 50x1- 5x2- 85x3- 12x4- x5+ x6 <= -150</p> (2) - 50x1- x2- 87x3- 12x4- x5+ x6 <= -148</p> (3) - 50x1- 5x2- 85x3- 2x4- 7x5+ x6 <= -146</p> (4) - 40x1 - 10x2 - 85x3 - 12x4 - x5 + x6 <= -145(5) - 50x1- x2- 87x3- 2x4- 7x5+ x6 <= -144 (6) - 40x1-10x2- 85x3- 2x4- 7x5+ x6 <= -141</p> (7) - 50x1- 5x2- 13x3- 60x4- x5+ x6 <= -126</p> (8) - 50x1- x2- 15x3- 60x4- x5+ x6 <= -124 (9) - 40x1-10x2- 13x3- 60x4- x5+ x6 <= -121</p> $(10) - 8x1 - 10x2 - 93x3 - 12x4 - x5 + x6 \le -121$ (11) - 50x1- 5x2- 3x3- 60x4- 5x5+ x6 <= -120 $(12) - 10x1 - x2 - 97x3 - 12x4 - x5 + x6 \le -118$ (13) - 50x1- x2- 5x3- 60x4- 5x5+ x6 <= -118 $(14) - 8x1 - 10x2 - 93x3 - 2x4 - 7x5 + x6 \le -117$ (15) - 8x1- 2x2- 97x3- 12x4- x5+ x6 <= -117 (16) - 2x1-10x2- 93x3- 13x4- x5+ x6 <= -116 $(17) - 40x1 - 10x2 - 3x3 - 60x4 - 5x5 + x6 \le -115$ (18) - 10x1- x2- 97x3- 2x4- 7x5+ x6 <= -114 (19) - 8x1- 2x2- 97x3- 2x4- 7x5+ x6 <= -113 (20) - 4x1- x2- 97x3- 13x4- x5+ x6 <= -113 $(21) - 2x1 - 2x2 - 97x3 - 13x4 - x5 + x6 \le -112$

It's Complicated

- Consider polyhedron defined by finite subset of these extreme points
- Use Porta (or other tool) to find inequality description
- Look for parameterized set(s) of inequalities
- Stare at them a long time...

INEQUALITIES_SECTION (1) - 50x1- 5x2- 85x3- 12x4- x5+ x6 <= -150</p> 2) - 50x1- x2- 87x3- 12x4- x5+ x6 <= -148 (3) - 50x1- 5x2- 85x3- 2x4- 7x5+ x6 <= -146</p> (4) - 40x1-10x2- 85x3- 12x4- x5+ x6 <= -145</p> 5) - 50x1- x2- 87x3- 2x4- 7x5+ x6 <= -144 6) - 40x1-10x2- 85x3- 2x4- 7x5+ x6 <= -141 (7) - 50x1- 5x2- 13x3- 60x4- x5+ x6 <= -126</p> 8) - 50x1- x2- 15x3- 60x4- x5+ x6 <= -124 (9) - 40x1-10x2- 13x3- 60x4- x5+ x6 <= -121</p> $(10) - 8x1 - 10x2 - 93x3 - 12x4 - x5 + x6 \le -121$ (11) - 50x1- 5x2- 3x3- 60x4- 5x5+ x6 <= -120 $(12) - 10x1 - x2 - 97x3 - 12x4 - x5 + x6 \le -118$ (13) - 50x1- x2- 5x3- 60x4- 5x5+ x6 <= -118 $(14) - 8x1 - 10x2 - 93x3 - 2x4 - 7x5 + x6 \le -117$ $(15) - 8x1 - 2x2 - 97x3 - 12x4 - x5 + x6 \le -117$ (16) - 2x1-10x2- 93x3- 13x4- x5+ x6 <= -116 $(17) - 40x1 - 10x2 - 3x3 - 60x4 - 5x5 + x6 \le -115$ (18) - 10x1- x2- 97x3- 2x4- 7x5+ x6 <= -114 $(19) - 8x1 - 2x2 - 97x3 - 2x4 - 7x5 + x6 \le -113$ $(20) - 4x1 - x2 - 97x3 - 13x4 - x5 + x6 \le -113$ $(21) - 2x1 - 2x2 - 97x3 - 13x4 - x5 + x6 \le -112$

"If you sit on the door-step long enough, I daresay you will think of something."

Bilbo

Valid Inequalities - Type I

Theorem

The following inequaliy is valid for P

$$\left((\gamma_1-\underline{\gamma})w_1+(\gamma_2-\underline{\gamma})w_2\right)^2 \leq -\underline{\gamma}C((\gamma_1-\underline{\gamma})q_1+(\gamma_2-\underline{\gamma})q_2)(w_1+w_2).$$

Valid Inequalities - Type I

Theorem

The following inequaliy is valid for P

$$\left((\gamma_1-\underline{\gamma})w_1+(\gamma_2-\underline{\gamma})w_2\right)^2\leq -\underline{\gamma}C((\gamma_1-\underline{\gamma})q_1+(\gamma_2-\underline{\gamma})q_2)(w_1+w_2).$$

- The inequality is supported by the "small alpha" extreme points
 - By-pass is necessary to make up for excess concentration from the pool
- The inequality is second-order cone representable

Valid Inequalities - Type I

Theorem

The following inequaliy is valid for P

$$\left((\gamma_1-\underline{\gamma})w_1+(\gamma_2-\underline{\gamma})w_2\right)^2 \leq -\underline{\gamma}C((\gamma_1-\underline{\gamma})q_1+(\gamma_2-\underline{\gamma})q_2)(w_1+w_2).$$

- The inequality is supported by the "small alpha" extreme points
 - By-pass is necessary to make up for excess concentration from the pool
- The inequality is second-order cone representable

Easy Proof

- Aggregate linear inequalities $\Rightarrow (\gamma_1-\underline{\gamma})w_1+(\gamma_2-\underline{\gamma})w_2\leq -\underline{\gamma}C$
- Observe:

$$\gamma_1 - \underline{\gamma})w_1 + (\gamma_2 - \underline{\gamma})w_2 = (\gamma_1 - \underline{\gamma})q_1(w_1 + w_2) + (\gamma_2 - \underline{\gamma})q_2(w_1 + w_2)$$

Multiply LHS with LHS, RHS with RHS

Victory Is Ours-It Works for Multiple Inputs

• The "same" proof demonstrates how to create a valid inequality for multiple inputs

Theorem

The following inequality is valid for P with multiple inputs I:

$$\Big(\sum_{i\in I} (\gamma_i - \underline{\gamma}) w_i \Big)^2 \leq -\underline{\gamma} C \Big(\sum_{i\in I} (\gamma_i - \underline{\gamma}) \mathfrak{q}_i \Big) \Big(\sum_{i\in I} w_i \Big).$$

D'Ambrosio, Linderoth, Luedtke, Miller

Valid Inequalities—Type II

Theorem

The following inequality is valid for P if y > 0:

$$\bar{\gamma}w_1 + y + rac{\gamma_1w_2y}{(\gamma_2 - \gamma_1)w_2 + y} \leq \bar{\gamma}Cq_1$$

Valid Inequalities—Type II

Theorem

The following inequality is valid for P if y > 0:

$$\bar{\gamma}w_1 + y + rac{\gamma_1w_2y}{(\gamma_2 - \gamma_1)w_2 + y} \leq \bar{\gamma}Cq_1$$

- Supported by the "large alpha" extreme points
 - The pool needs to "make up" for excess concentration from the by-pass
- Validity proof slightly more complicated
- \bullet Second-order cone representable for the case y>0

Valid Inequalities—Type II

Theorem

The following inequality is valid for P if y > 0:

$$\bar{\gamma}w_1 + y + rac{\gamma_1w_2y}{(\gamma_2 - \gamma_1)w_2 + y} \leq \bar{\gamma}Cq_1$$

- Supported by the "large alpha" extreme points
 - The pool needs to "make up" for excess concentration from the by-pass
- Validity proof slightly more complicated
- \bullet Second-order cone representable for the case y>0
- \bullet The inequality is only valid if $y \leq 0.$ Let

$$f(y,w_2):=\begin{cases} 0 & y\leq 0\\ y+\frac{\gamma_1w_2y}{(\gamma_2-\gamma_1)w_2+y} & y>0. \end{cases}$$

• $f(y, w_2)$ is convex, and the following inequality is valid for P:

$$f(y, w_2) \leq \overline{\gamma}(Cq_1 - w_1)$$

 $\bullet\,$ Reduces to inequality from last slide when y>0, to $w_1\leq Cq_1$ when $y\leq 0$

A Conjecture

"I don't know, and I would rather not guess." Frodo

$\operatorname{conv}(\mathsf{P})$

2

$$w_{1} = q_{1}(w_{1} + w_{2})$$

$$w_{2} = q_{2}(w_{1} + w_{2})$$

$$y + \gamma_{1}w_{1} + \gamma_{2}w_{2} \le 0$$

$$z + w_{1} + w_{2} \le C$$

$$q_{1} + q_{2} = 1$$

$$\underline{\gamma}z \le y \le \overline{\gamma}z$$

$$w_{1}, w_{2}, q_{1}, q_{2}, z \ge 0$$

$$\sum_{i=1}^{2} (\gamma_i - \underline{\gamma}) w_i)^2 \leq \\ -\underline{\gamma} C \Big(\sum_{i=1}^{2} (\gamma_i - \underline{\gamma}) q_i \Big) \Big(\sum_{i=1}^{2} w_i \Big) \\ f(y, w_2) \leq \overline{\gamma} (Cq_1 - w_1) \\ y + \gamma_1 w_1 + \gamma_2 w_2 \leq 0 \\ z + w_1 + w_2 \leq C \\ q_1 + q_2 = 1 \end{bmatrix}$$

 $\gamma z \leq y \leq \overline{\gamma} z$

 $w_1, w_2, q_1, q_2, z \ge 0$

"No One Believes Me"

J.R.R. Tolkein

"No One Believes Me"

- McCormick relaxation of PQ-Formulation (LP) versus LP+Type 1 inequalities, Optimal Value
- Instances from the literature (exclude those for which LP yields optimal value)
- These are small instances

"No One Believes Me"

- McCormick relaxation of PQ-Formulation (LP) versus LP+Type 1 inequalities, Optimal Value
- Instances from the literature (exclude those for which LP yields optimal value)
- These are small instances

A-DA!			
Instanc	e z ^{PQ}	$z^{Type\;I}$	<i>z</i> *
adhya1	-770.0	-738.7	-549.8
adhya2	-572.3	-569.9	-549.8
bental4	-550.0	-525.0	-450.0
haverly	1 -500.0	-475.0	-400.0
haverly	2 -1000.0	-866.7	-600.0
rt2	-6034.9	-6034.9	-4391.8
	-		

"No One Believes Me"

- McCormick relaxation of PQ-Formulation (LP) versus LP+Type 1 inequalities, Optimal Value
- Instances from the literature (exclude those for which LP yields optimal value)
- These are small instances

TA-DA!					
-	Instance	z ^{PQ}	$z^{Type\;I}$	<i>z</i> *	
	adhya1	-770.0	-738.7	-549.8	
	adhya2	-572.3	-569.9	-549.8	
	bental4	-550.0	-525.0	-450.0	
	haverly1	-500.0	-475.0	-400.0	
	haverly2	-1000.0	-866.7	-600.0	
	rt2	-6034.9	-6034.9	-4391.8	

• These results are honestly not that great, but there is more to be done!

"Despair is only for those who see the end beyond all doubt. We do not."

Gandalf

Conclusions

NONLINEAR, NONCONVEX SETS

ARE VERY COMPLICATED ator.net

"All's well that ends better"

- Even with one output, one pool, two inputs
- Convex hull is not polyhedral

Conclusions

NONLINEAR, NONCONVEX SETS

ARE VERY COMPLICATED ator.net

"All's well that ends better"

- Even with one output, one pool, two inputs
- Convex hull is not polyhedral

Continuing Quest

- Prove Convex Hull result
- Extend Type-II inequality to multiple inputs
- Better approximation of by-pass (e.g., upper bounds on different inputs)
- Multiple pools?