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The Pooling Problem

Inputs I Pools L Outputs J

Nodes N = I ∪ L ∪ J
Arcs A (i, j) ∈ (I× L)∪ (L× J)∪ (I× J)
on which materials flow

Material attributes: K

Arc capacities: uij

Node capacities: Ci, i ∈ N
Attribute requirements βkj, k ∈ K, j ∈ J
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Attribute Blending: Bilinear

Inputs have associated attribute concentrations λki, k ∈ K, i ∈ I
The concentration of an attribute in pool is the weighted average of the
concentrations of its inputs—This results in bilinear constraints.

Variables

xij: Flow on (i, j) ∈ A
qi`: Proportion of flow to pool ` ∈ L from input i ∈ I. (qi` =

xi`∑
j∈J x`j

)

Note also that
∑
i∈I qi` = 1 ∀` ∈ L

wilj = qilxlj (flow from i through pool ` to output j)

xil =
∑
j∈J

wi`j ∀` ∈ L, j ∈ J x`j =
∑
i∈I

wi`j

Start Strong!

We use the PQ-formulation (Sahinidis and
Tawarmalani (2005) as our starting point
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Linearizing Attribute Restriction

Since wi`j = qi`x`j, the attribute constraints have the (linear) form∑
i∈I

λkixij +
∑
i∈I

∑
`∈L

λkiwi`j ≤ βkj
∑
i∈I∪L

xij ∀k ∈ K, j ∈ J

Since x`j =
∑
i∈Iwi`j, we can write this as∑

i∈I

(λki − βkj)xij +
∑
i∈I

∑
`∈L

(λki − βkj)wi`j ≤ 0 ∀k ∈ K, j ∈ J

The only nonlinearities/nonconvexities in the problem are

wi`j = qi`x`j, ∀i ∈ I, ` ∈ L, j ∈ J

But the standard “McCormick relaxation” describes the convex hull of this
non-convex set.

Upshot

Improved relaxation will require looking at more of problem!
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Our Quest—Seek Simple Sets

Extract a simple but nontrivial set and attempt to convexify

Intuition for Pooling

Will need to include more than just the nonconvexity wi`j = qi`x`j

Attribute constraints on outputs are important

Idea: Focus on a single output and attribute
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Make It Easier. Focus on Single Output, Single Attribute.

Inputs I Pools L Output j

Fix output j and attribute k.
(Drop these indices)

Relevant constraints∑
i∈I

(λi − β)︸ ︷︷ ︸
γi

xi+
∑
i∈I

∑
`∈L

(λi − β)︸ ︷︷ ︸
γi

wi` ≤ 0

∑
i∈I∪L

xi ≤ C∑
i∈I

qi` = 1, ∀` ∈ L

wi` = qi`x`, ∀i ∈ I, ` ∈ L

Still Too Hard!

Try to focus on a single pool ` ∈ L
and consider rest as a single
“by-pass”?
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Make it Easier-er. Focus on Single Pool.

Inputs I Pool ` Output j

Separate pool ` ∈ L from the rest

Gray squiggles are now aggregated into variables
y and z∑
i∈I

γixi +
∑
i∈I

∑
t∈L\{`}

γiwit︸ ︷︷ ︸
y

+
∑
i∈I

γiwi` ≤ 0

∑
i∈I∪L\{`}

xi︸ ︷︷ ︸
z

+x` ≤ C,

z ≥ 0, γz ≤ y ≤ γz,

γ = max
i∈I

γi ≥ 0γ = min
i∈I

γi ≤ 0
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Single Output, Single Pool Set

Inputs I Pool ` Output j

w
i

x

z

Now also drop the index ` for the pool:

y +
∑
i∈I

γiwi ≤ 0,

z + x ≤ C,∑
i∈I

qi = 1,

wi = qix, ∀i ∈ I
γz ≤ y ≤ γz
x,w, z, q ≥ 0

Argh! Still too hard

Let’s assume only two inputs into the
pool

D’Ambrosio, Linderoth, Luedtke, Miller Pooling MINLP 2014 8 / 18



Single Output, Single Pool Set

Inputs I Pool ` Output j

w
i

x

z

Now also drop the index ` for the pool:

y +
∑
i∈I

γiwi ≤ 0,

z + x ≤ C,∑
i∈I

qi = 1,

wi = qix, ∀i ∈ I
γz ≤ y ≤ γz
x,w, z, q ≥ 0

Argh! Still too hard

Let’s assume only two inputs into the
pool

D’Ambrosio, Linderoth, Luedtke, Miller Pooling MINLP 2014 8 / 18



Easiest—Single Output, Single Pool, Two Input Set

y + γ1w1 + γ2w2 ≤ 0,
z +w1 +w2 ≤ C,

q1 + q2 = 1,

w1 = q1(w1 +w2),

w2 = q2(w1 +w2),

γz ≤ y ≤ γz
w1, w2, q1, q2, z ≥ 0

w
1

w2

z

w1 +w2

≤ C

We assume γ1 < 0, γ2 > 0—Other cases are simpler

Let P be set of points satisfying above

One Relaxation To Rule Them All

We would like to understand conv(P)
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The Fellowship of the Pool

Our “magic” for finding inequalities for nonlinear sets

Teamwork!

1 Andrew: Characterize extreme points of sets. Extreme
points are solution to (1-D) parameterized system of
equations

2 Claudia: Use characterization to create an
approximating polyhedron and run PORTA

3 Jim: Identify parameterized set of inequalities in
PORTA output, and prove validity of conjectured
inequality

4 Jeff: Confuse Things. Attempt Jokes for Talks.
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Extreme Points 1, . . . , 8

w1 w2 q1 q2 z y

0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 C 0
0 0 0 1 C 0
0 0 1 0 C γC

0 0 0 1 C γC

C 0 1 0 0 0
γ2C

γ2−γ1

−γ1C
γ2−γ1

γ2
γ2−γ1

−γ1
γ2−γ1

0 0

Let q1 = α, κα = αγ1 + (1 − α)γ2

Extreme Points 9, . . . ,∞, q1 = α

w1 w2 q1 q2 z y

α ∈ [0, γ2/(γ2 − γ1)](κα ≥ 0)
−αγC

κα−γ

−(1−α)γC

κα−γ
α 1 − α καC

κα−γ

γκαC

κα−γ

α ∈ [γ2/(γ2 − γ1), 1](κα < 0)
αγC
γ−κα

(1−α)γC
γ−κα

α 1 − α −καC
γ−κα

−γκαC
γ−κα
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It’s Complicated

Consider polyhedron defined by
finite subset of these extreme
points

Use Porta (or other tool) to find
inequality description

Look for parameterized set(s) of
inequalities

Stare at them a long time...

INEQUALITIES SECTION

( 1) - 50x1- 5x2- 85x3- 12x4- x5+ x6 <= -150

( 2) - 50x1- x2- 87x3- 12x4- x5+ x6 <= -148

( 3) - 50x1- 5x2- 85x3- 2x4- 7x5+ x6 <= -146

( 4) - 40x1-10x2- 85x3- 12x4- x5+ x6 <= -145

( 5) - 50x1- x2- 87x3- 2x4- 7x5+ x6 <= -144

( 6) - 40x1-10x2- 85x3- 2x4- 7x5+ x6 <= -141

( 7) - 50x1- 5x2- 13x3- 60x4- x5+ x6 <= -126

( 8) - 50x1- x2- 15x3- 60x4- x5+ x6 <= -124

( 9) - 40x1-10x2- 13x3- 60x4- x5+ x6 <= -121

( 10) - 8x1-10x2- 93x3- 12x4- x5+ x6 <= -121

( 11) - 50x1- 5x2- 3x3- 60x4- 5x5+ x6 <= -120

( 12) - 10x1- x2- 97x3- 12x4- x5+ x6 <= -118

( 13) - 50x1- x2- 5x3- 60x4- 5x5+ x6 <= -118

( 14) - 8x1-10x2- 93x3- 2x4- 7x5+ x6 <= -117

( 15) - 8x1- 2x2- 97x3- 12x4- x5+ x6 <= -117

( 16) - 2x1-10x2- 93x3- 13x4- x5+ x6 <= -116

( 17) - 40x1-10x2- 3x3- 60x4- 5x5+ x6 <= -115

( 18) - 10x1- x2- 97x3- 2x4- 7x5+ x6 <= -114

( 19) - 8x1- 2x2- 97x3- 2x4- 7x5+ x6 <= -113

( 20) - 4x1- x2- 97x3- 13x4- x5+ x6 <= -113

( 21) - 2x1- 2x2- 97x3- 13x4- x5+ x6 <= -112

.

.

.

“If you sit on the door-step long enough, I
daresay you will think of something.”

Bilbo
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Valid Inequalities - Type I

Theorem

The following inequaliy is valid for P(
(γ1 − γ)w1 + (γ2 − γ)w2

)2 ≤ −γC((γ1 − γ)q1 + (γ2 − γ)q2)(w1 +w2).

The inequality is supported by the “small alpha” extreme points
By-pass is necessary to make up for excess concentration from the pool

The inequality is second-order cone representable

Easy Proof

Aggregate linear inequalities ⇒ (γ1 − γ)w1 + (γ2 − γ)w2 ≤ −γC

Observe:
(γ1 − γ)w1 + (γ2 − γ)w2 = (γ1 − γ)q1(w1 +w2) + (γ2 − γ)q2(w1 +w2)

Multiply LHS with LHS, RHS with RHS
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Victory Is Ours—It Works for Multiple Inputs

The “same” proof demonstrates how to create a valid inequality for multiple inputs

Theorem

The following inequality is valid for P with multiple inputs I:(∑
i∈I

(γi − γ)wi
)2
≤ −γC

(∑
i∈I

(γi − γ)qi
)(∑

i∈I

wi

)
.
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Valid Inequalities—Type II

Theorem

The following inequality is valid for P if y > 0:

γ̄w1 + y +
γ1w2y

(γ2 − γ1)w2 + y
≤ γ̄Cq1

Supported by the “large alpha” extreme points
The pool needs to “make up” for excess concentration from the by-pass

Validity proof slightly more complicated

Second-order cone representable for the case y > 0

The inequality is only valid if y ≤ 0. Let

f(y,w2) :=

{
0 y ≤ 0
y + γ1w2y

(γ2−γ1)w2+y
y > 0.

f(y,w2) is convex, and the following inequality is valid for P:

f(y,w2) ≤ γ(Cq1 −w1)

Reduces to inequality from last slide when y > 0, to w1 ≤ Cq1 when y ≤ 0
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A Conjecture
“I don’t know, and I would rather not guess.”

Frodo

P

w1 = q1(w1 +w2)

w2 = q2(w1 +w2)

y + γ1w1 + γ2w2 ≤ 0
z +w1 +w2 ≤ C

q1 + q2 = 1

γz ≤ y ≤ γz
w1, w2, q1, q2, z ≥ 0

conv(P)

( 2∑
i=1

(γi − γ)wi
)2 ≤

− γC
( 2∑
i=1

(γi − γ)qi
)( 2∑
i=1

wi
)

f(y,w2) ≤ γ(Cq1 −w1)
y + γ1w1 + γ2w2 ≤ 0

z +w1 +w2 ≤ C
q1 + q2 = 1

γz ≤ y ≤ γz
w1, w2, q1, q2, z ≥ 0
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Computational Results “No One Believes Me”
J.R.R. Tolkein

McCormick relaxation of PQ-Formulation (LP) versus LP+Type 1 inequalities,
Optimal Value

Instances from the literature (exclude those for which LP yields optimal value)

These are small instances

TA-DA!

Instance zPQ zType I z∗

adhya1 -770.0 -738.7 -549.8
adhya2 -572.3 -569.9 -549.8
bental4 -550.0 -525.0 -450.0
haverly1 -500.0 -475.0 -400.0
haverly2 -1000.0 -866.7 -600.0

rt2 -6034.9 -6034.9 -4391.8

These results are honestly not that
great, but there is more to be done!

“Despair is only for those who see the end
beyond all doubt. We do not.”

Gandalf
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Conclusions “All’s well that ends better”
The Gaffer

Even with one output, one pool, two
inputs

Convex hull is not polyhedral

Continuing Quest

Prove Convex Hull result

Extend Type-II inequality to multiple
inputs

Better approximation of by-pass (e.g.,
upper bounds on different inputs)

Multiple pools?
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