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Power Background Optimal Power Flow

Motivating Application: Power Flow

Power Network: (N,A) with
G ⊂ N: generation nodes
D ⊂ N: demand nodes

Variables

pi: (Real) power inject at generator i ∈ G
xij: (Real) power flow on line (i, j) ∈ A
θi: Voltage angle at node i ∈ N

DC Power Flow Assumption

The (real) power transmit over line (i, j) ∈ A is proportional to angle differences
at the endpoint nodes i ∈ N and j ∈ N.

xij = αij(θj − θi)

More general potential constraints on flow (e.g., water and gas distribution):

gij(xij) = θj − θi
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Power Background Optimal Power Flow

(DC) Optimal Power Flow

min
x,p,θ

∑
i∈G

cipi

s.t.
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =


pi ∀i ∈ G
di ∀i ∈ D
0 ∀i ∈ N \G \D

−Uij ≤ xij ≤ Uij ∀(i, j) ∈ E
p
i
≤ pi ≤ pi ∀i ∈ G

xij = αij(θj − θi) ∀(i, j) ∈ E
pi ∈ R+ ∀i ∈ G

x, θ need not be ≥ 0
Bounds on x, but no a priori bounds on θ (Usually derived from bounds on x)
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Power Background Transmission Switching

Transmission Switching

Tradeoff

Having Edges/Lines Allows You to Send Flow:

−Uij ≤ xij ≤ Uij ∀(i, j) ∈ E

Having Edges Induces Constraints in the Network:

xij = αij(θj − θi) ∀(i, j) ∈ E

Fisher, O’Neill & Ferris (’08) show that efficiency improved by optimally switching
off transmission lines

Max Lines Off % Improvement
1 6.3%
2 12.4%
3 19.9%

Same problem structure appears in transmission network design problems and in
(nonlinear) gas/water network design problems
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Power Background Transmission Switching

Switching Off Lines

Regular Flow Constraints

xij = αij(θj − θi) ∀(i, j) ∈ E
−Uij ≤ xij ≤ Uij ∀(i, j) ∈ E

Switched Flow Constraints

xij = αijzij(θj − θi) ∀(i, j) ∈ E
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Power Background Transmission Switching

MILP Formulation

If θi have bounds then one can write an MILP formulation (Fisher, O’Neil, and
Ferris ’08).

zij = 1⇔ line (i, j) ∈ A is used

min
x,p,θ,z

∑
i∈G

cipi

s.t.
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xij =


pi ∀i ∈ G
di ∀i ∈ D
0 ∀i ∈ N \G \D

−Uijzij ≤ xij ≤ Uijzij ∀(i, j) ∈ E

αij(θi − θj) − xij +M(1 − zij) ≥ 0 ∀(i, j) ∈ E
αij(θi − θj) − xij −M(1 − zij) ≤ 0 ∀(i, j) ∈ E

−Li ≤ θi ≤ Li ∀i ∈ N
zij ∈ {0, 1} ∀(i, j) ∈ E
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Power Background Transmission Switching

This is a Hard Problem

Hedman, Ferris, O’Neill, Fisher, Oren, (2010) state

“When solving the transmission switching problem, ... the techniques for
closing the optimality gap, specifically improving the lower bound, are
largely ineffective.”

So they resort to a variety of heuristic, ad-hoc techniques to get good solutions to
the problem.

As integer programmers, we would like to rise to the challenge, and improve these
“ineffective” lower bound techniques.

Insight #1

The problem looks like an (integer) multicommodity flow problem

With the additional “line-voltage” constraints:

xij = αij(θj − θi)
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Cycle Inequalities Intuition

Key (Simple) Insight?!

A

B C

Assume (WLOG) that αij = 1
We can just set xij = αijx

′
ij and scale

uij by αij

Then we have...

xAB = θB − θA

xBC = θC − θB

xCA = θA − θC
xAB + xBC + xCA = 0

IP People Like Simple Sets

Directed cycle G = (V,C), with V = [n], C = {(i, i + 1) : ∀i ∈ [n − 1]} ∪ {(n, 1)}:

C =
{
(x, θ, z) ∈ R2n × {0, 1}n : − uij ≤ xij ≤ uij ∀(i, j) ∈ C

zij(θi − θj) = xij ∀(i, j) ∈ C
}

Even though C has the “nonlinear” equations zij(θi − θj) = xij, it is the union of 2n

polyhedra, so cl conv(C) is a polyhedron.
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Cycle Inequalities Theorems and Conjectures

First Result

Theorem

For S ⊆ C such that u(S) > u(C \ S), the cycle inequalities

x(S) +
∑
a∈C

βSaza ≤ bS (1)

−x(S) +
∑
a∈C

βSaza ≤ bS (2)

are valid for C, where

βSa = u(S \ a) − u(C \ S) ∀a ∈ C

bS = (n − 1)(2u(S) − u(C))

Similar result has been obtained by Santanu Dey, Burak Kocuk, and Andy Sun
(Georgia Tech).
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Cycle Inequalities Theorems and Conjectures

Cycle Inequalities, Example
x
1
≤
2
z 1

x2 ≤ 4z2

x
3
≤
3
z
3

x1 + x2 + z1 − z2 + 3z3 ≤ 6 S = {1, 2}

x1 + x3 − z1 + z2 − 2z3 ≤ 2 S = {1, 3}

x2 + x3 + 5z1 + z2 + 2z3 ≤ 10 S = {2, 3}

x1 + x2 + x3 + 7z1 + 5z2 + 6z3 ≤ 18 S = {1, 2, 3}

Logic Enforced

For S = {1, 2}, if z1 = z2 = 1, then

x1 + x2 ≤
{
6 z3 = 0
3 z3 = 1

For S = {1, 3}, if z1 = z3 = 1, then

x1 + x3 ≤
{
5 z2 = 0
4 z2 = 1
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Cycle Inequalities Theorems and Conjectures

Strength of cycle inequalities

Theorem

If S ⊆ C, and u(C \ S) < u(S), then the cycle inequalities (CI) are facet-defining for
cl conv(C).

Something we’ve conjectured, and Dey, Kocuk, and Sun have proved:

cl conv(C) =
{
(x, θ, z) ∈ R3n : −uijzij ≤ xij ≤ uijzij ∀(i, j) ∈ C

zij ≤ 1 ∀(i, j) ∈ C

x(S) +
∑
a∈C

βSaza ≤ bS ∀S ⊆ C : u(S) > u(C \ S)

−x(S) +
∑
a∈C

βSaza ≤ bS ∀S ⊆ C : u(S) > u(C \ S)
}
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Separation Heuristic

Separation

Given solution x̂ ∈ Rn+, ẑ ∈ [0, 1]n, the separation problem for (CI) is

max
C⊆A:C is a cycle

max
S⊆C:2u(S)≥u(C)

{x̂(S) + (βS)>ẑ − bS}.

Observation: If
∑
a∈C ẑa ≤ |C| − 1, then (x̂, ẑ) cannot be violated by any (CI)

This suggests a two-phase separation heuristic.

Separation Heuristic

1 Find a “necessary cycle” C such that
∑
a∈C ẑa > |C| − 1

2 Find S ⊂ C in the given cycle

Do (1) by (truncated) enumeration
Given C, algebra shows that (2) is equivalent to a knapsack problem:

λ̂ = |C| − 1 −
∑
a∈C ẑa

v̂a = x̂a + uaẑa − 2ua(
∑
e∈C\a(1 − ẑe))

ν = max
y∈{0,1}n

∑
a∈C

v̂aya :
∑
a∈C

uaya ≥
1

2
u(C)


If ν + u(C)λ̂ > 0, then (CI) is violated by (x̂, ẑ)
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∑
e∈C\a(1 − ẑe))
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Computational Results Background

Test Problem

Power grid network design problem.

One (expensive) generator can supply power to n nodes

Possibility to “plug in” up to n/5 cheaper generators, with fixed cost of constructing
new lines

Also can do transmission switching

Ten instances (each) of size n = 30, n = 50.

Run CPLEX for one hour, record, initial LP Gap, Final LP Gap, and Final Gap

Report (arithmetic) averages

All Gaps taken w.r.t. best feasible solution found
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Computational Results Obligatory Table

Computational Results

CPLEX Cuts Turned On—Gap %

No (CI) With (CI)
n LP Root Final Root Final

30 10.46 9.52 9.16 9.09 8.90
50 11.88 11.46 11.37 11.14 11.10

No (CI) With (CI)
n #node #node # cuts
30 67928.2 1525.5 2074.8
50 6202.3 223.0 759.6
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The End

Conclusions

IP-based approach for improving lower bounds in DC-approximated power network
design (e.g., transmission switching)

(CI) extend to any application where “potential” is preserved around a cycle, and
where potential difference and flow are related by a (possibly nonlinear) equation

Up Next

Collaborate with Dey, Kocuk, and Sun

Improve separation routine, test on more problem classes

Consider using a multi-commodity formulation for improved flow upper bounds

Study more complicated structures besides cycles?

Extend to potential preserved, but nonlinear relationship between potential and
flow—Gas and Water Network design
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