
Solving Convex MINLPs with MINOTAUR:
Presolving, Cuts and More

Ashutosh Mahajan

Industrial Engineering and Operations Research
Indian Institute of Technology Bombay

June 04, 2014



About this talk
The Team

2.



About this talk

The Agenda

1 Describe the Minotaur framework

2 Glimpse of what is under the hood

3 Two main themes:
Exploit specific problem structures
Customize specific components of Branch-and-Cut

4 Illustrate how you can extend or customize it

2.



What is Minotaur?

Mixed
I nteger
Nonlinear
Optimization
T oolkit:
A lgorithms,
Underestimators,
R elaxations. http://wiki.mcs.anl.gov/minotaur

Completely open-source: BSD License

Source code, libraries, binaries available

Well tested on Linux, Mac

Documentation on the wiki, examples in the source

3.

http://wiki.mcs.anl.gov/minotaur


Three ways to use Minotaur
1 Use the binaries (through AMPL or Pyomo)

NLP based branch-and-bound
LP-NLP based branch-and-bound
QP-diving
Solvers for nonconvex problems under development
Available as minotaur-xxx-bin-yyy.tar.gz

2 Use the libraries
Use existing interfaces, methods, engines, branchers, tree-manager, . . .
Embed it in your application
Available as minotaur-xxx-dev-yyy.tar.gz

3 Build your own
Modify/add your own code to Minotaur
Available as minotaur-xxx-src.tar.gz
C++, modular

4.



Three ways to use Minotaur
1 Use the binaries (through AMPL or Pyomo)

NLP based branch-and-bound
LP-NLP based branch-and-bound
QP-diving
Solvers for nonconvex problems under development
Available as minotaur-xxx-bin-yyy.tar.gz

2 Use the libraries
Use existing interfaces, methods, engines, branchers, tree-manager, . . .
Embed it in your application
Available as minotaur-xxx-dev-yyy.tar.gz

3 Build your own
Modify/add your own code to Minotaur
Available as minotaur-xxx-src.tar.gz
C++, modular

4.



Three ways to use Minotaur
1 Use the binaries (through AMPL or Pyomo)

NLP based branch-and-bound
LP-NLP based branch-and-bound
QP-diving
Solvers for nonconvex problems under development
Available as minotaur-xxx-bin-yyy.tar.gz

2 Use the libraries
Use existing interfaces, methods, engines, branchers, tree-manager, . . .
Embed it in your application
Available as minotaur-xxx-dev-yyy.tar.gz

3 Build your own
Modify/add your own code to Minotaur
Available as minotaur-xxx-src.tar.gz
C++, modular

4.



Inside Minotaur: Three Main Components
Core

1 Problem Description Classes
Function,
NonlinearFunction,
LinearFunction,
Variable, Constraint, Objective, etc.

2 Branch-and-Bound Classes
NodeRelaxer, NodeProcessor
Brancher, TreeManager
Presolver, CutManager, etc.

3 Structure Handlers
Linear, SOS2, CxUnivar, CxQuad,
Multilinear, QG, etc.

4 Utility Classes
Timer, Options, Logger,
Containers, Operations, etc.

Engines
1 OSI-LP (coin-or.org)

CLP
CPLEX
GUROBI

2 BQPD
3 qpOASES
4 IPOPT
5 Filter-SQP

Interfaces
1 AMPL
2 C++

5.



Inside Minotaur: Three Main Components
Core

1 Problem Description Classes
Function,
NonlinearFunction,
LinearFunction,
Variable, Constraint, Objective, etc.

2 Branch-and-Bound Classes
NodeRelaxer, NodeProcessor
Brancher, TreeManager
Presolver, CutManager, etc.

3 Structure Handlers
Linear, SOS2, CxUnivar, CxQuad,
Multilinear, QG, etc.

4 Utility Classes
Timer, Options, Logger,
Containers, Operations, etc.

Engines
1 OSI-LP (coin-or.org)

CLP
CPLEX
GUROBI

2 BQPD
3 qpOASES
4 IPOPT
5 Filter-SQP

Interfaces
1 AMPL
2 C++

5.



Inside Minotaur: Three Main Components
Core

1 Problem Description Classes
Function,
NonlinearFunction,
LinearFunction,
Variable, Constraint, Objective, etc.

2 Branch-and-Bound Classes
NodeRelaxer, NodeProcessor
Brancher, TreeManager
Presolver, CutManager, etc.

3 Structure Handlers
Linear, SOS2, CxUnivar, CxQuad,
Multilinear, QG, etc.

4 Utility Classes
Timer, Options, Logger,
Containers, Operations, etc.

Engines
1 OSI-LP (coin-or.org)

CLP
CPLEX
GUROBI

2 BQPD
3 qpOASES
4 IPOPT
5 Filter-SQP

Interfaces
1 AMPL
2 C++

5.



Inside Minotaur: Three Main Components
Core

1 Problem Description Classes
Function,
NonlinearFunction,
LinearFunction,
Variable, Constraint, Objective, etc.

2 Branch-and-Bound Classes
NodeRelaxer, NodeProcessor
Brancher, TreeManager
Presolver, CutManager, etc.

3 Structure Handlers
Linear, SOS2, CxUnivar, CxQuad,
Multilinear, QG, etc.

4 Utility Classes
Timer, Options, Logger,
Containers, Operations, etc.

Engines
1 OSI-LP (coin-or.org)

CLP
CPLEX
GUROBI

2 BQPD
3 qpOASES
4 IPOPT
5 Filter-SQP

Interfaces
1 AMPL
2 C++

5.



Inside Minotaur: Three Main Components
Core

1 Problem Description Classes
Function,
NonlinearFunction,
LinearFunction,
Variable, Constraint, Objective, etc.

2 Branch-and-Bound Classes
NodeRelaxer, NodeProcessor
Brancher, TreeManager
Presolver, CutManager, etc.

3 Structure Handlers
Linear, SOS2, CxUnivar, CxQuad,
Multilinear, QG, etc.

4 Utility Classes
Timer, Options, Logger,
Containers, Operations, etc.

Engines
1 OSI-LP (coin-or.org)

CLP
CPLEX
GUROBI

2 BQPD
3 qpOASES
4 IPOPT
5 Filter-SQP

Interfaces
1 AMPL
2 C++

5.



Inside Minotaur: Three Main Components
Core

1 Problem Description Classes
Function,
NonlinearFunction,
LinearFunction,
Variable, Constraint, Objective, etc.

2 Branch-and-Bound Classes
NodeRelaxer, NodeProcessor
Brancher, TreeManager
Presolver, CutManager, etc.

3 Structure Handlers
Linear, SOS2, CxUnivar, CxQuad,
Multilinear, QG, etc.

4 Utility Classes
Timer, Options, Logger,
Containers, Operations, etc.

Engines
1 OSI-LP (coin-or.org)

CLP
CPLEX
GUROBI

2 BQPD
3 qpOASES
4 IPOPT
5 Filter-SQP

Interfaces
1 AMPL
2 C++

5.



Nonlinear Functions in Minotaur
Base Class: NonlinearFunction

virtual void computeBounds(...);
virtual Double eval(...);
virtual void evalGradient(...);
virtual void evalHessian(...);
...

Derived Classes:

AMPLNonlinearFunction
Queries AMPL’s ASL library for the above functions

CGraph
Nonlinear “factorable” function is stored as a computational graph

6.



Computational Graph

Consider a function f : R3 → R, f =
x2

sin(4×x3+x1)
−3×x1

x1x2 x3 34

+

××

sin

/

−

Minotaur’s computational graph of f allows
us to:

evaluate f at a given point,

obtain bounds, under-estimators and
over-estimators of f ,

evaluate “exact” gradient and hessian at
a given point “cheaply” (Automatic
Differentiation).

It is the default class for storing nonlinear
functions.

Operators Supported: +,−,×, /, log, ln, ax, xa, sin, cos, tan, sinh, sin−1, . . .

7.



Computational Graph

Consider a function f : R3 → R, f =
x2

sin(4×x3+x1)
−3×x1

x1x2 x3 34

+

××

sin

/

−
Minotaur’s computational graph of f allows
us to:

evaluate f at a given point,

obtain bounds, under-estimators and
over-estimators of f ,

evaluate “exact” gradient and hessian at
a given point “cheaply” (Automatic
Differentiation).

It is the default class for storing nonlinear
functions.

Operators Supported: +,−,×, /, log, ln, ax, xa, sin, cos, tan, sinh, sin−1, . . .

7.



Easy to Construct Them

+

∧ ∧

x1 2 x2 2

Suppose we have a function x2
1 + x2

2

8.



Easy to Construct Them

ProblemPtr p = (ProblemPtr) new Problem();
VariablePtr x1 = p->newVariable(0, 1, Binary, "x1");
VariablePtr x2 = p->newVariable(0, 1, Binary, "x2");

CGraphPtr cg = (CGraphPtr) new CGraph();
CNode *n2 = cg->newNode(2.0);
CNode *nx1 = cg->newNode(x1);
CNode *nx2 = cg->newNode(x2);

CNode *np1 = cg->newNode(OpPow, nx1, n2);
CNode *np2 = cg->newNode(OpPow, nx2, n2);
n2 = cg->newNode(OpPlus, np1, np2);

cg->setOut(n2);
cg->finalize(); cg->write(std::cout);

9.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

F
ra

c
ti
o
n
 o

f 
In

s
ta

n
c
e
s

Ratio to Fastest

Time per Node in Branch-and-Bound

Derivatives from AMPL
Derivatives from Minotaur

152 instances from CMU-IBM website

http://egon.cheme.cmu.edu/ibm/page.htm

10.



Exploiting Structure Through Handlers

Where can we exploit problem
structure?

Relaxing

Bounding

Checking Feasibility

Separating

Branching

Presolving

Methods in Handler Class
relaxNodeFull()
relaxNodeInc()
presolve()
presolveNode()
isFeasible()
separate()
getBranchingCandidates()
branch()

Example 1: NLP Based Branch-and-Bound for Convex MINLPs
We need a handler for isFeasible(),
getBranchingCandidates() and branch() only

IntVarHandler does all three

11.



Exploiting Structure Through Handlers

Where can we exploit problem
structure?

Relaxing

Bounding

Checking Feasibility

Separating

Branching

Presolving

Methods in Handler Class
relaxNodeFull()
relaxNodeInc()
presolve()
presolveNode()
isFeasible()
separate()
getBranchingCandidates()
branch()

Example 1: NLP Based Branch-and-Bound for Convex MINLPs
We need a handler for isFeasible(),
getBranchingCandidates() and branch() only

IntVarHandler does all three

11.



A Very Simple Branch-and-Bound Solver
BranchAndBound *bab = new BranchAndBound(env, p);

v_hand = new IntVarHandler(env, p);
handlers.push_back(v_hand);

e = new FilterSQPEngine(env);
rel_br = new ReliabilityBrancher(env, handlers);
rel_br->setEngine(e);

nproc = new BndProcessor(env, e, handlers);
nproc->setBrancher(rel_br);
bab->setNodeProcessor(nproc);

nr = new NodeIncRelaxer(env, handlers);
nr->setEngine(e);
bab->setNodeRelaxer(nr);
bab->solve();

12.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

2
3

2
4

F
ra

c
ti
o

n
 o

f 
In

s
ta

n
c
e

s

Ratio to Fastest

Extended Performance Profile for NLP Branch-and-Bound using Filter-SQP

BONMIN
Minotaur with derivatives from AMPL

Minotaur with its own derivatives

13.



Enhancing Branch-and-Bound
Example 2: NLP Based Branch-and-Bound for Convex MINLPs with Pre-
solving

IntVarHandler for isFeasible(),
getBranchingCandidates() and branch()

LinearHandler and NlPresHandler for presolve()

Basic functions in presolve:

Tighten bounds on variables and constraints.

Fix/remove variables.

Identify and remove redundant constraints.

Check duplicacy.

Advanced functions in presolve:

Improve coefficients.

Derive implications and conflicts.

Quadratic binary to linear

14.



Enhancing Branch-and-Bound
Example 2: NLP Based Branch-and-Bound for Convex MINLPs with Pre-
solving

IntVarHandler for isFeasible(),
getBranchingCandidates() and branch()

LinearHandler and NlPresHandler for presolve()

Basic functions in presolve:

Tighten bounds on variables and constraints.

Fix/remove variables.

Identify and remove redundant constraints.

Check duplicacy.

Advanced functions in presolve:

Improve coefficients.

Derive implications and conflicts.

Quadratic binary to linear

14.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-10

2
-8

2
-6

2
-4

2
-2

2
0

2
2

2
4

2
6

2
8

F
ra

c
ti
o

n
 o

f 
In

s
ta

n
c
e

s

Ratio to Fastest

Extended Performance Profile for NLP Branch-and-Bound + Presolve

BONMIN-BNB
Minotaur with derivatives from AMPL

Minotaur with its own derivatives
Minotaur with presolve

15.



Pεrspεctive Rεformulation

Recall Nick Sawaya’s talk yesterday

If g(x) ≤ 0 is a constraint in a MINLP, and the single variable y forces all
x to zero, and g(0) = 0, then the constraint can be replaced by
yg

(
x
y

)
≤ 0

16.



Pεrspεctive Rεformulation

Recall Nick Sawaya’s talk yesterday

If g(x) ≤ 0 is a constraint in a MINLP, and the single variable y forces all
x to zero, and g(0) = 0, then the constraint can be replaced by
yg

(
x
y

)
≤ 0

+

∧ ∧

x1 2 x2 2

×

y+

∧ ∧

/ 2 / 2

x1 y x2 y

16.



Pεrspεctive Rεformulation

Recall Nick Sawaya’s talk yesterday

If g(x) ≤ 0 is a constraint in a MINLP, and the single variable y forces all
x to zero, and g(0) = 0, then the constraint can be replaced by
yg

(
x
y

)
≤ 0 → (y + ε) g

(
x

y+ε

)
≤ 0

+

∧ ∧

x1 2 x2 2

×

+

y ε

+

∧ ∧

/ 2 / 2

x1 +

y ε

x2 +

y ε

16.



Easy to Implement (≈ 70 lines)

ynode = cg->newNode(y);
anode = cg->newNode(eps);
ynode = cg->newNode(OpPlus, anode, ynode);
// visit all nodes that have variables in them
for (it = cg->vars_.begin(); it!=cg->vars_.end();

++it) {
v = *it;
if (v != z) {
mit = cg->varNode_.find(v);
dnode = mit->second;
cg->varNode_.erase(mit);

vnode = cg->newNode(v);
anode = cg->newNode(OpDiv, vnode, ynode);

// set parents of anode.
...

17.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-4

2
-2

2
0

2
2

2
4

2
6

2
8

F
ra

c
ti
o

n
 o

f 
In

s
ta

n
c
e

s

Ratio to Fastest

NLP Branch-and-Bound + Presolve + Perspective Reformulation

BONMIN-BNB
Minotaur with derivatives from AMPL

Minotaur with its own derivatives
Minotaur with presolve

Minotaur with presolve and perspective

18.



Example 3: LP/NLP Based Branch-and-Bound (QG)
IntVarHandler for isFeasible(),
getBranchingCandidates() and branch()

QGHandler for isFeasible(), relaxNodeInc(), and
separate()

Two engines, LP and NLP

We need a different node processor

Solve relaxation

lb ≥ ub?

Is solution
feasible?

Return

Branch Return

Update ub

yes

no
yes

no

Solve relaxation

lb ≥ ub?

Is solution
feasible?

Return

Find cuts

Re-solve?

Branch Return

Update ub

yes

no
yes

no

no
yes

19.



Example 4: QP-Diving
We solve a QP at each node (good warm-starting)

Ocassionally solve NLP to find a better estimate of active constraints

The constraints are linearizations of active constraints

The QP objective is the gradient of the objective added to the hessian
of Lagrangian

IntVarHandler for isFeasible(),
getBranchingCandidates() and branch()

QPDProcessor for processing the nodes (different fathoming rules)

QPDRelaxer for creating/updating QP approximations

20.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-2

2
0

2
2

2
4

2
6

2
8

2
10

F
ra

c
ti
o

n
 o

f 
In

s
ta

n
c
e

s

Ratio to Fastest

Algorithms for Convex MINLPs

BONMIN-QG
Minotaur BnB

QP-Diving
Minotaur QG

21.



Closing Remarks
Minotaur is a flexible objected-oriented open-source framework
Its components can be combined to create powerful solvers . . .
. . . at least for convex MINLPs
We are working on some algorithms for nonconvex MINLPs also
We would like YOU to try implement your ideas in Minotaur
Latest ‘Nightly’ version of the source is available on the website
An new stable version of binaries and libraries will be available soon

http://wiki.mcs.anl.gov/minotaur

22.

http://wiki.mcs.anl.gov/minotaur

