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Mixed-Integer Nonlinear Programs (MINLPs)

min cT x
s.t. gi(x) = bi for i = 1, . . . , k1,

hi(x) ≥ bi for i = 1, . . . , k2,

l ≤ x ≤ u, l,u ∈ Rd ,

x ∈ Rd−p × Zp,

Many Applications:
• Chemical-, electrical- and civil engineering
• Finance management
• ...
• Water and gas network optimization
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Motivation

• Such problems are typically solved by outer approximation and spatial
branching, cf.

• Baron (Tawarmalani, Sahinidis 2005)
• Couenne (Belotti, Lee, Liberti, Margot, Wächter 2009)
• SCIP (Vigerske 2013)
• alphaECP (Westerlund, Lindquist 2003)
• Bonmin (Bonami, Biegler, Conn, Cornuejols, Grossmann, Laird, Lee, Lodi,

Margot, Sawaya, Wächter 2005)
• ...

• In case of nonconvex (MI)NLP spatial branching is unavoidable

• Lots of branching experiences for (M)IPs
• Polyhedral combinatorics help to avoid parts of branching
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Motivation

Idea: For a given (MI)NLP and maximal absolute constraint violation ε > 0
construct a MIP such that

1. the feasible set of the (MI)NLP is contained in the feasible set of the MIP

2. any point which is feasible to the MIP violates no constraint of the MINLP
by more than ε
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MIP-relaxations of MINLPs
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Adaptive piecewise linear interpolation

Algorithm 1: Adaptive piecewise linear interpolation (Geißler, Morsi, Schewe 2013)

Data: A convex polytope P ⊆ Rd , a continuous function f : P → R and an upper bound ε > 0 for the
approximation error.

Result: A triangulation S of P corresponding to a piecewise lineare interpolation φ of f over P with
φ(x) = f (x) for all x ∈ V(S) and φ = φi for Si ∈ S and i = 1, . . . , n.

Set V = V(P);
Construct an initial triangulation S of V and the corresponding piecewise linear interpolation φ of f with
φ(x) = φi(x) for x ∈ Si for all Si ∈ S;
while ∃Si ∈ S, Si unmarked do

if ε(f ,S) := maxx∈Si |f (x)− φi(x)| > ε then
Add a point, where the maximal error is attained to V ;
Set S ← S \ {Si};
Update S according to the extended set of vertices V ;

else
Mark Si ;

end
end
return S
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Computing the approximation error

• If f is convex or concave over S, this is easy!
• If f is indefinite over S computing ε(f ,S) requires the solution of

nonconvex NLPs to global optimality (in general NP-hard, cf. Murty &
Kabadi 1985)

Definition
A function

µ ∈ U(f ,S) := {ξ : S → R : ξ convex, ξ(x) ≤ f (x) ∀x ∈ S}

is called convex underestimator of f over S. The function vexS[f ] : S → R
defined as

vexS[f ](x) := sup{µ(x) : µ ∈ U(f ,S)}
is called convex envelope of f over S.
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Computing the approximation error
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Computing the approximation error

Theorem (Geißler, Martin, Morsi, Schewe 2011)
LetMo be the set of global maximizers for the overestimation of f by φ over
S and let No be the set of points, where the global maximum of the
overestimation of the convex envelope of f over S by φ is attained. Then,

ε(f ,S) = ε(vexS[f ],S) and No = conv(Mo).

Theorem (Geißler, Martin, Morsi, Schewe 2011)
Let φ be the linear interpolation of f over a d-simplex S. Then a point
x∗ ∈Mo can be obtained by solving at most d convex optimization
problems in dimension ≤ d .
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Computing the convex envelopes

• For convex and concave functions computing the envelopes is trivial
• But in general this is NP-hard (Crama 1989)
• Convex envelopes are known for, e.g.,

• univariate C2 functions over intervals
(Maranas & Floudas 1995)

• the bilinear function f (x , y) = xy over boxes (McCormick 1976) and triangular
domains (Locatelli & Schoen 2010)

• Combination of nonconvex functions (Ballerstein 2013)
• Our approximation algorithm works with any convex underestimator as,

e.g., α-underestimators (Maranas & Floudas 1994)

• Observe, if convex envelopes are at hand, the triangulations are always
refined, where the approximation errors attain their maxima
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MIP-models for piecewise linear functions

• (linear) convex combination models
• Linear number of cont. variables
• Linear number of binaries
• Linear number of constraints

• (logarithmic) convex combination models (Nemhauser, Vielma 2008)
• Linear number of cont. variables
• Logarithmic number of binaries
• Logarithmic number of constraints
• Locally ideal formulation

• incremental model (Markowitz, Manne 1957)
• Linear number of cont. variables
• Linear number of binaries
• Linear number of constraints
• Locally ideal formulation

• Also possible: SOS branching (Beale, Tomlin 1970)
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The effect of branching: Incremental vs. Log
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Figure: Branching induced by the leftmost and rightmost bit using the logarithmic convex combination model.
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Figure: Branching induced by the 4th and 6th binary variable using the incremental model.
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Incremental model – requirements

• Consider a d-variate plf on a polyhedral domain as a triangulation with
d-simplices S = {S1, . . . ,Sn} embedded in Rd+1

• For an incremental model the following must hold:
(O1) The simplices in S = {S1, . . . ,Sn} are ordered such that Si ∩ Si+1 6= ∅ for

i = 1, . . . , n − 1, and
(O2) for each simplex Si its vertices xSi

0 , . . . , x
Si
d can be labeled such that xSi

d = xSi+1
0

holds for i = 1, . . . , n − 1.

Theorem (Geißler, Martin, Morsi, Schewe 2009)
In fixed dimension an ordering of the simplices and vertices that satisfies
(O1) and (O2) can be computed in O(n2) for any triangulation with n
simplices.

Best known result so far by Wilson (1998) for d = 2 and domain
homeomorphic to a disc.
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MIP-models for piecewise linear functions -
Incremental method (Markowitz & Manne 1957)
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From approximation to relaxation

x = xS1
0 +

n∑
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0 +
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j + e,

d∑
j=1

δSi
j ≤ 1, for i = 1, . . . , n,

δSi
j ≥ 0, for i = 1, . . . , n, j = 1, . . . , d ,

d∑
j=1

δSi+1
j ≤ zi , zi ≤ δSi

d , z ∈ {0, 1}n−1.

εu(f ,S1) +
n−1∑
i=1

zi(εu(f ,Si+1)− εu(f ,Si)) ≥ e,

−εo(f ,S1)−
n−1∑
i=1

zi(εo(f ,Si+1)− εo(f ,Si)) ≤ e.
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Application: Gas Networks – Validation of Nomina-
tions



Gas Networks
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Gas Networks
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Validation of nominations

• Given:
• Specification of the network and the network elements
• (balanced) set of inflows and outflows (=nomination)

Validation of nominations for gas networks
Exists a control of all active elements of a given gas network such that a
given nomination could be realized (by the gas transport company) such that
all technical, physical and legal constraints are satisfied?

• Constraints:
(technical) Min./max. pressures, flows, compressor powers, ...
(physical) (stationary) gas dynamics, flow conservation

(legal) Min./max. in-/outflows and pressures, ...
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MINLP-model

• Variables:
• Pressure pi for all nodes i ∈ V
• Norm volume flow qa for all arcs a ∈ A
• Compressor power Pa for all compressors a ∈ A

• Nonlinear constraints:
• Pressure loss over a pipe a = (i , j): p2

j =
(

p2
i − Λa|qa|qa

eSa−1
Sa

)
e−Sa

• Pressure loss over a resistor a = (i , j):
p2

i − p2
j + |∆ij |∆ij = 16ρ0p0zm

π2z0T0

ξaT
D4

a
|qa|qa, ∆ij = pi − pj

• Power consumption of a compressor unit a = (i , j):

Pa = κ
κ−1

ρ0RTizi
ηad ,am

((
pj
pi

)κ−1
κ − 1

)
qa
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MINLP-model

• Switching variables sa ∈ {0, 1} for all active elements a ∈ A
• Combinatorial constraints:

• Valve: sa = 0→ qa = 0, sa = 1→ pi = pj

• Control valves: sa = 0→ qa = 0, sa = 1→ pi − pj ∈ [∆−a ,∆+
a ]

• Compressors: sa = 0→ qa = 0, sa = 1→ pj = f (Pa, qa, pi)

• Configurations:
∑

c∈C sc + sbypass ≤ 1

bypass

inlet valve

inlet resistor outlet resistor

outlet valve

parallel configuration

serial configuration

June 2nd, 2014 | A. Martin | FAU – EDOM | May MIP Techniques help to solve MINLPs? 22



Numerical Results



Intances I - small test networks
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Instances II - real gas networks
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Instances - overview

• Complexity of the test networks
net |VS| |VD| |VI| |AP| |AS| |ACS| |ACV | |AV | |AR|

1 2 4 11 13 1 3 1 0 0
2 3 5 16 20 4 3 1 0 1
3 26 14 112 69 67 3 7 1 8
4 31 129 432 452 98 6 23 34 9

• One Validation of a nomination for each network
• Test system: 4 cores of a computer with two 6-core AMD Opteron 2435

processors with 2.6 GHz and 64GB RAM
• MIP-solver: Gurobi 4.0.1
• Time limit for MIP-solver: 10 min
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Solving the validation of nominations problem

• Approach
1. Solve the MIP-relaxation
2. Fix the discrete decision variables in the MINLP-model according to the

MIP-solution
3. Solve the remaining NLP-model

• If the NLP is feasible→ Solution to the validation of nominations problem

• (MI)NLP-solvers: Baron 11.1.0, SCIP 3.0

• Max. error in pressure loss equations: 1.0/2.5/5.0/10.0 bar
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Validation of nominations - results

net ε cont bin cons tMIP feas tNLP

1 10.0 377 42 685 0.01s y 0.11s
1 5.0 380 45 694 0.01s y 0.15s
1 2.5 387 52 714 0.01s y 0.06s
1 1.0 423 88 823 0.02s y 0.20s
2 10.0 450 67 859 0.05s y 0.26s
2 5.0 479 96 946 0.09s y 0.20s
2 2.5 543 160 1138 0.11s y 0.09s
2 1.0 816 433 1957 0.13s y 0.26s
3 10.0 2099 418 3868 1.24s n 12.94s
3 5.0 2412 713 4807 1.51s y 1.48s
3 2.5 3058 1377 6745 6.03s y 1.32s
3 1.0 5185 3504 13126 22.04s y 1.59s
4 10.0 4825 1663 10994 21.65s n 41.33s
4 5.0 6012 2850 14555 51.26s y 30.83s
4 2.5 8433 5217 21818 132.96s y 36.65s
4 1.0 16343 13181 45548 600.00s - -
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Solving validation of nominations MINLPs

net Baron (MINLP) SCIP (MINLP) MIP NLP MIP+NLP
1 <1s <1s <1s <1s <1s
2 <1s <1s <1s <1s <1s
3 456s 2s 2s 1s 3s
4 >1h >1h 51.26s 30.83s 82.09s
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Network 5 (Open Grid Europe, L-Gas Germany)

• 13 entries
• 1.062 exits
• 3.632 pipes
• 26 resistors
• 305 valves
• 120 control valve stations
• 12 compressor stations
• 25.000 variables

(5.000 binary)

Computing time on 51 expert
scenarios:

• 11 min to 13.5 hours
• average: 2.5 hours
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Network 6 (Open Grid Europe, H-Gas Germany)

• 78 entries
• 395 exits
• 1.588 pipes
• 56 resistors
• 264 valves
• 101 control valve stations
• 35 compressor stations
• 35.000 variables

(14.000 binary)

Computing time on 29 expert
scenarios:

• 3 to 46 hours
• average: 17 hours
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Summary

• Purely polyhedral view on (mixed-integer) nonlinear problems

• Validation of nominations problem can be solved much faster than with
state-of-the-art MINLP-solvers

• Convincing computation results, even for large-scale real-life instances

• State-of-the-art MIP-solvers may be used to solve MINLPs,
if the number of variables of each nonlinear function is small

The Future

• The instationary case

• New Reserach Grant: Cooperate Reseach Center CRC 154
supported by the German Science Foundation (DFG)
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Thank you for coming
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