May MIP Techniques help to solve MINLPs?

A. Martin, jointly with B. Geißler, A. Morsi, L. Schewe FAU Erlangen – Nürnberg, EDOM

June 2nd, 2014 Mixed-Integer Nonlinear Programming 2014 Carnegie Mellon University, Pittsburgh, PA

EDOM Economics · Discrete Optimization · Mathematics

Mixed-Integer Nonlinear Programs (MINLPs)

min
$$\mathbf{c}^T \mathbf{x}$$
s.t. $g_i(\mathbf{x}) = b_i$ for $i = 1, \dots, k_1$, $h_i(\mathbf{x}) \ge b_i$ for $i = 1, \dots, k_2$, $\mathbf{I} \le \mathbf{x} \le \mathbf{u},$ $\mathbf{I}, \mathbf{u} \in \mathbb{R}^d,$ $\mathbf{x} \in \mathbb{R}^{d-p} \times \mathbb{Z}^p,$

Many Applications:

- · Chemical-, electrical- and civil engineering
- Finance management
- ...
- Water and gas network optimization

Motivation

- Such problems are typically solved by outer approximation and spatial branching, cf.
 - Baron (Tawarmalani, Sahinidis 2005)
 - Couenne (Belotti, Lee, Liberti, Margot, Wächter 2009)
 - SCIP (Vigerske 2013)
 - alphaECP (Westerlund, Lindquist 2003)
 - Bonmin (Bonami, Biegler, Conn, Cornuejols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya, Wächter 2005)

• ...

- In case of nonconvex (MI)NLP spatial branching is unavoidable
- Lots of branching experiences for (M)IPs
- Polyhedral combinatorics help to avoid parts of branching

EDOM Economics · Discrete

Optimization · Mathematics

Motivation

Idea: For a given (MI)NLP and maximal absolute constraint violation $\epsilon > 0$ construct a MIP such that

- 1. the feasible set of the (MI)NLP is contained in the feasible set of the MIP
- 2. any point which is feasible to the MIP violates no constraint of the MINLP by more than ϵ

Economics · Discrete Optimization · Mathematics FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Economics · Discrete Optimization · Mathematics

Economics · Discrete Optimization · Mathematics

Economics · Discrete Optimization · Mathematics

Economics · Discrete Optimization · Mathematics

Economics · Discrete Optimization · Mathematics

Adaptive piecewise linear interpolation

Algorithm 1: Adaptive piecewise linear interpolation (Geißler, Morsi, Schewe 2013)

Data: A convex polytope $\mathcal{P} \subseteq \mathbb{R}^d$, a continuous function $f : \mathcal{P} \to \mathbb{R}$ and an upper bound $\epsilon > 0$ for the approximation error.

Result: A triangulation S of P corresponding to a piecewise linear interpolation ϕ of f over P with $\phi(\mathbf{x}) = f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{V}(S)$ and $\phi = \phi_i$ for $S_i \in S$ and i = 1, ..., n.

Set $\mathcal{V} = \mathcal{V}(\mathcal{P})$; Construct an initial triangulation S of \mathcal{V} and the corresponding piecewise linear interpolation ϕ of f with $\phi(\mathbf{x}) = \phi_i(\mathbf{x})$ for $\mathbf{x} \in S_i$ for all $S_i \in S$; while $\exists S_i \in S$, S_i unmarked do if $\epsilon(f, S) := \max_{\mathbf{x} \in S_i} |f(\mathbf{x}) - \phi_i(\mathbf{x})| > \epsilon$ then Add a point, where the maximal error is attained to \mathcal{V} ; Set $S \leftarrow S \setminus \{S_i\}$; Update S according to the extended set of vertices \mathcal{V} ; else Mark S_i ; end end return S

Economics · Discrete Optimization · Mathematics

Computing the approximation error

- If *f* is convex or concave over *S*, this is easy!
- If *f* is indefinite over *S* computing *e*(*f*, *S*) requires the solution of nonconvex NLPs to global optimality (in general NP-hard, cf. Murty & Kabadi 1985)

Computing the approximation error

- If *f* is convex or concave over *S*, this is easy!
- If *f* is indefinite over *S* computing *e*(*f*, *S*) requires the solution of nonconvex NLPs to global optimality (in general NP-hard, cf. Murty & Kabadi 1985)

Definition

A function

$$\mu \in \mathcal{U}(f, \mathcal{S}) := \{ \xi : \mathcal{S}
ightarrow \mathbb{R} \, : \, \xi ext{ convex}, \, \xi(\mathbf{x}) \leq f(\mathbf{x}) \, orall \mathbf{x} \in \mathcal{S} \}$$

is called *convex underestimator* of *f* over *S*. The function $vex_S[f] : S \to \mathbb{R}$ defined as

$$\operatorname{vex}_{\mathcal{S}}[f](\mathbf{x}) := \sup\{\mu(\mathbf{x}) : \mu \in \mathcal{U}(f, \mathcal{S})\}$$

is called convex envelope of f over S.

Computing the approximation error

$$\mathcal{M}_0 = \left\{ -\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}} \right\}, \, \mathcal{N}_0 = \left[-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}} \right]$$

Computing the approximation error

Theorem (Geißler, Martin, Morsi, Schewe 2011)

Let \mathcal{M}_o be the set of global maximizers for the overestimation of f by ϕ over S and let \mathcal{N}_o be the set of points, where the global maximum of the overestimation of the convex envelope of f over S by ϕ is attained. Then,

 $\epsilon(f, S) = \epsilon(\operatorname{vex}_{S}[f], S) \text{ and } \mathcal{N}_{o} = \operatorname{conv}(\mathcal{M}_{o}).$

Theorem (Geißler, Martin, Morsi, Schewe 2011)

Let ϕ be the linear interpolation of f over a d-simplex S. Then a point $\mathbf{x}^* \in \mathcal{M}_o$ can be obtained by solving at most d convex optimization problems in dimension $\leq d$.

EDOM Economics · Discrete

Computing the convex envelopes

- For convex and concave functions computing the envelopes is trivial
- But in general this is NP-hard (Crama 1989)
- Convex envelopes are known for, e.g.,
 - univariate C² functions over intervals (Maranas & Floudas 1995)
 - the bilinear function f(x, y) = xy over boxes (McCormick 1976) and triangular domains (Locatelli & Schoen 2010)
- Combination of nonconvex functions (Ballerstein 2013)
- Our approximation algorithm works with any convex underestimator as, e.g., α -underestimators (Maranas & Floudas 1994)
- Observe, if convex envelopes are at hand, the triangulations are always refined, where the approximation errors attain their maxima

MIP-models for piecewise linear functions

- (linear) convex combination models
 - Linear number of cont. variables
 - Linear number of binaries
 - Linear number of constraints
- (logarithmic) convex combination models (Nemhauser, Vielma 2008)
 - Linear number of cont. variables
 - Logarithmic number of binaries
 - Logarithmic number of constraints
 - Locally ideal formulation
- incremental model (Markowitz, Manne 1957)
 - Linear number of cont. variables
 - Linear number of binaries
 - Linear number of constraints
 - Locally ideal formulation
- Also possible: SOS branching (Beale, Tomlin 1970)

The effect of branching: Incremental vs. Log

Figure: Branching induced by the leftmost and rightmost bit using the logarithmic convex combination model.

Figure: Branching induced by the 4th and 6th binary variable using the incremental model.

Incremental model – requirements

- Consider a *d*-variate plf on a polyhedral domain as a triangulation with *d*-simplices $S = \{S_1, \ldots, S_n\}$ embedded in \mathbb{R}^{d+1}
- For an incremental model the following must hold:
- (O1) The simplices in $S = \{S_1, \ldots, S_n\}$ are ordered such that $S_i \cap S_{i+1} \neq \emptyset$ for $i = 1, \ldots, n-1$, and
- (O2) for each simplex S_i its vertices $\overline{x}_0^{S_i}, \ldots, \overline{x}_d^{S_i}$ can be labeled such that $\overline{x}_d^{S_i} = \overline{x}_0^{S_{i+1}}$ holds for $i = 1, \ldots, n-1$.

Theorem (Geißler, Martin, Morsi, Schewe 2009)

In fixed dimension an ordering of the simplices and vertices that satisfies (O1) and (O2) can be computed in $\mathcal{O}(n^2)$ for any triangulation with n simplices.

Best known result so far by Wilson (1998) for d = 2 and domain homeomorphic to a disc.

MIP-models for piecewise linear functions -Incremental method (Markowitz & Manne 1957)

From approximation to relaxation

$$\begin{aligned} x &= \overline{x}_{0}^{S_{1}} + \sum_{i=1}^{n} \sum_{j=1}^{d} \left(\overline{x}_{j}^{S_{i}} - \overline{x}_{0}^{S_{i}} \right) \delta_{j}^{S_{i}}, \qquad y = \overline{y}_{0}^{S_{1}} + \sum_{i=1}^{n} \sum_{j=1}^{d} \left(\overline{y}_{j}^{S_{i}} - \overline{y}_{0}^{S_{i}} \right) \delta_{j}^{S_{i}} + e, \\ \sum_{j=1}^{d} \delta_{j}^{S_{i}} &\leq 1, \qquad \qquad \text{for } i = 1, \dots, n, \\ \delta_{j}^{S_{i}} &\geq 0, \qquad \qquad \text{for } i = 1, \dots, n, j = 1, \dots, d, \\ \sum_{j=1}^{d} \delta_{j}^{S_{i+1}} &\leq z_{i}, \quad z_{i} \leq \delta_{d}^{S_{i}}, \quad z \in \{0, 1\}^{n-1}. \end{aligned}$$

$$\epsilon_u(f, S_1) + \sum_{i=1}^{n-1} z_i(\epsilon_u(f, S_{i+1}) - \epsilon_u(f, S_i)) \geq e,$$

$$-\epsilon_o(f, S_1) - \sum_{i=1}^{n-1} z_i(\epsilon_o(f, S_{i+1}) - \epsilon_o(f, S_i)) \leq e.$$

Application: Gas Networks – Validation of Nominations

EDDM Economics · Discrete Optimization · Mathematics

Economics · Discrete Optimization · Mathematics FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Economics · Discrete Optimization · Mathematics

Economics · Discrete Optimization · Mathematics FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Validation of nominations

- Given:
 - Specification of the network and the network elements
 - (balanced) set of inflows and outflows (=nomination)

Validation of nominations for gas networks

Exists a control of all active elements of a given gas network such that a given nomination could be realized (by the gas transport company) such that all technical, physical and legal constraints are satisfied?

• Constraints:

(technical) Min./max. pressures, flows, compressor powers, ...
 (physical) (stationary) gas dynamics, flow conservation
 (legal) Min./max. in-/outflows and pressures, ...

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

MINLP-model

- Variables:
 - Pressure p_i for all nodes $i \in \mathcal{V}$
 - Norm volume flow q_a for all arcs $a \in \mathcal{A}$
 - Compressor power P_a for all compressors $a \in \mathcal{A}$
- Nonlinear constraints:
 - Pressure loss over a pipe a = (i, j): $p_j^2 = \left(p_i^2 \Lambda_a |q_a| q_a \frac{e^{S_a}}{S_a}\right) e^{-S_a}$
 - Pressure loss over a resistor a = (i, j): $p_i^2 - p_j^2 + |\Delta_{ij}| \Delta_{ij} = \frac{16\rho_0 p_0 z_m}{\pi^2 z_0 T_0} \frac{\xi_a T}{D_2^4} |q_a| q_a, \ \Delta_{ij} = p_i - p_j$
 - Power consumption of a compressor unit a = (i, j):

$$P_{a} = \frac{\kappa}{\kappa-1} \frac{\rho_{0} R T_{i} z_{i}}{\eta_{ad,a} m} \left(\left(\frac{p_{i}}{p_{i}} \right)^{\frac{\kappa-1}{\kappa}} - 1 \right) q_{a}$$

MINLP-model

- Switching variables $s_a \in \{0, 1\}$ for all active elements $a \in A$
- Combinatorial constraints:
 - Valve: $s_a = 0 \rightarrow q_a = 0, \ s_a = 1 \rightarrow p_i = p_j$
 - Control valves: $s_a = 0 \rightarrow q_a = 0$, $s_a = 1 \rightarrow p_i p_j \in [\Delta_a^-, \Delta_a^+]$
 - Compressors: $s_a = 0 \rightarrow q_a = 0$, $s_a = 1 \rightarrow p_j = f(P_a, q_a, p_i)$
 - Configurations: $\sum_{c \in C} s_c + s_{bypass} \leq 1$

Numerical Results

EDDM Economics · Discrete Optimization · Mathematics

Economics · Discrete Optimization · Mathematics

Intances I - small test networks

• Net 1:

• Net 2:

Instances II - real gas networks

• Net 3:

• Net 4:

EDOM

Economics · Discrete Optimization · Mathematics

Instances - overview

Complexity of the test networks

net	$ \mathcal{V}_{S} $	$ \mathcal{V}_D $	$ \mathcal{V}_I $	$ \mathcal{A}_{P} $	$ \mathcal{A}_{\mathcal{S}} $	$ \mathcal{A}_{CS} $	$ \mathcal{A}_{CV} $	$ \mathcal{A}_V $	$ \mathcal{A}_R $
1	2	4	11	13	1	3	1	0	0
2	3	5	16	20	4	3	1	0	1
3	26	14	112	69	67	3	7	1	8
4	31	129	432	452	98	6	23	34	9

- One Validation of a nomination for each network
- Test system: 4 cores of a computer with two 6-core AMD Opteron 2435 processors with 2.6 GHz and 64GB RAM
- MIP-solver: Gurobi 4.0.1
- Time limit for MIP-solver: 10 min

Solving the validation of nominations problem

- Approach
 - 1. Solve the MIP-relaxation
 - 2. Fix the discrete decision variables in the MINLP-model according to the MIP-solution
 - 3. Solve the remaining NLP-model
- If the NLP is feasible ightarrow Solution to the validation of nominations problem
- (MI)NLP-solvers: Baron 11.1.0, SCIP 3.0
- Max. error in pressure loss equations: 1.0/2.5/5.0/10.0 bar

Economics · Discrete Optimization · Mathematics

Validation of nominations - results

net	ϵ	cont	bin	cons	$t_{ m MIP}$	feas	$t_{ m NLP}$
1	10.0	377	42	685	0.01s	У	0.11s
1	5.0	380	45	694	0.01s	у	0.15s
1	2.5	387	52	714	0.01s	у	0.06s
1	1.0	423	88	823	0.02s	у	0.20s
2	10.0	450	67	859	0.05s	У	0.26s
2	5.0	479	96	946	0.09s	у	0.20s
2	2.5	543	160	1138	0.11s	у	0.09s
2	1.0	816	433	1957	0.13s	у	0.26s
3	10.0	2099	418	3868	1.24s	n	12.94s
3	5.0	2412	713	4807	1.51s	у	1.48s
3	2.5	3058	1377	6745	6.03s	у	1.32s
3	1.0	5185	3504	13126	22.04s	у	1.59s
4	10.0	4825	1663	10994	21.65s	n	41.33s
4	5.0	6012	2850	14555	51.26s	у	30.83s
4	2.5	8433	5217	21818	132.96s	у	36.65s
4	1.0	16343	13181	45548	600.00s	-	-

Economics · Discrete Optimization · Mathematics

Validation of nominations - results

net	ϵ	cont	bin	cons	$t_{ m MIP}$	feas	$t_{ m NLP}$
1	10.0	377	42	685	0.01s	У	0.11s
1	5.0	380	45	694	0.01s	у	0.15s
1	2.5	387	52	714	0.01s	У	0.06s
1	1.0	423	88	823	0.02s	у	0.20s
2	10.0	450	67	859	0.05s	У	0.26s
2	5.0	479	96	946	0.09s	у	0.20s
2	2.5	543	160	1138	0.11s	у	0.09s
2	1.0	816	433	1957	0.13s	у	0.26s
3	10.0	2099	418	3868	1.24s	n	12.94s
3	5.0	2412	713	4807	1.51s	у	1.48s
3	2.5	3058	1377	6745	6.03s	у	1.32s
3	1.0	5185	3504	13126	22.04s	у	1.59s
4	10.0	4825	1663	10994	21.65s	n	41.33s
4	5.0	6012	2850	14555	51.26s	у	30.83s
4	2.5	8433	5217	21818	132.96s	У	36.65s
4	1.0	16343	13181	45548	600.00s	-	-

Economics · Discrete Optimization · Mathematics

Solving validation of nominations MINLPs

net	Baron (MINLP)	SCIP (MINLP)	MIP	NLP	MIP+NLP
1	<1s	<1s	<1s	<1s	<1s
2	<1s	<1s	<1s	<1s	<1s
3	456s	2s	2s	1s	3s
4	>1h	>1h	51.26s	30.83s	82.09s

Economics · Discrete

Optimization · Mathematics

Network 5 (Open Grid Europe, L-Gas Germany)

- 13 entries
- 1.062 exits
- 3.632 pipes
- 26 resistors
- 305 valves
- 120 control valve stations
- 12 compressor stations
- 25.000 variables (5.000 binary)

Computing time on 51 *expert scenarios*:

- 11 min to 13.5 hours
- average: 2.5 hours

Economics · Discrete

Optimization · Mathematics

Network 6 (Open Grid Europe, H-Gas Germany)

- 78 entries
- 395 exits
- 1.588 pipes
- 56 resistors
- 264 valves
- 101 control valve stations
- 35 compressor stations
- 35.000 variables (14.000 binary)

Computing time on 29 *expert scenarios*:

- 3 to 46 hours
- average: 17 hours

Summary

- Purely polyhedral view on (mixed-integer) nonlinear problems
- Validation of nominations problem can be solved much faster than with state-of-the-art MINLP-solvers
- Convincing computation results, even for large-scale real-life instances
- State-of-the-art MIP-solvers may be used to solve MINLPs, if the number of variables of each nonlinear function is small

The Future

- The instationary case
- New Reserach Grant: Cooperate Reseach Center CRC 154 supported by the German Science Foundation (DFG)

Thank you for coming

June 2nd, 2014 | A. Martin | FAU – EDOM | May MIP Techniques help to solve MINLPs?