
Can Interior Solutions Help in Solving Mixed Integer
Programs?

Sanjay Mehrotra
joint work with Kuo-Ling Huang, Utku Koc, Zhifeng Li

Industrial Engineering and Management Sciences
Northwestern University

June 3, 2014

June 3, 2014 1 / 48

Giant Orion carrying servant Cedalion on his shoulders

Giant Steps in Integer Programming June 3, 2014 2 / 48

The Concept of a Vertex

Giant Steps in Integer Programming George Dantzig June 3, 2014 3 / 48

The Concept of Cutting Planes

Giant Steps in Integer Programming Ralph E Gomory June 3, 2014 4 / 48

The Concept of Branching on Hyperplanes

Giant Steps in Integer Programming Hendrik W. Lenstra June 3, 2014 5 / 48

Interior Points, Log-barrier, and Ellipsoidal Rounding

Giant Steps in Integer Programming Narendra Karmarkar June 3, 2014 6 / 48

Careful and Efficient Implementations of Algorithms

Giant Steps in Integer Programming Robert E. Bixby June 3, 2014 7 / 48

Processor Speed and Parallel Computing

Giant Steps in Integer Programming Computational Power June 3, 2014 8 / 48

Outline: Towards a Framework for Solving MIP in a
Parallel Computing Environment

1 Reduce the Number of Branches. Modified Lenstra’s Algorithm for
solving Convex IP feasibility problems

– Barrier Solutions
– LLL Lattice Basis Reduction
– Computational experience with a LLL-based heuristic for branching

disjunctions (MICP)

2 Generate feasible Integer Solutions. Random Walks in the Interior
– Walk-and-round heuristic for MILP
– Walk-relax-round heuristic for MICP
– Walk-vertex-round heuristic for MILP
– Parallel walks and integer solutions

3 Cutting the Non-optimal Vertex Solutions.
– Can it help?
– Limited experience with Gomory and Split Cuts as in Coin-OR

4 Concluding Remarks

Outline June 3, 2014 9 / 48

Outline: Towards a Framework for Solving MIP in a
Parallel Computing Environment

1 Reduce the Number of Branches. Modified Lenstra’s Algorithm for
solving Convex IP feasibility problems

– Barrier Solutions
– LLL Lattice Basis Reduction
– Computational experience with a LLL-based heuristic for branching

disjunctions (MICP)
2 Generate feasible Integer Solutions. Random Walks in the Interior

– Walk-and-round heuristic for MILP
– Walk-relax-round heuristic for MICP
– Walk-vertex-round heuristic for MILP
– Parallel walks and integer solutions

3 Cutting the Non-optimal Vertex Solutions.
– Can it help?
– Limited experience with Gomory and Split Cuts as in Coin-OR

4 Concluding Remarks

Outline June 3, 2014 9 / 48

Outline: Towards a Framework for Solving MIP in a
Parallel Computing Environment

1 Reduce the Number of Branches. Modified Lenstra’s Algorithm for
solving Convex IP feasibility problems

– Barrier Solutions
– LLL Lattice Basis Reduction
– Computational experience with a LLL-based heuristic for branching

disjunctions (MICP)
2 Generate feasible Integer Solutions. Random Walks in the Interior

– Walk-and-round heuristic for MILP
– Walk-relax-round heuristic for MICP
– Walk-vertex-round heuristic for MILP
– Parallel walks and integer solutions

3 Cutting the Non-optimal Vertex Solutions.
– Can it help?
– Limited experience with Gomory and Split Cuts as in Coin-OR

4 Concluding Remarks

Outline June 3, 2014 9 / 48

Problem Formulation:

General Mixed Integer Convex Programming (MICP) Feasibility problem:

C = {Rx = r ,

ci (x) ≤ 0, for i = 1, · · · ,m,
xi ∈ Z+, i = 1, · · · , n,
xi ∈ R, i = n + 1, · · · , n + n̄.}

where ci (x) : Rn+n̄ −→ R for i = 1, · · · ,m are convex functions.

Is C
⋂

Zn 6= ∅?

We will use notation P whenever C is a polyhedra, i.e., gi (·) are linear
(MILP); we will use notation Y whenever the polyhedral set is assumed to
be full dimensional.

Outline June 3, 2014 10 / 48

Basic Steps in Lenstra’s Algorithm
S1. (Assume Y is full dimensional with dimension k , and the Problem is Linear

Pure Integer Program) Full Dimensionality Check: If Y is not full
dimensional, then project Y to a lower dimension

S2. Ellipsoidal Rounding:
Find a positive definite matrix D ∈ Rk×k , and a center d , so that the
ellipsoidal approximation of Y : E(w ,D) := {y ∈ Rk | ‖y − d‖D ≤ 1}
satisfies

E(w ,D) ⊆ Y ⊆ E(w , γD), γ < 1.

γ = O(1/k) if log-barrier solution is used.

S3. Basis Reduction for finding a thin direction:
Given a D find a reduced basis b1, . . . , bk of the lattice Zk in ‖ · ‖D .

S4. Feasibility Check Let b1, . . . , bk be reduced basis vectors from S3. Write
d =

∑k
i=1 βibi and compute ŷ =

∑k
i=1bβiebi . If ŷ ∈ Y, we have found an

integer feasible solution. Otherwise, find a primitive vector u satisfying
uTbi = 0 for i = 1, . . . , k .

S5. Branching on hyperplanes: Add hyperplanes uT x = µ for µ ∈ Z for which
Y ∩ {uT x = µ} is feasible; go to Step 1

S5’. We can use split-disjunctions instead of branching hyperplanes.

Modified Lenstra Algorithm Lenstra’s Algorithm June 3, 2014 11 / 48

When is Branching on Hyperplane Useful?

min
x,y∈Z

x + y

subject to 0.4 ≤ 6x − 5y ≤ 0.8

−5.92 ≤ y ≤ 0.2

The solution of relaxation
problem is at (−5,−5.92),
and the optimal solution is
(0, 0).

(-5, -5.92)

INF (-4,23, -5) (-3.4, -4) (-2.57,-3) (-1.73, -2) (-0.9, -1) (-0.07, 0)

INF INF INF INF INF INF INF(0, 0)INFINFINFINF

y= -6 -5 -4 -3 -2 -1 0

x= -5 -4 -4 -3 -2-3 -2 -1 -1 0 0 1

The enumeration tree with branch-and-bound

(-5, -5.92)

(-4.23, -5)

(-4, -4.96)

(-3.4, -4)

(-3, -3.76)

(-2.57, -3)

(-2, -2.56)

(-1.73, -2)

(-1, -1.36)

(-0.9, -1)

INF

INF

INF

INF

INF

INF

INF

INF

INF

INF

y>=-5y<=-6

x<=-5 x>=-4

y>=-4y<=-5

x<=-4 x>=-3

y<=-4 y>=-3

x<=-3 x>=-2

y<=-3 y>=-2

x<=-2 x>=-1

y<=-2 y>=-1

x<=-1 x>=0

y<=-1

(0, -0.16)

INF (0, 0)

y>=0

10-1-2-3-4-5-6
1

0

-1

-2

-3

-4

-5

-6

x

y

(-5, -5.92)

(-4.23, -5) (-4, -4.96)

(-3.4, -4) (-3, -3.76)

(-2.57, -3) (-2, -2.56)

(-1.73, -2)
(-1, -2.36)

(-0.9, -1)

(0, -0.16)

(0, 0)
y<=0.2

y>=-5.92

6x-5y<= -0.4 6x-5y<=0.8

x+y = 1

Modified Lenstra Algorithm Branching on Hyperplane June 3, 2014 12 / 48

Lenstra’s Result using LLL Reduced Lattice Basis
Definition

Given a direction u and a convex set C, the integer width of C is given by:
WI (u, C) := bmax

{
uT x |x ∈ C

}
c − dmin

{
uT x |x ∈ C

}
e+ 1.

Theorem

(Lenstra ’82) For the choice of u in Lenstra’s algorithm, WI (u,Y) ≤ 2k(k + 1)2k(k−1)/4.

Definition

The lattice generated by B := [b1, . . . , bk], bi ∈ Rn, n ≥ k is the set

L(B) := {x ∈ Rn | x =
∑k

i=1 Zbi}. B is a basis of L(B) if it is minimal.

Definition

Let E (e.g., D) be as positive semi-definite matrix, ‖b‖2
E = bEb 6= 0 for vectors b of interest.

Let B̂ = [b̂1, . . . , b̂k] be the Gram-Schmidt orthogonal basis computed by the orthogonalization

b̂i = bi −
∑i−1

j=1 Γj,i b̂j , i = 1, . . . , k, where Γj,i = bTi Eb̂j/‖b̂j‖2
E , and b̂1 = b1, It is assumed

that ‖ · ‖E 6= 0 for the vectors of interest. A basis b1, . . . , bk of a lattice L(B) is called an
LLL-reduced basis, for δ ∈ (1

4
, 1), if it satisfies:

LLL1. |Γj,i | ≤ 1/2 for 1 ≤ j < i ≤ k. (Size Reduced)

LLL2. ‖b̂i+1‖2
E ≥ (δ − Γ2

i,i+1)‖b̂i‖2
E , |Γi,i+1| ≤ 1/2, for i = 1, . . . , k − 1. (2-Reduced)

Modified Lenstra Algorithm Integer width of a set June 3, 2014 13 / 48

Lenstra’s Result using LLL Reduced Lattice Basis
Definition

Given a direction u and a convex set C, the integer width of C is given by:
WI (u, C) := bmax

{
uT x |x ∈ C

}
c − dmin

{
uT x |x ∈ C

}
e+ 1.

Theorem

(Lenstra ’82) For the choice of u in Lenstra’s algorithm, WI (u,Y) ≤ 2k(k + 1)2k(k−1)/4.

Definition

The lattice generated by B := [b1, . . . , bk], bi ∈ Rn, n ≥ k is the set

L(B) := {x ∈ Rn | x =
∑k

i=1 Zbi}. B is a basis of L(B) if it is minimal.

Definition

Let E (e.g., D) be as positive semi-definite matrix, ‖b‖2
E = bEb 6= 0 for vectors b of interest.

Let B̂ = [b̂1, . . . , b̂k] be the Gram-Schmidt orthogonal basis computed by the orthogonalization

b̂i = bi −
∑i−1

j=1 Γj,i b̂j , i = 1, . . . , k, where Γj,i = bTi Eb̂j/‖b̂j‖2
E , and b̂1 = b1, It is assumed

that ‖ · ‖E 6= 0 for the vectors of interest. A basis b1, . . . , bk of a lattice L(B) is called an
LLL-reduced basis, for δ ∈ (1

4
, 1), if it satisfies:

LLL1. |Γj,i | ≤ 1/2 for 1 ≤ j < i ≤ k. (Size Reduced)

LLL2. ‖b̂i+1‖2
E ≥ (δ − Γ2

i,i+1)‖b̂i‖2
E , |Γi,i+1| ≤ 1/2, for i = 1, . . . , k − 1. (2-Reduced)

Modified Lenstra Algorithm Integer width of a set June 3, 2014 13 / 48

Lenstra, Lenstra, Lovász Basis Reduction Algorithm

Algorithm: The LLL Basis Reduction Algorithm w.r.t. Ellipsoidal Norm
{

INPUT: A basis b1, b2, . . . , bk ;
OUTPUT: An LLL reduced basis;

Initialize δ and compute Gram-Schmidt orthogonal basis b̂1, . . . , b̂k ;
WHILE i ≤ k DO

IF (2-reduced condition is violated) ‖b̂i‖2
E < (δ − Γ2

i−1,i)‖b̂i−1‖2
E THEN

SWAP bi and bi−1, and update Γ;
[Size Reduction] Size reduce vectors bk , . . . , bi ;
IF i > 2 THEN i ← max{i − 1, 1};

ELSE
i ← i + 1;

}

Figure 1: A Basic Description of the LLL Basis Reduction Algorithm

LLL algorithm is polynomial time, but b̂ are dense; and computations
require long integer arithmetic.

Modified Lenstra Algorithm LLL Basis Reduction Algorithm June 3, 2014 14 / 48

Lenstra, Lenstra, Lovász Basis Reduction Algorithm

Algorithm: The LLL Basis Reduction Algorithm w.r.t. Ellipsoidal Norm
{

INPUT: A basis b1, b2, . . . , bk ;
OUTPUT: An LLL reduced basis;

Initialize δ and compute Gram-Schmidt orthogonal basis b̂1, . . . , b̂k ;
WHILE i ≤ k DO

IF (2-reduced condition is violated) ‖b̂i‖2
E < (δ − Γ2

i−1,i)‖b̂i−1‖2
E THEN

SWAP bi and bi−1, and update Γ;
[Size Reduction] Size reduce vectors bk , . . . , bi ;
IF i > 2 THEN i ← max{i − 1, 1};

ELSE
i ← i + 1;

}

Figure 1: A Basic Description of the LLL Basis Reduction Algorithm

LLL algorithm is polynomial time, but b̂ are dense; and computations
require long integer arithmetic.

Modified Lenstra Algorithm LLL Basis Reduction Algorithm June 3, 2014 14 / 48

The Legacy

Lovász and Scarf [’92] developed a Generalized Basis Reduction (GBR)
algorithm.

Cook, Rutherford, Scarf and Shallcross [’93] implemented GBR algorithm for
some hard network design problems.

Wang [’97] implemented GBR algorithm for LP and NLP (≤ 100 integer
variables).

Owen, Mehrotra [’01] Experimental results on using heuristically computed
disjunctions in branch-and-bound

Gao, Zhang [’02] implemented Lenstra’s algorithm.

Aardal, Lenstra [’02] solved some hard equality constrained integer
Knapsacks.

G Pataki, M Tural, EB Wong [’10] Basis reduction and the complexity of
branch-and-bound

M Karamanov, G Cornujols [’11] Branching on general disjunctions

G Nannicini, G Cornujols, M Karamanov, L Libert [’11] Branching on Split
Disjunctions.

Modified Lenstra Algorithm LLL Basis Reduction Algorithm June 3, 2014 15 / 48

MICP: Ellipsoidal Rounding in Original Space

Recall that Feasibility-MICP is to find

C :=

{
x :=

(
xz
xc

)∣∣∣∣ xz ∈ Zn
+, xc ∈ Rn̄,Rx = r , ci (x) ≤ 0, i = 1, . . . , l

}
,

or to show that no such solution exists.

Theorem

Let f (x) be a self-concordant barrier associated with a compact convex set
C having a non-empty relative interior. Then,

E(w ,∇2f (w)) ⊆ C ⊆ E
(
w , γ∇2f (w)

)
,

where w is the barrier-center associated with f (x), and γ = 1/(4θ + 1).

In fact, it is sufficient to find an approximate w̃ . Let
q := −∇2f (w̃)−1f (w̃), and ‖q‖∇2f (x) ≤ 1/4. Then,

E(w̃ , 2∇2f (w̃)) ⊆ C ⊆ E
(
w̃ , γ∇2f (w̃)

)
,

where γ = 1
4(2θ+1) . If log-barrier center is used, θ = O(n + n̄) for LP,

SOCP, SDP, e.g. Note that ci (·) need not be differentiable.

Modified Lenstra Algorithm LLL Basis Reduction Algorithm June 3, 2014 16 / 48

MICP: Ellipsoidal Rounding in Original Space

Recall that Feasibility-MICP is to find

C :=

{
x :=

(
xz
xc

)∣∣∣∣ xz ∈ Zn
+, xc ∈ Rn̄,Rx = r , ci (x) ≤ 0, i = 1, . . . , l

}
,

or to show that no such solution exists.

Theorem

Let f (x) be a self-concordant barrier associated with a compact convex set
C having a non-empty relative interior. Then,

E(w ,∇2f (w)) ⊆ C ⊆ E
(
w , γ∇2f (w)

)
,

where w is the barrier-center associated with f (x), and γ = 1/(4θ + 1).

In fact, it is sufficient to find an approximate w̃ . Let
q := −∇2f (w̃)−1f (w̃), and ‖q‖∇2f (x) ≤ 1/4. Then,

E(w̃ , 2∇2f (w̃)) ⊆ C ⊆ E
(
w̃ , γ∇2f (w̃)

)
,

where γ = 1
4(2θ+1) . If log-barrier center is used, θ = O(n + n̄) for LP,

SOCP, SDP, e.g. Note that ci (·) need not be differentiable.
Modified Lenstra Algorithm LLL Basis Reduction Algorithm June 3, 2014 16 / 48

MICP: Lattice Basis Reduction in the Original Space using
an Adjoint Lattice (Mehrotra & Li ’11)

Let R =

[
A : 0
B : C

]
, r =

(
b
a

)
. Without loss of generality assume that the columns of A correspond to the

integer variables, and the columns of C correspond to the real variables; and assume that A and C have full row rank. If C does

not has a full row rank, we have a π such that πTC = 0.

Theorem

Let Z be a basis of the kernel lattice of A: {q ∈ Zn : vTAq = 0, v ∈ Zm},
Z ∗ satisfy ZTZ ∗ = I and have integer elements; and Λ∗ be the lattice
generated by Z ∗. Let PRQ−1/2 = [I − Q−1/2RT (RQ−1RT)−1AR−1/2].

Suppose that the column vectors of Q−1/2

[
Z ∗

0

]
are LLL-reduced under

E := PRQ−1/2 norm, and no column of Z ∗ satisfies

W
((

u
0

)
, C
)
≤ γ(3/

√
2)n+n̄. Then, using Z in a rounding procedure

we must produce a feasible integer solution of (MICP). �

Modified Lenstra Algorithm LLL Basis Reduction Algorithm June 3, 2014 17 / 48

Simple Approximations of Adjoint Lattice

Remark

Recall that simple single variable disjunctive branching uses a
fractional variable for branching.

Strong branching selects a variable with best local improvement using
a heuristic merit function (e.g., lower bound).

So, how about using a subset of fractional variables to form an
approximation to adjoint lattice; and then using best local
improvement for branching direction selection?

Let C− :=
{
x |αT x ≤ β, x ∈ C

}
and C+ :=

{
x | αT x ≥ β + 1, x ∈ C

}
.

Let the quality of disjunction (α, β) be given by

zα,β := (1− µ) min{z−α,β(C i), z+
α,β(C i)}+ µmax{z−α,β(C i), z+

α,β(C i)},

where z−α,β(C i) := minx̃ i∈Ci−
and z+

α,β(C i) := minx̃ i∈Ci+

Modified Lenstra Algorithm Heuristic Branching Hyperplane using LLL June 3, 2014 18 / 48

CMU-IBM Test Set

Altered CMU-IBM test mixed binary to create mixed integer test problems as follows. Consider
the following formulation was considered

min c(x)

s.t. ci (x) ≤ 0, i = 1, . . . ,m,

f − rle ≤ Ax ≤ g + rue,

lz − cle ≤ xz ≤ uz + cue,

lc ≤ xc ≤ uc ,

xz ∈ Zn and xc ∈ Rn̄,

where f and g respectively represents the vectors of the original lower and upper bounds for
constraints Ax , and lz and lc respectively represents the vectors of the original lower and upper
bounds for the integer variables xz . Two different sets of the expanded values (rl , ru , cl , cu) are
used in our experiment. These are given in Table 1. The only exception is for problems
CLay0203H, CLay0204H, and CLay0303H, for which we use cl = 0, i.e., the lower bounds of
variables are not expanded.

rl ru cl cu

Test Set 1 2 2 5 5
Test Set 2 5 5 10 10

Table 1: General MICP test problems

These test problems are denoted by a string X-(rl , ru, cl , cu). The string X
presents the name of the test problem, and the strings rl , ru, cl , cu
respectively represents the expanded value of the constraint lower and
upper bounds, variable lower and upper bounds.

Modified Lenstra Algorithm Heuristic Branching Hyperplane using LLL June 3, 2014 19 / 48

Some Implementation Details: i-Optimize Package

Continuous Relaxation Solver. Homogeneous Primal-Dual Potential Reduction based
Predictor-Corrector Method. Self-developed, and used with the following termination
criteria: Let rvk

p , rv
k
d , and rvk

g be the vectors of the residuals corresponding to the kth
iterate. An (approximate) optimal solution is obtained if

‖reskp ‖
max

{
1, ‖res0

p‖
} < 10−8,

‖reskd ‖
max

{
1, ‖res0

d‖
} < 10−8,

|reskg |
max

{
1, |res0

g |
} < 10−8.

The problem is (near) infeasible if

µk

µ0
< 10−8, and

τk

min
{

1, κk
} < τ0

κ0
10−12,

where τ and κ represent homogeneous variables introduced in the homogeneous
reformulation.

Used the above solver in Phase I with null objective. Set inequality constraints to equality,
if the slack to the bound is less than 10−8 at the end of phase I. Phase II: Newton
iteration on KKT-conditions of the barrier problem. We terminate the algorithm if
‖Xs − e‖∞ ≤ 10−1.

Modified Lenstra Algorithm Heuristic Branching Hyperplane using LLL June 3, 2014 20 / 48

Performance Profiles for 33 test problems:(2,2,5,5) using
Strong Branching, LLL-20 and LLL-50 (δ = .99 in LLL Algorithm)

1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile − Node

τ

P
ro

ba
bi

lit
y

SB
LLL−20
LLL−50

Node Count Performance

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile − Time

τ

P
ro

ba
bi

lit
y

SB
LLL−20
LLL−50

CPU time performance using
single core in a processor

Only 5-7% time is spent in LLL-basis reduction, which was implemented
using floating point calculations.

Modified Lenstra Algorithm Heuristic Branching Hyperplane using LLL June 3, 2014 21 / 48

Performance Profiles for 33 test problems:(5,5,10,10) using
Strong Branching, LLL-20 and LLL-50 (δ = .99 in LLL Algorithm)

1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile − Node

τ

P
ro

ba
bi

lit
y

SB
LLL−20
LLL−50

Node Count Performance

1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile − Time

τ

P
ro

ba
bi

lit
y

SB
LLL−20
LLL−50

CPU time performance using
single core

Only 5-7% time is spent in LLL-basis reduction, which was implemented
using floating point calculations.

Modified Lenstra Algorithm Heuristic Branching Hyperplane using LLL June 3, 2014 22 / 48

Problem
Most Fractional Strong Branching LLL-20 LLL-50

Node Time Node Time Node Time Node Time

CLay0203H-(2,2,0,5) 4654 512.34 44 38.78 44 72.99 44 68.27
CLay0203M-(2,2,5,5) 5984 146.2 82 33.48 62 41.75 62 41.87
CLay0204H-(2,2,0,5) 64342 7201.08† 250 395.10 132 421.80 138 454.36
CLay0205M-(2,2,5,5) 133470 7205.63† 5096 7209.52† 326 1031.59 176 772.44
CLay0303H-(2,2,0,5) 1404 174.04 82 89.87 74 226.26 74 185.15
CLay0303M-(2,2,5,5) 12152 423.98 228 757.94 152 875.07 82 486.93
CLay0304M-(2,2,5,5) 167222 7204.74† 912 477.20 912 480.37 912 489.52
FLay02H-(2,2,5,5) 20 0.43 10 0.96 10 1.88 10 1.53
FLay02M-(2,2,5,5) 20 0.16 10 0.34 10 0.67 10 0.56
FLay03H-(2,2,5,5) 66 3.53 42 19.87 30 29.92 30 23.38
FLay03M-(2,2,5,5) 74 1.01 36 4.02 46 11.84 46 9.68
FLay04H-(2,2,5,5) 50878 7205.44† 246 390.23 34 174.18 60 180.72
FLay04M-(2,2,5,5) 1150 24.01 104 35.81 92 60.23 98 57.88
FLay05H-(2,2,5,5) 35150 7145.70 152 644.39 100 862.84 78 519.52
FLay05M-(2,2,5,5) 36284 1089.87 788 543.41 480 592.70 264 272.49
SLay04H-(2,2,5,5) 204 8.89 130 92.84 254 356.72 254 307.67
SLay04M-(2,2,5,5) 842 15.52 240 48.88 212 108.23 212 101.63
SLay05H-(2,2,5,5) 95928 7201.26† 266 499.88 800 2793.58 332 928.30
SLay05M-(2,2,5,5) 1656 40.57 146 70.79 442 274.27 104 113.82
SLay06H-(2,2,5,5) 56076 7204.65† 2326 2850.44 468 2027.38 712 2155.46
SLay06M-(2,2,5,5) 234910 7203.69† 6502 7201.18† 5938 7201.18† 380 762.15
fo7-(2,2,5,5) 143194 7205.04† 750 589.24 750 662.83 750 691.07
fo7 2-(2,2,5,5) 151518 7202.09† 516 517.98 516 574.35 516 604.88
fo8-(2,2,5,5) 118354 7205.60† 1670 3542.17 1670 3862.11 1668 4260.26
Syn05M-(2,2,5,5) 10 0.12 10 0.45 10 0.66 10 1.16
Syn05M02M-(2,2,5,5) 224 7.80 22 8.44 22 18.45 22 22.26
Syn05M03M-(2,2,5,5) 5554 360.28 60 40.91 62 82.12 62 113.19
Syn05M04M-(2,2,5,5) 74810 7201.59† 130 178.03 128 324.96 128 417.95
Syn10M-(2,2,5,5) 246 5.55 38 5.31 40 7.75 40 7.83
Syn10M02M-(2,2,5,5) 87148 7182.26 208 415.13 218 728.84 218 887.61
Syn15M-(2,2,5,5) 166 6.34 34 11.01 36 13.97 36 14.44
Syn20M-(2,2,5,5) 830 39.84 54 25.88 54 32.99 54 33.48
trimloss2-(2,2,5,5) 439508 7202.02† 5096 1426.02 1700 1223.81 334 178.30

Mean 58304.48 3140.34 796.36 853.50 479.52 762.98 239.88 459.57Modified Lenstra Algorithm Heuristic Branching Hyperplane using LLL June 3, 2014 23 / 48

Problem
Most Fractional Strong Branching LLL-20 LLL-50

Node Time Node Time Node Time Node Time

CLay0203H-(5,5,0,10) 15100 1329.90 118 100.99 78 82.13 78 80.25
CLay0203M-(5,5,10,10) 200226 7207.47† 286 95.97 78 48.37 78 47.69
CLay0204H-(5,5,0,10) 63608 7202.53† 1402 1666.49 652 1620.77 254 679.60
CLay0205M-(5,5,10,10) 160398 7201.34† 2734 7201.06 2006 4435.33 1640 5745.93
CLay0303H-(5,5,0,10) 550 55.86 96 168.75 110 195.91 110 194.76
CLay0303M-(5,5,10,10) 217780 7206.74† 3846 2259.77 580 675.87 270 292.88
CLay0304M-(5,5,10,10) 127632 7200.92† 7956 7200.87† 7011 7207.4† 6589 7201.70†
FLay02H-(5,5,10,10) 104 2.00 20 1.63 8 1.15 8 1.11
FLay02M-(5,5,10,10) 24 0.22 18 0.57 8 0.55 8 0.56
FLay03H-(5,5,10,10) 110 5.22 36 15.72 18 17.77 18 17.51
FLay03M-(5,5,10,10) 15202 190.22 770 82.16 136 27.97 136 27.68
FLay04H-(5,5,10,10) 4546 486.32 146 255.22 48 141.21 260 822.55
FLay04M-(5,5,10,10) 308808 7208.07† 198 55.04 190 109.62 190 96.81
FLay05H-(5,5,10,10) 18102 3241.99 202 781.63 172 1060.86 124 776.27
FLay05M-(5,5,10,10) 228118 7201.60† 998 633.85 1174 1007.78 766 1025.19
SLay04H-(5,5,10,10) 9878 497.24 234 87.90 112 93.51 112 97.98
SLay04M-(5,5,10,10) 377996 7203.29† 6316 1675.56 486 239.87 454 186.13
SLay05H-(5,5,10,10) 105068 7204.83† 5304 7202.16† 1364 2806.86 420 1054.52
SLay05M-(5,5,10,10) 225296 7204.58† 9830 7201.31† 14326 7200.69† 6712 7201.40†
SLay06H-(5,5,10,10) 73442 7215.11† 406 1193.49 2116 5989.38 1757 6892.00
SLay06M-(5,5,10,10) 144164 7206.75† 4516 7202.61† 4180 7201.37† 3038 7203.48†
fo7-(5,5, 10, 10) 186758 7205.41† 2696 3520.69 4214 5582.31 3766 5129.92
fo7 2-(5,5, 10, 10) 184944 7200.56† 4782 7200.63† 4290 7201.39† 4144 7201.21†
fo8-(5,5, 10, 10) 149456 7201.95† 2240 7203.40† 2106 7212.03† 1922 7203.55†
Syn05M-(5,5,10,10) 6 0.08 6 0.20 6 0.31 6 0.33
Syn05M02M-(5,5,10,10) 672 23.70 44 19.92 52 51.81 52 53.32
Syn05M03M-(5,5,10,10) 8798 524.30 142 170.16 162 596.69 164 506.63
Syn05M04M-(5,5,10,10) 87146 7201.62† 436 1053.33 516 2666.53 514 3323.57
Syn10M-(5,5,10,10) 110 2.36 30 4.26 30 5.27 30 5.37
Syn10M02M-(5,5,10,10) 97160 7208.16† 1616 2949.37 1626 6034.83 1626 5979.87
Syn15M-(5,5,10,10) 222 8.24 34 10.68 34 12.45 34 13.09
Syn20M-(5,5,10,10) 632 28.78 62 34.14 62 36.91 62 38.58
trimloss2-(5,5,10,10) 433110 7202.07† 60 17.99 36 17.51 36 19.80

MEAN 104398.97 4123.62 1744.85 2038.41 1454.15 2108.56 1072.06 2094.58Modified Lenstra Algorithm Heuristic Branching Hyperplane using LLL June 3, 2014 24 / 48

Random Walk: A Basic Illustration

Generating Heuristic Solutions Random Walks June 3, 2014 25 / 48

Random Walk: A Basic Illustration

Generating Heuristic Solutions Random Walks June 3, 2014 26 / 48

Random Walk: A Basic Illustration

Generating Heuristic Solutions Random Walks June 3, 2014 27 / 48

Random Walk: A Basic Illustration

Generating Heuristic Solutions Random Walks June 3, 2014 28 / 48

Random Walk: 30+ Years of History

A Markov Chain. May be used to uniformly sample on a polytope.

Robert Smith [1984] introduced Hit and Run Walk

Generates a random direction on uniform sphere
Takes a random step in this direction

Lovász (1999): Hit-and-run mixes fast. Mathematical Programming
86(3)

Number of HR steps required to sample nearly uniformly from a
polytope is polynomial in problem dimension.

Bertsimas and Vempala (2004): Use RW to give a polynomial time
algorithm for convex programs.

Kannan and Narayanan (2009): A lazy random walk using Dikin
ellipsoid approximation at each step mixed in strongly polynomial
time, when started from near a center point. They use it to give a
new algorithm for LP.

Can they help in solving integer programs?

Generating Heuristic Solutions Random Walks June 3, 2014 29 / 48

Projected Hit-and-Run Walk

Let P := {x |PI ∩ PE}, where PI := {x |AI x ≤ bI , x ≥ 0} and PE := {x |AE x = bE}. We first

compute a random direction d in Rn+n̄. Next we orthogonally project d onto the affine space

given by the equality constraints, yielding direction p. Finally, we compute a random point along

{x + λp}
⋂
P.

Generating Heuristic Solutions Modified Walks June 3, 2014 30 / 48

Projected and Modified Dikin Walk

Consider the polytope in the form
P := {x := (y , s)|AI y + s = bI ,AE y = bE , (y , s) ≥ 0} ⊆ Rn+n̄ where s represents the vector of
slacks for the constraint AI y ≤ bI . The log-barrier analytic center of P is defined as a solution of

min

B(x) := −
n+n̄∑
j=1

ln xj | Ax = b, x ≥ 0

 .

Generating Heuristic Solutions Modified Walks June 3, 2014 31 / 48

Fischetti, Glover, Lodi (2005): The Feasibility Pump

From a given point x ∈ P, FP heuristically searches for a point x∗ that is
as close as possible to a rounded integer solution x̃ of x by solving an
l1-norm minimization problem. For a given xk let x̂k be such that
x̂ki := bxki e for i ∈ I, and x̂ki := xki i 6∈ I. Also let

f k(x) :=
∑
i∈I

∣∣∣xi − x̂ki

∣∣∣ .
Now consider the problem

min
x∈P

f k(x).

Let x̂k∗ be the optimum solution of the above problem. If f k(x̂k∗) = 0, we
have a feasible solution of MILP, else take xk+1 = x̂k∗, and k = k + 1.
The algorithm iterates until a maximum iteration or some other set
criterion is reached. Also, some safeguards (e.g., randomly flipping bits)
are implemented to avoid cycling.

Generating Heuristic Solutions Rounding a Solution Heuristically June 3, 2014 32 / 48

Some Implementation Details: i-Optimize Package

Analytic Center Computations. Settings as before.

Used COIN-OR Branch-and-Cut (CBC) version 2.3 for feasibility
pump computations with default settings. Disabled prepress and
initialSolve routines.

l1-norm minimization limited to 500 for LP optimum and 75 for all
RW points (maximum steps 500).

FP COIN-OR l1-norm minimization limited to 10,000; with 30 re-tries

CPU time for pure-FP, and RW-FPs are calibrated to be nearly equal.

MIPLIB 2003 (28 small and medium size) problems and COR@AL (74
small and medium size) problems.

MIPLIB 2003 (4 pure binary, 18 mixed binary, 6 mixed integer);
COR@L (11 pure binary, 62 mixed binary, one general integer)

Sliding objective cut, once a feasible solution is found

Generating Heuristic Solutions Rounding a Solution Heuristically June 3, 2014 33 / 48

Performance of Walk-and-Round Heuristics

RR: Random Ray; PropLP: Fraction of time in LP Solution; PropAC: Fracton of time in Analytic Center computation; PropFP:
Proportion of time in FP

Generating Heuristic Solutions Rounding a Solution Heuristically June 3, 2014 34 / 48

Performance of Long Walks

Problem: aflow30a

Generating Heuristic Solutions Rounding a Solution Heuristically June 3, 2014 35 / 48

Feasibility Pump For MICPs

Bonami, Cornuéjols, Lodi, and Margot (2009) proposed a variant of FP for
MICPs. In their method,

1 xk ∈ C is generated in the same way as in the basic FP heuristic,
2 whereas x̂k is generated by solving a l1-norm sub-MILP.
3 sub-MILP uses outer approximation (OA) of convex constraints at all

points of the sequence
{
x l
}
l=0,...,k

min
∑
j∈I
|xj − xkj | (FP-OA)

s.t. ci (x
l) +∇ci (x l)(x − x l) ≥ 0, i = 1, . . . , m̂ and l = 0, . . . , k,

∇c(x)(x − xk∗) ≤ c(xk∗)− ε, if the (best) integer solution xk∗ is available,

Rx = r ,

xj ∈ Z for each j ∈ I,
0 ≤ x ≤ u.

If (FP-OA) is empty, i.e, no integer solution exists, then FP terminates
the search and claims that the available best integer solution is optimum
(within a specific tolerance ε), or the MICP is infeasible.

Generating Heuristic Solutions RWs for MICPs June 3, 2014 36 / 48

Outer Approximation + Feasibility Pump + Solution Polishing For MICPs

Generating Heuristic Solutions RWs for MICPs June 3, 2014 37 / 48

Can Walking help MICPs?

1 xk ∈ C is generated in the same way as the basic heuristic, except
Outer Approximation is at the points generated from walk-points

Start OAFP at the continuous relaxation solution. Perform a small
number of (15) iterations to generate a crude feasible solution.
Build OA at random walk points. Perform a small number (10)
iterations to generate an improved integer solution.
”Delete” all previously added OA constraints, and perform a longer
walk-relax-round run while keeping OA constraints.

2 x̂k is generated by solving the sub-MILP in Cplex

3 58 MICP instances from CMU-IBM library. 9 MIQP instances
(comparison with Cplex 12.5).

4 All other software settings as before. 5 minute limit.

Generating Heuristic Solutions RWs for MICPs June 3, 2014 38 / 48

Computational Results: Walk-Relax-Round Heuristic for
MICP (58 Problems)

Method Optimum Found Optimum Proved Mean-gap
OA-FP 45 39 3.34%

HR-OA-FP 50 40 1.26%

DW1-OA-FP 49 40 1.35%

DW2-OA-FP 51 40 1.11%

Generating Heuristic Solutions RWs for MICPs June 3, 2014 39 / 48

Long Runs of Walk-Relax-Round Heuristic for MICP

Generating Heuristic Solutions RWs for MICPs:One Hour Runs June 3, 2014 40 / 48

Random Walk (DW2) for MIQPs and Cplex 12.1 (5 min
time limit)

Method Dikin Walk (DW2) – Long Variant Cplex 12.1

Problem Obj Gap
Time Time

Obj Gap
Time Time

(Found) (Proven) (Found) (Proven)

ibell3a 87875.03* 0 21.14 36.47 87875.03* 0 5.56 6.47
ibienst1 34.21 0 23.74 ‡ 34.21 0 226.87 ‡
ilaser0 2412537.96 0.001 287.57 ‡ 2412505.12 0 33.24 ‡
iportfolio -0.49* 0 58.71 260.83 – NA ‡
iqiu -126.66 0 101.19 ‡ -127.08* 0 140.95 206.87
isqp -21000.45 0 154.45 ‡ -21000.45 0 8.11 ‡
isqp0 -20319.51 0 7.24 ‡ -20319.51* 0 2.03 19.71
isqp1 -18992.68 0 8.48 ‡ -18992.68* 0 3.74 36.47
itointqor -1146.7* 0 118.14 287.61 -1146.7 0 141.5 ‡

1 NA: Statistics not available.

2 * : Proven optimality.

3 –: No solution found.

4 ‡: 5-minute time limit reached.

Generating Heuristic Solutions RWs for MIQPs June 3, 2014 41 / 48

Parallel FP Versus Long-FP Run

Parallel-FP: In addition to the standard FP, generate rounded integer
solutions x̂ by random flipping

0%

20%

40%

60%

80%

100%

1 1.5 2 2.5 3

FP-Long

FP-Parallel

MIPLIB 2003 Problems (27)

0%

20%

40%

60%

80%

100%

1 1.5 2 2.5 3

FP-Long

FP-Parallel

100%

MIPLIB 2010 Problems (67)

0%

20%

40%

60%

80%

100%

1 1.5 2 2.5 3

FP-Long

FP-Parallel

CORAL Problems (73)

FP-Parallel gets 1 min wall clock time. FP-Long gets upto 32 min wall clock time for problems
in MIPLIB 2003 and CORL testsets. FP-Parallel gets 5 min wall clock time. FP-Long gets upto
32x5 min wall clock time for problems in MIPLIB 2010.

It appears that there is benefit from objective value sharing among slave processors
running FP concurrently.

Generating Heuristic Solutions Moving on to Parallel Computing June 3, 2014 42 / 48

Running Walks in Parallel: Walk-Vertex-Round Heuristic

Use Dikin walk (long variant) to generate points for random cost
directions.
Obtain vertex solutions (Cplex 12.1 as a LP-solver)
Run FP on the generated vertex solutions.

1 Variant (FP-Parallel): All processors run FP with randomized flipping
2 Variant (WVR1): 8 Processors run FP from optimum with randomized

flipping; 24 Processors run FP on vertices generated from walk points.
FP is run on

xk := arg min{dT
r x : Rx = r , cT x ≤ z̄}, dr = xr − xac

.
3 Variant (WVR2): 8 Processors run FP from optimum with randomized

flipping; 24 Processors take a convex combination of random walk
direction and true cost direction to generate a vertex solution, i.e., FP
is run on xk := arg min{dT

r x : Rx = r , cT x ≤ z̄},
dr = λc + (1− λ)(xr − xac)

.

Implemented using PVM on a 32-node (hyper threaded to 64) shared
memory machine, with 128 GB RAM.

Generating Heuristic Solutions Parallel Walk and Round (DW2) June 3, 2014 43 / 48

Performance of Walk-Vertex-Round Heuristics in Parallel

COR@L (73 problems) MIPLIB 2003 (27 problems) MIPLIB 2010 (67 problems)

F
P

-P
ar

a
ll
el

P
ar

a
ll
el

-W
V

R
1

P
ar

a
ll
el

-W
V

R
2

F
P

-P
ar

a
ll
el

P
ar

a
ll
el

-W
V

R
1

P
ar

a
ll
el

-W
V

R
2

F
P

-P
ar

a
ll
el

P
ar

a
ll
el

-W
V

R
1

P
ar

a
ll
el

-W
V

R
2

Feasible found 72 73 72 27 27 27 61 65 62
Optimal 24 25 23 6 5 6 15 17 15
5% gap 45 48 45 16 15 16 38 35 33

Avg gap 38.6% 37.9% 40.0% 17.4% 10.1% 11.1% 16.8% 13.0% 22.9%

One minute wall clock time for MIPLIB 2003 and COR@L problems.
5 min wall clock time for MIPLIB 2010 problems.

Generating Heuristic Solutions Parallel Walk and Round (DW2) June 3, 2014 44 / 48

Performance of Walk-Vertex-Round Heuristics in Parallel

MIPLIB 2003 (27 Problems)

WVR2

WVR1 RFP

6

2

12 5

2

MIPLIB 2010 (67 Problems)

WVR2

WVR1 RFP

17

10

16 19

2 3

1

COR@L (73 Problems)

WVR2

WVR1 RFP

42

3

16 9

2 1

3

Performance of Walk-Vertex-Round Heuristics on Different Problem Sets
1 min wall-clock time limit for MIPLIB 2003 and COR@L problems
5 min wall-clock time limit for MIPLIB 2010 problems

The # of problems for which a heuristic wins is given in the Venn diagram.

Generating Heuristic Solutions Parallel Walk and Round (DW2) June 3, 2014 45 / 48

Can Cuts Help towards Generating Heuristic Solutions?

All Gomory and Split cuts at optimal vertex, and best 5 cuts at
non-optimal vertices were added.

Problem FP (1 min) FP (1 min) x 3 Round Cuts
Int-LB Objective FP(1st) FP(3rd) FNL-LB

10teams 917.0 924.0 924.0 924.0 924.0
a1c1s1 997.5 18337.7 18344.4 18344.4 2381.96
aflow30a 983.2 1923.0 2559 2559 1024.64
aflow40b 1005.7 10559.0 10559 10559 1032.6
cap6000 -2451540.0 -2443330.0 -2442910 -2449620 -2451440
danoint 62.6 70.2 69.5 69.5 62.6595
disktom -5000.0 -5000.0 -5000 -5000 -5000
fixnet6 1200.9 6041.9 6041.9 6041.9 1443.1
liu 346.0 5033.0 4825.1 4825 453
mas74 10482.8 13259.5 13258.9 13258.9 10495.5
mas76 38893.9 41731.9 41139 41139 38940.7
mkc -611.9 -253.1 -262.828 -262.828 -593.743
modglob 20430900.0 26412300.0 26410800 26402900 20522000
opt1217 -20.0 -16.0 -16 -16 -16.8019
p2756 2688.8 NA NA NA 3097.68
pp08aCUTS 5480.6 8080.0 8219.9 8010 6850.47
pp08a 2748.4 8609.8 8590 8110 6907.59
set1ch 32007.7 75575.0 75016.7 75016.7 49611.3
seymour 403.8 430.0 432 432 406.011
tr12-30 14210.4 178918.0 179121 179121 87805.1
vpm2 9.9 17.5 17.5 17.5 12.4402
neos-1480121 0.0 43.0 43 43 0
ran14x18 3016.9 4237.0 4239 4239 3365.16
rlp1 13.2 21.0 21 21 13.9938
bienst1 11.7 47.3 47 47 27.9354
neos-504674 472.8 19542.2 19621.3 19621.2 1521.5

Generating Heuristic Solutions Parallel Walk and Round (DW2) June 3, 2014 46 / 48

What have we learned, and Where to go from here?

1 Do interior solutions help?

– Use of ellipsoidal rounding, combined with limited LLL-reduction in the
original space appears to help for harder MICPs

– The bottleneck step of evaluating disjunction quality is
parallelizable!

– Use of points generated from random walk appear to help in generating
heuristic solutions

– Dikin walk points are slightly better
– Multiple short walks in parallel is generally as effective as one

long walk!
– Jury is out on the value in using cuts at non-vertex solutions

2 What Next?

– Other feasible solution finding heuristics
– Managing the number of cuts
– Combining heuristic solution generation, cuts, and branching – all in

parallel
– release i-Optimize package v1

Concluding Remarks June 3, 2014 47 / 48

What have we learned, and Where to go from here?

1 Do interior solutions help?

– Use of ellipsoidal rounding, combined with limited LLL-reduction in the
original space appears to help for harder MICPs

– The bottleneck step of evaluating disjunction quality is
parallelizable!

– Use of points generated from random walk appear to help in generating
heuristic solutions

– Dikin walk points are slightly better
– Multiple short walks in parallel is generally as effective as one

long walk!
– Jury is out on the value in using cuts at non-vertex solutions

2 What Next?

– Other feasible solution finding heuristics
– Managing the number of cuts
– Combining heuristic solution generation, cuts, and branching – all in

parallel
– release i-Optimize package v1

Concluding Remarks June 3, 2014 47 / 48

What have we learned, and Where to go from here?

1 Do interior solutions help?

– Use of ellipsoidal rounding, combined with limited LLL-reduction in the
original space appears to help for harder MICPs

– The bottleneck step of evaluating disjunction quality is
parallelizable!

– Use of points generated from random walk appear to help in generating
heuristic solutions

– Dikin walk points are slightly better
– Multiple short walks in parallel is generally as effective as one

long walk!
– Jury is out on the value in using cuts at non-vertex solutions

2 What Next?

– Other feasible solution finding heuristics
– Managing the number of cuts
– Combining heuristic solution generation, cuts, and branching – all in

parallel
– release i-Optimize package v1

Concluding Remarks June 3, 2014 47 / 48

References

1. S Mehrotra and Z Li (2011). Branching on hyperplane methods for mixed integer linear
and convex programming using adjoint lattices. Journal of Global Optimization,
49(4):623-649.

2. S. Mehrotra and KL Huang (2012). Computational experience with a modified potential
reduction algorithm for linear programming. Optimization Methods And Software,
27(4-5):865–891, 2012.

3. KL Huang and S. Mehrotra (2013). An empirical evaluation of walk-and-round heuristics
for mixed integer linear programs. Computational Optimization and Applications,
55(3):545-570.

4. KL Huang and S. Mehrotra (2013). An empirical evaluation of a walk-relax-and-round
heuristics for mixed integer convex programs. Technical report, Northwestern University
(under review).

5. S Mehrotra and KL Huang (2013). On Implementing a General Disjunctive Branching
Algorithm Using Lattice Basis Reduction for Mixed Integer Convex Programming.
Technical report, Northwestern University (submitted).

6. KL Huang and S Mehrotra (2013). Solution of Monotone Complementarity and General
Convex Programming using a modified Potential Reduction Interior Point Method.
Technical report, Northwestern University (under review).

7. U Koc, KL Huang and S Mehrotra (2014). Concurrent Generation of Feasible Integer
Solutions Using Random Walks in Parallel. Technical report, Northwestern University (in
preparation).

8. U Koc and S Mehrotra (2014). A Cut-and-Branch framework for solving Mixed Integer
Programs in Parallel (in preparation).

Concluding Remarks June 3, 2014 48 / 48

	Giant Steps in Integer Programming
	George Dantzig
	Ralph E Gomory
	Hendrik W. Lenstra
	Narendra Karmarkar
	Robert E. Bixby
	Computational Power

	Outline
	Modified Lenstra Algorithm
	Lenstra's Algorithm
	Branching on Hyperplane
	Integer width of a set
	LLL Basis Reduction Algorithm
	Heuristic Branching Hyperplane using LLL

	Generating Heuristic Solutions
	Random Walks
	Modified Walks
	Rounding a Solution Heuristically
	RWs for MICPs
	RWs for MICPs
	RWs for MICPs
	RWs for MICPs
	RWs for MICPs:One Hour Runs
	RWs for MIQPs
	Moving on to Parallel Computing
	Parallel Walk and Round (DW2)

	Concluding Remarks

