Can Interior Solutions Help in Solving Mixed Integer Programs?

Sanjay Mehrotra joint work with Kuo-Ling Huang, Utku Koc, Zhifeng Li

Industrial Engineering and Management Sciences Northwestern University

June 3, 2014

Giant Orion carrying servant Cedalion on his shoulders

The Concept of a Vertex

GEORGE B. DANTZIG, Programming in a linear structure, *Econometrica* 17 (1949) 73-74. Copyright © 1949 by the Econometric Society.

GEORGE B. DANTZIG, Maximization of a linear function of variables subject to linear inequalities, in T.C. KOOPMANS, ed., Activity Analysis of Production and Allocation, New York: John Wiley & Sons, 1951, Chapter XXI, pp. 339–347. Copyright © 1951 by the Yale University Press.

The Concept of Cutting Planes

OUTLINE OF AN ALGORITHM FOR INTEGER SOLUTIONS TO LINEAR PROGRAMS

BY RALPH E. GOMORY¹ Communicated by A. W. Tucker, May 3, 1958

SOLVING LINEAR PROGRAMMING PROBLEMS IN INTEGERS¹

BY

RALPH E. GOMORY

¹ This work was supported in part by the Princeton-IBM mathematics research project.

² More recently a FORTRAN program on an IBM 704 has been used to run problems up to m = n = 15. The problems (only a few were run) ran rapidly.

The Concept of Branching on Hyperplanes

MATHEMATICS OF OPERATIONS RESEARCH Vol 8, No. 4, November 1983 Printed in U.S.A.

INTEGER PROGRAMMING WITH A FIXED NUMBER OF VARIABLES*

H. W. LENSTRA, JR.

Universiteit van Amsterdam

It is shown that the integer linear programming problem with a fixed number of variables is polynomially solvable. The proof depends on methods from geometry of numbers.

Interior Points, Log-barrier, and Ellipsoidal Rounding

A New Polynomial-Time Algorithm for Linear Programming

N. Karmarkar

AT&T Bell Laboratories Murray Hill, New Jersey 07974

Narendra Karonariko

I984 ACM 0-89791-133-4/84/004/0302 \$00.75

Careful and Efficient Implementations of Algorithms

IBM ILOG CPLEX V12.1 User's Manual for CPLEX

_					_	
_	_	_	_	•	_	
_	-	_	_			
_	_	_	_	-		
_	_	_	_	_		
_	-	_	_	-	-	
_	_			-	_	•
_	_	-	_	•	_	• 6

Processor Speed and Parallel Computing

Outline: Towards a Framework for Solving MIP in a Parallel Computing Environment

 Reduce the Number of Branches. Modified Lenstra's Algorithm for solving Convex IP feasibility problems

- Barrier Solutions
- LLL Lattice Basis Reduction
- Computational experience with a LLL-based heuristic for branching disjunctions (MICP)

Outline: Towards a Framework for Solving MIP in a Parallel Computing Environment

 Reduce the Number of Branches. Modified Lenstra's Algorithm for solving Convex IP feasibility problems

- Barrier Solutions
- LLL Lattice Basis Reduction
- Computational experience with a LLL-based heuristic for branching disjunctions (MICP)

2 Generate feasible Integer Solutions. Random Walks in the Interior

- Walk-and-round heuristic for MILP
- Walk-relax-round heuristic for MICP
- Walk-vertex-round heuristic for MILP
- Parallel walks and integer solutions

Outline: Towards a Framework for Solving MIP in a Parallel Computing Environment

 Reduce the Number of Branches. Modified Lenstra's Algorithm for solving Convex IP feasibility problems

- Barrier Solutions
- LLL Lattice Basis Reduction
- Computational experience with a LLL-based heuristic for branching disjunctions (MICP)

② Generate feasible Integer Solutions. Random Walks in the Interior

- Walk-and-round heuristic for MILP
- Walk-relax-round heuristic for MICP
- Walk-vertex-round heuristic for MILP
- Parallel walks and integer solutions

③ Cutting the Non-optimal Vertex Solutions.

- Can it help?
- Limited experience with Gomory and Split Cuts as in Coin-OR
- Concluding Remarks

General Mixed Integer Convex Programming (MICP) Feasibility problem:

$$\mathcal{C} = \{ Rx = r, \\ c_i(x) \le 0, \text{ for } i = 1, \cdots, m, \\ x_i \in \mathbb{Z}_+, i = 1, \cdots, n, \\ x_i \in \mathbb{R}, i = n + 1, \cdots, n + \bar{n}. \}$$

where $c_i(x) : \mathbb{R}^{n+\bar{n}} \longrightarrow \mathbb{R}$ for $i = 1, \cdots, m$ are convex functions.

Is
$$\mathcal{C} \bigcap \mathbb{Z}^n \neq \emptyset$$
?

We will use notation \mathcal{P} whenever \mathcal{C} is a polyhedra, i.e., $g_i(\cdot)$ are linear (MILP); we will use notation \mathcal{Y} whenever the polyhedral set is assumed to be full dimensional.

Basic Steps in Lenstra's Algorithm

- S1. (Assume Y is full dimensional with dimension k, and the Problem is Linear Pure Integer Program) Full Dimensionality Check: If Y is not full dimensional, then project Y to a lower dimension
- S2. Ellipsoidal Rounding:

Find a positive definite matrix $D \in \mathbb{R}^{k \times k}$, and a center d, so that the ellipsoidal approximation of $\mathcal{Y} : \mathcal{E}(w, D) := \{y \in \mathbb{R}^k \mid ||y - d||_D \le 1\}$ satisfies

 $\mathcal{E}(w, D) \subseteq \mathcal{Y} \subseteq \mathcal{E}(w, \gamma D), \gamma < 1.$

 $\gamma = O(1/k)$ if log-barrier solution is used.

- S3. Basis Reduction for finding a thin direction: Given a D find a reduced basis b_1, \ldots, b_k of the lattice \mathbb{Z}^k in $\|\cdot\|_D$.
- S4. **Feasibility Check** Let b_1, \ldots, b_k be reduced basis vectors from S3. Write $d = \sum_{i=1}^k \beta_i b_i$ and compute $\hat{y} = \sum_{i=1}^k \lfloor \beta_i \rceil b_i$. If $\hat{y} \in \mathcal{Y}$, we have found an integer feasible solution. Otherwise, find a primitive vector u satisfying $u^T b_i = 0$ for $i = 1, \ldots, k$.
- S5. Branching on hyperplanes: Add hyperplanes $u^T x = \mu$ for $\mu \in \mathbb{Z}$ for which $\mathcal{Y} \cap \{u^T x = \mu\}$ is feasible; go to Step 1

S5'. We can use split-disjunctions instead of branching hyperplanes.

When is Branching on Hyperplane Useful?

Lenstra's Result using LLL Reduced Lattice Basis

Definition

Given a direction u and a convex set C, the integer width of C is given by: $W_l(u, C) := \lfloor \max \{ u^T x | x \in C \} \rfloor - \lceil \min \{ u^T x | x \in C \} \rceil + 1.$

Theorem

(Lenstra '82) For the choice of u in Lenstra's algorithm, $W_l(u, \mathcal{Y}) \leq 2k(k+1)2^{k(k-1)/4}$.

Lenstra's Result using LLL Reduced Lattice Basis

Definition

Given a direction u and a convex set C, the integer width of C is given by: $W_l(u, C) := \lfloor \max \{ u^T x | x \in C \} \rfloor - \lceil \min \{ u^T x | x \in C \} \rceil + 1.$

Theorem

(Lenstra '82) For the choice of u in Lenstra's algorithm, $W_l(u, \mathcal{Y}) \leq 2k(k+1)2^{k(k-1)/4}$.

Definition

The lattice generated by $B := [b_1, \dots, b_k]$, $b_i \in \mathbb{R}^n$, $n \ge k$ is the set $\mathcal{L}(B) := \{x \in \mathbb{R}^n \mid x = \sum_{i=1}^k \mathbb{Z}b_i\}$. B is a basis of $\mathcal{L}(B)$ if it is minimal.

Definition

Let E (e.g., D) be as positive semi-definite matrix, $\|b\|_E^2 = b^E b \neq 0$ for vectors b of interest. Let $\hat{B} = [\hat{b}_1, \dots, \hat{b}_k]$ be the Gram-Schmidt orthogonal basis computed by the orthogonalization $\hat{b}_i = b_i - \sum_{j=1}^{i-1} \Gamma_{j,i} \hat{b}_j, i = 1, \dots, k$, where $\Gamma_{j,i} = b_i^T E \hat{b}_j / \|\hat{b}_j\|_E^2$, and $\hat{b}_1 = b_1$, It is assumed that $\|\cdot\|_E \neq 0$ for the vectors of interest. A basis b_1, \dots, b_k of a lattice $\mathcal{L}(B)$ is called an LLL-reduced basis, for $\delta \in (\frac{1}{4}, 1)$, if it satisfies: LLL1. $|\Gamma_{j,i}| \leq 1/2$ for $1 \leq j < i \leq k$. (Size Reduced) LLL2. $\|\hat{b}_{i+1}\|_E^2 \geq (\delta - \Gamma_{i,i+1}^2) \|\hat{b}_i\|_E^2$, $|\Gamma_{i,i+1}| \leq 1/2$, for $i = 1, \dots, k - 1$. (2-Reduced)

Lenstra, Lenstra, Lovász Basis Reduction Algorithm

Algorithm: The LLL Basis Reduction Algorithm w.r.t. Ellipsoidal Norm

```
INPUT: A basis b_1, b_2, ..., b_k;

OUTPUT: An LLL reduced basis;

Initialize \delta and compute Gram-Schmidt orthogonal basis \hat{b}_1, ..., \hat{b}_k;

WHILE i \leq k DO

IF (2-reduced condition is violated) \|\hat{b}_i\|_E^2 < (\delta - \Gamma_{i-1,i}^2)\|\hat{b}_{i-1}\|_E^2 THEN

SWAP b_i and b_{i-1}, and update \Gamma;

[Size Reduction] Size reduce vectors b_k, ..., b_i;

IF i > 2 THEN i \leftarrow \max\{i - 1, 1\};

ELSE

i \leftarrow i + 1;
```

Figure 1: A Basic Description of the LLL Basis Reduction Algorithm

Lenstra, Lenstra, Lovász Basis Reduction Algorithm

Algorithm: The LLL Basis Reduction Algorithm w.r.t. Ellipsoidal Norm

```
INPUT: A basis b_1, b_2, \ldots, b_k;

OUTPUT: An LLL reduced basis;

Initialize \delta and compute Gram-Schmidt orthogonal basis \hat{b}_1, \ldots, \hat{b}_k;

WHILE i \leq k DO

IF (2-reduced condition is violated) \|\hat{b}_i\|_E^2 < (\delta - \Gamma_{i-1,i}^2)\|\hat{b}_{i-1}\|_E^2 THEN

SWAP b_i and b_{i-1}, and update \Gamma;

[Size Reduction] Size reduce vectors b_k, \ldots, b_i;

IF i > 2 THEN i \leftarrow \max\{i - 1, 1\};

ELSE

i \leftarrow i + 1;
```

Figure 1: A Basic Description of the LLL Basis Reduction Algorithm

• LLL algorithm is polynomial time, but \hat{b} are dense; and computations require long integer arithmetic.

- Lovász and Scarf ['92] developed a Generalized Basis Reduction (GBR) algorithm.
- Cook, Rutherford, Scarf and Shallcross ['93] implemented GBR algorithm for some hard network design problems.
- Wang ['97] implemented GBR algorithm for LP and NLP (\leq 100 integer variables).
- Owen, Mehrotra ['01] Experimental results on using heuristically computed disjunctions in branch-and-bound
- Gao, Zhang ['02] implemented Lenstra's algorithm.
- Aardal, Lenstra ['02] solved some hard equality constrained integer Knapsacks.
- G Pataki, M Tural, EB Wong ['10] Basis reduction and the complexity of branch-and-bound
- M Karamanov, G Cornujols ['11] Branching on general disjunctions
- G Nannicini, G Cornujols, M Karamanov, L Libert ['11] Branching on Split Disjunctions.

MICP: Ellipsoidal Rounding in Original Space

Recall that Feasibility-MICP is to find

$$\mathcal{C} := \left\{ x := \left(\begin{array}{c} x_z \\ x_c \end{array} \right) \middle| x_z \in \mathbb{Z}^n_+, x_c \in \mathbb{R}^{\bar{n}}, Rx = r, c_i(x) \le 0, i = 1, \dots, l \right\}$$

or to show that no such solution exists.

Theorem

Let f(x) be a self-concordant barrier associated with a compact convex set C having a non-empty relative interior. Then,

$$\mathcal{E}(w,
abla^2 f(w)) \subseteq \mathcal{C} \subseteq \mathcal{E}\left(w, \gamma
abla^2 f(w)
ight),$$

where w is the barrier-center associated with f(x), and $\gamma = 1/(4\theta + 1)$.

MICP: Ellipsoidal Rounding in Original Space

Recall that Feasibility-MICP is to find

$$\mathcal{C} := \left\{ x := \left(\begin{array}{c} x_z \\ x_c \end{array} \right) \middle| x_z \in \mathbb{Z}^n_+, x_c \in \mathbb{R}^{\bar{n}}, Rx = r, c_i(x) \le 0, i = 1, \dots, l \right\}$$

or to show that no such solution exists.

Theorem

Let f(x) be a self-concordant barrier associated with a compact convex set C having a non-empty relative interior. Then,

$$\mathcal{E}(w,
abla^2 f(w)) \subseteq \mathcal{C} \subseteq \mathcal{E}\left(w, \gamma
abla^2 f(w)
ight),$$

where w is the barrier-center associated with f(x), and $\gamma = 1/(4\theta + 1)$.

In fact, it is sufficient to find an approximate \tilde{w} . Let $q := -\nabla^2 f(\tilde{w})^{-1} f(\tilde{w})$, and $||q||_{\nabla^2 f(x)} \le 1/4$. Then, $\mathcal{E}(\tilde{w}, 2\nabla^2 f(\tilde{w})) \subseteq \mathcal{C} \subseteq \mathcal{E}(\tilde{w}, \gamma \nabla^2 f(\tilde{w}))$, where $\gamma = \frac{1}{4(2\theta+1)}$. If log-barrier center is used, $\theta = O(n + \bar{n})$ for LP,

SOCP, SDP, e.g. Note that $c_i(\cdot)$ need not be differentiable.

MICP: Lattice Basis Reduction in the Original Space using an Adjoint Lattice (Mehrotra & Li '11)

Let $R = \begin{bmatrix} A:0\\B:C \end{bmatrix}$, $r = \begin{pmatrix} b\\a \end{pmatrix}$. Without loss of generality assume that the columns of A correspond to the integer variables, and the columns of C correspond to the real variables; and assume that A and C have full row rank. If C does not has a full row rank, we have a π such that $\pi^T C = 0$.

Theorem

Let Z be a basis of the kernel lattice of A: $\{q \in \mathbb{Z}^{n} : v^{T}Aq = 0, v \in \mathbb{Z}^{m}\}$, Z* satisfy $Z^{T}Z^{*} = I$ and have integer elements; and Λ^{*} be the lattice generated by Z*. Let $P_{RQ^{-1/2}} = [I - Q^{-1/2}R^{T}(RQ^{-1}R^{T})^{-1}AR^{-1/2}]$. Suppose that the column vectors of $Q^{-1/2}\begin{bmatrix} Z^{*}\\ 0 \end{bmatrix}$ are LLL-reduced under $E := P_{RQ^{-1/2}}$ norm, and no column of Z* satisfies $W\left(\begin{pmatrix} u\\ 0 \end{pmatrix}, \mathcal{C}\right) \leq \gamma(3/\sqrt{2})^{n+\bar{n}}$. Then, using Z in a rounding procedure we must produce a feasible integer solution of (MICP). \Box

Remark

- Recall that simple single variable disjunctive branching uses a fractional variable for branching.
- Strong branching selects a variable with best local improvement using a heuristic merit function (e.g., lower bound).
- So, how about using a subset of fractional variables to form an approximation to adjoint lattice; and then using best local improvement for branching direction selection?

Let $C_- := \{x | \alpha^T x \leq \beta, x \in C\}$ and $C_+ := \{x | \alpha^T x \geq \beta + 1, x \in C\}$. Let the quality of disjunction (α, β) be given by

$$\mathsf{z}_{\alpha,\beta} := (1-\mu) \min\{\mathsf{z}_{\alpha,\beta}^{-}(\mathcal{C}^{i}), \mathsf{z}_{\alpha,\beta}^{+}(\mathcal{C}^{i})\} + \mu \max\{\mathsf{z}_{\alpha,\beta}^{-}(\mathcal{C}^{i}), \mathsf{z}_{\alpha,\beta}^{+}(\mathcal{C}^{i})\},$$

where $z_{\alpha,\beta}^{-}(\mathcal{C}^{i}) := \min_{\tilde{x}^{i} \in \mathcal{C}_{-}^{i}}$ and $z_{\alpha,\beta}^{+}(\mathcal{C}^{i}) := \min_{\tilde{x}^{i} \in \mathcal{C}_{+}^{i}}$

CMU-IBM Test Set

Altered CMU-IBM test mixed binary to create mixed integer test problems as follows. Consider the following formulation was considered

$$\begin{array}{ll} \min & c(x) \\ \text{s.t.} & c_i(x) \leq 0, i = 1, \dots, m, \\ & f - r_l e \leq Ax \leq g + r_u e, \\ & l_z - c_l e \leq x_z \leq u_z + c_u e, \\ & l_c \leq x_c \leq u_c, \\ & x_z \in \mathbb{Z}^n \text{ and } x_c \in \mathbb{R}^{\bar{n}}, \end{array}$$

where f and g respectively represents the vectors of the original lower and upper bounds for constraints Ax, and I_z and I_c respectively represents the vectors of the original lower and upper bounds for the integer variables x_z . Two different sets of the expanded values (r_l, r_u, c_l, c_u) are used in our experiment. These are given in Table 1. The only exception is for problems CLay0203H, CLay0204H, and CLay0303H, for which we use $c_l = 0$, i.e., the lower bounds of variables are not expanded.

	rı	ru	CĮ	Cu
Test Set 1	2	2	5	5
Test Set 2	5	5	10	10

Table 1: General MICP test problems

Heuristic Branching Hyperplane using LLL

Some Implementation Details: i-Optimize Package

• Continuous Relaxation Solver. Homogeneous Primal-Dual Potential Reduction based Predictor-Corrector Method. Self-developed, and used with the following termination criteria: Let rv_{ρ}^{k} , rv_{d}^{k} , and rv_{g}^{k} be the vectors of the residuals corresponding to the *k*th iterate. An (approximate) optimal solution is obtained if

$$\begin{split} & \frac{\|res_{\rho}^{k}\|}{\max\left\{1,\|res_{\rho}^{0}\|\right\}} &< 10^{-8}, \\ & \frac{\|res_{d}^{k}\|}{\max\left\{1,\|res_{d}^{0}\|\right\}} &< 10^{-8}, \\ & \frac{|res_{g}^{k}|}{\max\left\{1,|res_{g}^{0}|\right\}} &< 10^{-8}. \end{split}$$

The problem is (near) infeasible if

$$\frac{\mu^k}{\mu^0} < 10^{-8}, \ \, \text{and} \ \, \frac{\tau^k}{\min\left\{1,\kappa^k\right\}} < \frac{\tau^0}{\kappa^0} 10^{-12},$$

where τ and κ represent homogeneous variables introduced in the homogeneous reformulation.

• Used the above solver in Phase I with null objective. Set inequality constraints to equality, if the slack to the bound is less than 10^{-8} at the end of phase I. Phase II: Newton iteration on KKT-conditions of the barrier problem. We terminate the algorithm if $||Xs - e||_{\infty} \leq 10^{-1}$.

Performance Profiles for 33 test problems: (2,2,5,5) using Strong Branching, LLL-20 and LLL-50 ($\delta = .99$ in LLL Algorithm)

Only 5-7% time is spent in LLL-basis reduction, which was implemented using floating point calculations.

Performance Profiles for 33 test problems: (5,5,10,10) using Strong Branching, LLL-20 and LLL-50 (δ = .99 in LLL Algorithm)

Only 5-7% time is spent in LLL-basis reduction, which was implemented using floating point calculations.

22 / 48

Problem	Most Fr	actional	Strong	Branching	LL	L-20	LLI	50
	Node	Time	Node	Time	Node	Time	Node	Time
CLay0203H-(2,2,0,5)	4654	512.	44	38.	44	72.	44	68.27
CLay0203M-(2,2,5,5)	5984	146	82	33.	62	41.	62	41.87
CLay0204H-(2,2,0,5)	64342	7201. †	250	395.	132	421.	138	454.36
CLay0205M-(2,2,5,5)	133470	7205. †	5096	7209. †	326	1031.	176	772.44
CLay0303H-(2,2,0,5)	1404	174.	82	89.	74	226.	74	185.15
CLay0303M-(2,2,5,5)	12152	423.	228	757.	152	875.	82	486.93
CLay0304M-(2,2,5,5)	167222	7204. †	912	477.	912	480.	912	489.52
FLay02H-(2,2,5,5)	20	0.43	10	0.96	10	1.88	10	1.53
FLay02M-(2,2,5,5)	20	0.16	10	0.34	10	0.67	10	0.56
FLay03H-(2,2,5,5)	66	3.53	42	19.87	30	29.92	30	23.38
FLay03M-(2,2,5,5)	74	1.01	36	4.02	46	11.84	46	9.68
FLay04H-(2,2,5,5)	50878	7205.44†	246	390.23	34	174.18	60	180.72
FLay04M-(2,2,5,5)	1150	24.01	104	35.81	92	60.23	98	57.88
FLay05H-(2,2,5,5)	35150	7145.70	152	644.39	100	862.84	78	519.52
FLay05M-(2,2,5,5)	36284	1089.87	788	543.41	480	592.70	264	272.49
SLay04H-(2,2,5,5)	204	8.	130	92.	254	356.	254	307.67
SLay04M-(2,2,5,5)	842	15.	240	48.	212	108.	212	101.63
SLay05H-(2,2,5,5)	95928	7201. †	266	499.	800	2793.	332	928.30
SLay05M-(2,2,5,5)	1656	40.	146	70.	442	274.	104	113.82
SLay06H-(2,2,5,5)	56076	7204. †	2326	2850.	468	2027.	712	2155.46
SLay06M-(2,2,5,5)	234910	7203. †	6502	7201. †	5938	7201. †	380	762.15
fo7-(2,2,5,5)	143194	7205.04†	750	589.24	750	662.83	750	691.07
fo7_2-(2,2,5,5)	151518	7202.09†	516	517.98	516	574.35	516	604.88
fo8-(2,2,5,5)	118354	7205.60†	1670	3542.17	1670	3862.11	1668	4260.26
Syn05M-(2,2,5,5)	10	0.	10	0.	10	0.	10	1.16
Syn05M02M-(2,2,5,5)	224	7.	22	8.	22	18.	22	22.26
Syn05M03M-(2,2,5,5)	5554	360.	60	40.	62	82.	62	113.19
Syn05M04M-(2,2,5,5)	74810	7201. †	130	178.	128	324.	128	417.95
Syn10M-(2,2,5,5)	246	5.	38	5.	40	7.	40	7.83
Syn10M02M-(2,2,5,5)	87148	7182.	208	415.	218	728.	218	887.61
Syn15M-(2,2,5,5)	166	6.	34	11.	36	13.	36	14.44
Syn20M-(2,2,5,5)	830	39.	54	25.	54	32.	54	33.48
trimloss2-(2,2,5,5)	439508	7202.02†	5096	1426.02	1700	1223.81	334	178.30

Modified Lenstra Algorithm

Heuristic Branching Hyperplane using LLL

Problem	Most Fra	actional	Strong E	Branching	LL	L-20	LLI	50
	Node	Time	Node	Time	Node	Time	Node	Time
CLay0203H-(5,5,0,10)	15100	1329.	118	100.	78	82.	78	80.
CLay0203M-(5,5,10,10)	200226	7207. †	286	95.	78	48.	78	47.
CLay0204H-(5,5,0,10)	63608	7202. †	1402	1666.	652	1620.	254	679.
CLay0205M-(5,5,10,10)	160398	7201. †	2734	7201.	2006	4435.	1640	5745.
CLay0303H-(5,5,0,10)	550	55.	96	168.	110	195.	110	194.
CLay0303M-(5,5,10,10)	217780	7206. †	3846	2259.	580	675.	270	292.
CLay0304M-(5,5,10,10)	127632	7200. †	7956	7200. †	7011	7207 †	6589	7201. †
FLay02H-(5,5,10,10)	104	2.00	20	1.63	8	1.15	8	1.11
FLay02M-(5,5,10,10)	24	0.22	18	0.57	8	0.55	8	0.56
FLay03H-(5,5,10,10)	110	5.22	36	15.72	18	17.77	18	17.51
FLay03M-(5,5,10,10)	15202	190.22	770	82.16	136	27.97	136	27.68
FLay04H-(5,5,10,10)	4546	486.32	146	255.22	48	141.21	260	822.55
FLay04M-(5,5,10,10)	308808	7208.07†	198	55.04	190	109.62	190	96.81
FLay05H-(5,5,10,10)	18102	3241.99	202	781.63	172	1060.86	124	776.27
FLay05M-(5,5,10,10)	228118	7201.60†	998	633.85	1174	1007.78	766	1025.19
SLay04H-(5,5,10,10)	9878	497.	234	87.	112	93.	112	97.
SLay04M-(5,5,10,10)	377996	7203. †	6316	1675.	486	239.	454	186.
SLay05H-(5,5,10,10)	105068	7204. †	5304	7202. †	1364	2806.	420	1054.
SLay05M-(5,5,10,10)	225296	7204. †	9830	7201. †	14326	7200. †	6712	7201. †
SLay06H-(5,5,10,10)	73442	7215. †	406	1193.	2116	5989.	1757	6892.
SLay06M-(5,5,10,10)	144164	7206. †	4516	7202. †	4180	7201. †	3038	7203. †
fo7-(5,5, 10, 10)	186758	7205.41†	2696	3520.69	4214	5582.31	3766	5129.92
fo7_2-(5,5, 10, 10)	184944	7200.56†	4782	7200.63†	4290	7201.39†	4144	7201.21†
fo8-(5,5, 10, 10)	149456	7201.95†	2240	7203.40†	2106	7212.03†	1922	7203.55†
Syn05M-(5,5,10,10)	6	0.	6	0.	6	0.	6	0.
Syn05M02M-(5,5,10,10)	672	23.	44	19.	52	51.	52	53.
Syn05M03M-(5,5,10,10)	8798	524.	142	170.	162	596.	164	506.
Syn05M04M-(5,5,10,10)	87146	7201. †	436	1053.	516	2666.	514	3323.
Syn10M-(5,5,10,10)	110	2.	30	4.	30	5.	30	5.
Syn10M02M-(5,5,10,10)	97160	7208. †	1616	2949.	1626	6034.	1626	5979.
Syn15M-(5,5,10,10)	222	8.	34	10.	34	12.	34	13.
Syn20M-(5,5,10,10)	632	28.	62	34.	62	36.	62	38.
trimloss2-(5,5,10,10)	433110	7202.07†	60	17.99	36	17.51	36	19.80

Modified Lenstra Algorithm

Heuristic Branching Hyperplane using LLL

June 3, 2014 24 / 48

Random Walk: 30+ Years of History

- A Markov Chain. May be used to uniformly sample on a polytope.
- Robert Smith [1984] introduced Hit and Run Walk
 - Generates a random direction on uniform sphere
 - Takes a random step in this direction
- Lovász (1999): Hit-and-run mixes fast. *Mathematical Programming* 86(3)
 - Number of HR steps required to sample nearly uniformly from a polytope is polynomial in problem dimension.
- Bertsimas and Vempala (2004): Use RW to give a polynomial time algorithm for convex programs.
- Kannan and Narayanan (2009): A lazy random walk using Dikin ellipsoid approximation at each step mixed in strongly polynomial time, when started from near a center point. They use it to give a new algorithm for LP.
- Can they help in solving integer programs?

Projected Hit-and-Run Walk

Let $\mathcal{P} := \{x | \mathcal{P}_I \cap \mathcal{P}_E\}$, where $\mathcal{P}_I := \{x | A_I x \leq b_I, x \geq 0\}$ and $\mathcal{P}_E := \{x | A_E x = b_E\}$. We first compute a random direction d in $\mathbb{R}^{n+\bar{n}}$. Next we orthogonally project d onto the affine space given by the equality constraints, yielding direction p. Finally, we compute a random point along $\{x + \lambda p\} \cap \mathcal{P}$.

Algorithm Projected Hit-and-Run Walk

Input: A starting point $x^0 \in \mathcal{P}_I$ and the maximum number of walk steps k_{\max} . Output: Random points $x^k \in \mathcal{P}_I, k = 1, ..., k_{\max}$.

- 1: Set $k \coloneqq 0$.
- 2: **while** $k < k_{\max} \, do$
- 3: Pick a uniform random direction d in \mathcal{P}_{I} .
- 4: **if** $A_E \neq \{\phi\}$ **then**
- 5: Compute *p* by solving $\min_{A_E p=0} ||p d||^2$.
- 6: else
- 7: Set p := d.
- 8: end if
- 9: Find the line $\ell = \{x \mid x + \lambda p, \lambda \in \mathbb{R}\} \cap \mathcal{P}$.
- 10: Uniformly pick a random point x^{k+1} from the line segment ℓ .
- 11: Set k := k + 1.
- 12: end while

Projected and Modified Dikin Walk

Consider the polytope in the form

 $\mathcal{P} := \{x := (y, s) | A_I y + s = b_I, A_E y = b_E, (y, s) \ge 0\} \subseteq \mathbb{R}^{n+\bar{n}}$ where s represents the vector of slacks for the constraint $A_I y \le b_I$. The log-barrier analytic center of \mathcal{P} is defined as a solution of

$$\min\left\{B(x):=-\sum_{j=1}^{n+\bar{n}}\ln x_j \mid Ax=b, x\geq 0\right\}.$$

Algorithm Modified Dikin Walk

Input: A starting point $x^0 \in \mathcal{P}_I$ and the maximum number of walk steps k_{\max} . Output: Random points $x^k \in \mathcal{P}_I, k = 1, \dots, k_{\max}$.

- 1: Set k := 0.
- 2: while $k < k_{max}$ do
- 3: Generate a random direction d uniformly distributed over a direction set in \mathbb{R}^{n+m} .
- 4: Compute *p* by solving

$$\min p^T d$$

s.t. $Ap = 0$, $||p^T \nabla^2 B(x^k)p|| \le r$.

- 5: Set $x_j^{k+1} := x_j^k + \lambda p_j$, j = 1, ..., n, where λ is specified by one of the following strategies.
- 6: **Strategy I** (Constant Radius Dikin Ellipsoid): Take *r* to be a constant (we used r = 0.95) and λ uniformly in (0, 0.95].
- 7: **Strategy II** (Random Step Strategy): Take any $r \neq 0$, find the line $\ell = \{x \mid x + \lambda p, \lambda \in \mathbb{R}\} \cap \mathcal{P}$ and generate x^{k+1} uniformly over ℓ .
- 8: Set k := k + 1.
- 9: end while

Fischetti, Glover, Lodi (2005): The Feasibility Pump

From a given point $x \in \mathcal{P}$, FP heuristically searches for a point x^* that is as close as possible to a rounded integer solution \tilde{x} of x by solving an l_1 -norm minimization problem. For a given x^k let \hat{x}^k be such that $\hat{x}_i^k := \lfloor x_i^k \rfloor$ for $i \in \mathcal{I}$, and $\hat{x}_i^k := x_i^k \ i \notin \mathcal{I}$. Also let

$$f^k(x) := \sum_{i\in\mathcal{I}} \left| x_i - \hat{x}_i^k \right|.$$

Now consider the problem

$$\min_{x\in\mathcal{P}}f^k(x).$$

Let \hat{x}^{k*} be the optimum solution of the above problem. If $f^k(\hat{x}^{k*}) = 0$, we have a feasible solution of MILP, else take $x^{k+1} = \hat{x}^{k*}$, and k = k + 1. The algorithm iterates until a maximum iteration or some other set criterion is reached. Also, some safeguards (e.g., randomly flipping bits) are implemented to avoid cycling.

Some Implementation Details: i-Optimize Package

- Analytic Center Computations. Settings as before.
- Used COIN-OR Branch-and-Cut (CBC) version 2.3 for feasibility pump computations with default settings. Disabled prepress and initialSolve routines.
- *I*₁-norm minimization limited to 500 for LP optimum and 75 for all RW points (maximum steps 500).
- FP COIN-OR *l*₁-norm minimization limited to 10,000; with 30 re-tries
- CPU time for pure-FP, and RW-FPs are calibrated to be nearly equal.
- MIPLIB 2003 (28 small and medium size) problems and COR@AL (74 small and medium size) problems.
- MIPLIB 2003 (4 pure binary, 18 mixed binary, 6 mixed integer); COR@L (11 pure binary, 62 mixed binary, one general integer)
- Sliding objective cut, once a feasible solution is found

Performance of Walk-and-Round Heuristics

Summary of the FP Performance on MIPLIB2003 and COR@L Libraries

Method		LPI-FP			LPS-FP			AC-FP	
Test set	Gap	Time	# Best	Gap	Time	# Best	Gap	Time	# Best
MIPLIB2003	35.4	119.66	10	38.44	117.91	11	48.41	111.27	6
COR@L	70.24	95.4	25	61.71	94.64	34	93.81	96.17	9

LPI-FP: FP Starting from LP optimal solution obtained by interior solver

LPS-FP: FP Starting from LP optimal solution obtained by simplex method (Cplex)

AC-FP: FP Staring from Analytic Center

Summary of the Walk-and-Round Performance on MIPLIB2003 Library

Method	Gap	Time	Step	Time Step	PropLP	PropAC	PropFP	PropRest	# Best
HR	27.72	128.4	88.64	1	4.65	11.65	80.71	0.18	9
DW1	30.95	144.93	107.86	1.88	4.97	10.68	80.71	1.73	2
DW2	30.48	102.35	89.77	1.69	5.18	11.68	78.91	1.83	7
RR	29.97	144.51	107.64	1.85	4.76	10.32	82.56	1.51	7

Summary of the Walk-and-Round Performance on COR@L Library

Method	Gap	Time	Step	Time Step	PropLP	PropAC	PropFP	PropRest	# Best
HR	50.19	54.59	75.97	1.38	3.22	8.44	87.26	0.14	26
DW1	65.38	45.51	83.19	0.84	2.96	7.98	86.65	2.09	7
DW2	56.75	48.88	90.68	0.83	3.43	9.72	84.21	2.16	15
RR	58.72	52.83	100.03	0.88	3.49	7.73	86.41	2.02	11

HR: Projected Hit and Run

DW1: Short step Projected Dikin Walk

DW2: Long step Projected Dikin Walk

 $Gap := 100\% \times \frac{Obj - Obj^*}{|Obj^*|}$

RR: Random Ray; PropLP: Fraction of time in LP Solution; PropAC: Fracton of time in Analytic Center computation; PropFP: Proportion of time in FP

Generating Heuristic Solutions

Rounding a Solution Heuristically

Performance of Long Walks

Feasibility Pump For MICPs

Bonami, Cornuéjols, Lodi, and Margot (2009) proposed a variant of FP for MICPs. In their method,

- **0** $x^k \in C$ is generated in the same way as in the basic FP heuristic,
- **2** whereas \hat{x}^k is generated by solving a I_1 -norm sub-MILP.
- sub-MILP uses outer approximation (OA) of convex constraints at all points of the sequence {x^l}_{l=0,...,k}

$$\begin{array}{ll} \min & \sum_{j \in \mathcal{I}} |x_j - x_j^k| \quad (\mathsf{FP}\text{-}\mathsf{OA}) \\ \text{s.t.} & c_i(x^l) + \nabla c_i(x^l)(x - x^l) \geq 0, \ i = 1, \dots, \hat{m} \ \text{ and } l = 0, \dots, k, \\ \nabla c(x)(x - x^{k*}) \leq c(x^{k*}) - \epsilon, \ \text{if the (best) integer solution } x^{k*} \ \text{is} \\ Rx = r, \\ x_j \in \mathbb{Z} \ \text{for each } j \in \mathcal{I}, \\ 0 < x < u. \end{array}$$

If (FP-OA) is empty, i.e, no integer solution exists, then FP terminates the search and claims that the available best integer solution is optimum (within a specific tolerance ϵ), or the MICP is infeasible.

Generating Heuristic Solutions

r

RWs for MICPs

available.

Outer Approximation + Feasibility Pump + Solution Polishing For MICPs

Can Walking help MICPs?

- x^k ∈ C is generated in the same way as the basic heuristic, except Outer Approximation is at the points generated from walk-points
 - Start OAFP at the continuous relaxation solution. Perform a small number of (15) iterations to generate a crude feasible solution.
 - Build OA at random walk points. Perform a small number (10) iterations to generate an improved integer solution.
 - "Delete" all previously added OA constraints, and perform a longer walk-relax-round run while keeping OA constraints.
- 2 \hat{x}^k is generated by solving the sub-MILP in Cplex
- S8 MICP instances from CMU-IBM library. 9 MIQP instances (comparison with Cplex 12.5).
- 4 All other software settings as before. 5 minute limit.

Computational Results: Walk-Relax-Round Heuristic for MICP (58 Problems)

Method	Optimum Found	Optimum Proved	Mean-gap
OA-FP	45	39	3.34%
HR-OA-FP	50	40	1.26%
DW1-OA-FP	49	40	1.35%
DW2-OA-FP	51	40	1.11%

Long Runs of Walk-Relax-Round Heuristic for MICP

Method			HR		
Problem	Start Obj	Start Gap	End Obj	End Gap	Time
Trimolss7	23.2	49.68	18.9	21.94	‡
BatchS201210M	2302924	0.33	2295349*	0	1618.83
RSyn0830M03M	-1498.04	2.92	-1543.06*	0	1503.2
RSyn0840M03M	-2486.93	9.32	-2742.65*	0	1427.04
SLay10H	139824.1	7.91	130969.4	1.07	‡
Method			DW1		
Problem	Start Obj	Start Gap	End Obj	End Gap	Time
Trimolss7	23	48.39	18.4	18.71	t
BatchS201210M	2345035	2.16	2295349*	0	1377.54
RSyn0830M03M	-1523.37	1.28	-1543.06*	0	985.91
RSyn0840M03M	-2513.14	8.37	-2742.65*	0	1440.42
SLay10H	144585	11.58	129971.1	0.3	‡
Method			DW2		
Problem	Start Obj	Start Gap	End Obj	End Gap	Time
Trimolss7	23	48.39	18.4	18.71	‡
BatchS201210M	2310423	0.66	2295349*	0	1820.36
RSyn0830M03M	-1526.02	1.1	-1543.06*	0	904.76
RSyn0840M03M	-2507.26	8.58	-2742.65*	0	1386.98
SLay10H	132926.2	2.58	130996.5	1.09	‡
Method			FP-OPT		
Problem	Start Obj	Start Gap	End Obj	End Gap	Time
Trimolss7	-	NA	18.6	20	t
BatchS201210M	2324008	1.25	2295349*	0	1001.36
RSyn0830M03M	-1520.02	1.49	-1543.06*	0	1084.5
RSyn0840M03M	-2673.3	2.53	-2742.65*	0	1133.8
SLay10H	152751.8	17.88	131351.7	1.37	İ

² ‡: One hour time limit reached.

Generating Heuristic Solutions

RWs for MICPs:One Hour Runs

Random Walk (DW2) for MIQPs and Cplex 12.1 (5 min time limit)

Method	Dikin W	Cplex 12.1						
Problem	ОЬј	Gap	Time (Found)	Time (Proven)	ОЬј	Gap	Time (Found)	Time (Proven)
ibell3a	87875.03*	0	21.14	36.47	87875.03*	0	5.56	6.47
ibienst1	34.21	0	23.74	‡	34.21	0	226.87	‡
ilaser0	2412537.96	0.001	287.57	‡	2412505.12	0	33.24	t
iportfolio	-0.49*	0	58.71	260.83	-	NA		t
iqiu	-126.66	0	101.19	‡	-127.08*	0	140.95	206.87
isqp	-21000.45	0	154.45	t	-21000.45	0	8.11	İ
isqp0	-20319.51	0	7.24	÷	-20319.51*	0	2.03	19.71
isqp1	-18992.68	0	8.48	±	-18992.68*	0	3.74	36.47
itointqor	-1146.7*	0	118.14	287.61	-1146.7	0	141.5	ţ

1 NA: Statistics not available.

2 * : Proven optimality.

3 -: No solution found.

4 ‡: 5-minute time limit reached.

Parallel FP Versus Long-FP Run

• Parallel-FP: In addition to the standard FP, generate rounded integer solutions \hat{x} by random flipping

MIPLIB 2003 Problems (27) MIPLIB 2010 Problems (67) CORAL Problems (73)

FP-Parallel gets 1 min wall clock time. FP-Long gets upto 32 min wall clock time for problems in MIPLIB 2003 and CORL testsets. FP-Parallel gets 5 min wall clock time. FP-Long gets upto 32x5 min wall clock time for problems in MIPLIB 2010.

• It appears that there is benefit from objective value sharing among slave processors running FP concurrently.

Running Walks in Parallel: Walk-Vertex-Round Heuristic

- Use Dikin walk (long variant) to generate points for random cost directions.
- Obtain vertex solutions (Cplex 12.1 as a LP-solver)
- Run FP on the generated vertex solutions.
 - Variant (FP-Parallel): All processors run FP with randomized flipping
 - Variant (WVR1): 8 Processors run FP from optimum with randomized flipping; 24 Processors run FP on vertices generated from walk points. FP is run on

$$x^k := \arg\min\{d_r^T x : Rx = r, c^T x \le \bar{z}\}, d_r = x_r - x_{ac}$$

Variant (WVR2): 8 Processors run FP from optimum with randomized flipping; 24 Processors take a convex combination of random walk direction and true cost direction to generate a vertex solution, i.e., FP is run on x^k := arg min{d_r^Tx : Rx = r, c^Tx ≤ z̄},

$$d_r = \lambda c + (1 - \lambda)(x_r - x_{ac})$$

• Implemented using PVM on a 32-node (hyper threaded to 64) shared memory machine, with 128 GB RAM.

Generating Heuristic Solutions

Performance of Walk-Vertex-Round Heuristics in Parallel

	COR	⊉L (73 prob	olems)	MIPLIB	2003 (27 p	03 (27 problems)		2010 (67 p	roblems)
	FP-Parallel	Parallel-WVR1	Parallel-WVR2	FP-Parallel	Parallel-WVR1	Parallel-WVR2	FP-Parallel	Parallel-WVR1	Parallel-WVR2
# Feasible found	72	73	72	27	27	27	61	65	62
# Optimal	24	25	23	6	5	6	15	17	15
# 5% gap	45	48	45	16	15	16	38	35	33
Avg gap	38.6%	37.9%	40.0%	17.4%	10.1%	11.1%	16.8%	13.0%	22.9%

One minute wall clock time for MIPLIB 2003 and COR@L problems. 5 min wall clock time for MIPLIB 2010 problems.

Performance of Walk-Vertex-Round Heuristics in Parallel

Performance of Walk-Vertex-Round Heuristics on Different Problem Sets 1 min wall-clock time limit for MIPLIB 2003 and COR@L problems 5 min wall-clock time limit for MIPLIB 2010 problems

The # of problems for which a heuristic wins is given in the Venn diagram.

Can Cuts Help towards Generating Heuristic Solutions?

All Gomory and Split cuts at optimal vertex, and best 5 cuts at non-optimal vertices were added.

Problem		FP (1 min)	FP (1 min) × 3 Round Cuts			
	Int-LB	Objective	FP(1st)	FP(3rd)	FNL-LB	
10teams	917.0	924.0	924.0	924.0	924.0	
alc1s1	997.5	18337.7	18344.4	18344.4	2381.96	
aflow30a	983.2	1923.0	2559	2559	1024.64	
aflow40b	1005.7	10559.0	10559	10559	1032.6	
cap6000	-2451540.0	-2443330.0	-2442910	-2449620	-2451440	
danoint	62.6	70.2	69.5	69.5	62.6595	
disktom	-5000.0	-5000.0	-5000	-5000	-5000	
fixnet6	1200.9	6041.9	6041.9	6041.9	1443.1	
liu	346.0	5033.0	4825.1	4825	453	
mas74	10482.8	13259.5	13258.9	13258.9	10495.5	
mas76	38893.9	41731.9	41139	41139	38940.7	
mkc	-611.9	-253.1	-262.828	-262.828	-593.743	
modglob	20430900.0	26412300.0	26410800	26402900	20522000	
opt1217	-20.0	-16.0	-16	-16	-16.8019	
p2756	2688.8	NA	NA	NA	3097.68	
pp08aCUTS	5480.6	8080.0	8219.9	8010	6850.47	
pp08a	2748.4	8609.8	8590	8110	6907.59	
set1ch	32007.7	75575.0	75016.7	75016.7	49611.3	
seymour	403.8	430.0	432	432	406.011	
tr12-30	14210.4	178918.0	179121	179121	87805.1	
vpm2	9.9	17.5	17.5	17.5	12.4402	
neos-1480121	0.0	43.0	43	43	0	
ran14x18	3016.9	4237.0	4239	4239	3365.16	
rlp1	13.2	21.0	21	21	13.9938	
bienst1	11.7	47.3	47	47	27.9354	
neos-504674	472.8	19542.2	19621.3	19621.2	1521.5	

Generating Heuristic Solutions

Parallel Walk and Round (DW2)

What have we learned, and Where to go from here?

Do interior solutions help?

- Use of ellipsoidal rounding, combined with limited LLL-reduction in the original space appears to help for harder MICPs
- The bottleneck step of evaluating disjunction quality is parallelizable!
- Use of points generated from random walk appear to help in generating heuristic solutions
- Dikin walk points are slightly better
- Multiple short walks in parallel is generally as effective as one long walk!
- Jury is out on the value in using cuts at non-vertex solutions

What have we learned, and Where to go from here?

Do interior solutions help?

- Use of ellipsoidal rounding, combined with limited LLL-reduction in the original space appears to help for harder MICPs
- The bottleneck step of evaluating disjunction quality is parallelizable!
- Use of points generated from random walk appear to help in generating heuristic solutions
- Dikin walk points are slightly better
- Multiple short walks in parallel is generally as effective as one long walk!
- Jury is out on the value in using cuts at non-vertex solutions
- What Next?
 - Other feasible solution finding heuristics
 - Managing the number of cuts
 - Combining heuristic solution generation, cuts, and branching all in parallel
 - release i-Optimize package v1

What have we learned, and Where to go from here?

Do interior solutions help?

- Use of ellipsoidal rounding, combined with limited LLL-reduction in the original space appears to help for harder MICPs
- The bottleneck step of evaluating disjunction quality is parallelizable!
- Use of points generated from random walk appear to help in generating heuristic solutions
- Dikin walk points are slightly better
- Multiple short walks in parallel is generally as effective as one long walk!
- Jury is out on the value in using cuts at non-vertex solutions
- What Next?
 - Other feasible solution finding heuristics
 - Managing the number of cuts
 - Combining heuristic solution generation, cuts, and branching all in parallel
 - release i-Optimize package v1

References

- 1. S Mehrotra and Z Li (2011). Branching on hyperplane methods for mixed integer linear and convex programming using adjoint lattices. Journal of Global Optimization, 49(4):623-649.
- S. Mehrotra and KL Huang (2012). Computational experience with a modified potential reduction algorithm for linear programming. Optimization Methods And Software, 27(4-5):865–891, 2012.
- KL Huang and S. Mehrotra (2013). An empirical evaluation of walk-and-round heuristics for mixed integer linear programs. *Computational Optimization and Applications*, 55(3):545-570.
- 4. KL Huang and S. Mehrotra (2013). An empirical evaluation of a walk-relax-and-round heuristics for mixed integer convex programs. Technical report, Northwestern University (under review).
- S Mehrotra and KL Huang (2013). On Implementing a General Disjunctive Branching Algorithm Using Lattice Basis Reduction for Mixed Integer Convex Programming. Technical report, Northwestern University (submitted).
- KL Huang and S Mehrotra (2013). Solution of Monotone Complementarity and General Convex Programming using a modified Potential Reduction Interior Point Method. Technical report, Northwestern University (under review).
- 7. U Koc, KL Huang and S Mehrotra (2014). Concurrent Generation of Feasible Integer Solutions Using Random Walks in Parallel. Technical report, Northwestern University (in preparation).
- 8. U Koc and S Mehrotra (2014). A Cut-and-Branch framework for solving Mixed Integer Programs in Parallel (in preparation).