
A Heuristic Algorithm for General Multiple
Nonlinear Knapsack Problem

Luca Mencarelli
mencarelli@lix.polytechnique.fr

Poster Session: Oral Presentations
Mixed-Integer Nonlinear Programming 2014
Carnegie Mellon University, Pittsburgh, USA

June 2, 2014

Joint work with Claudia D’Ambrosio, Angelo Di Zio and Silvano Martello

mailto:mencarelli@lix.polytechnique.fr


The problem of the poster
The general multiple nonlinear knapsack problem is

max
∑
i∈M

∑
j∈N

fj(xij)

s.t.
∑
j∈N

gj(xij) ≤ ci ∀i ∈ M = {1, . . . ,m}

∑
i∈M

xij ≤ uj ∀j ∈ N = {1, . . . , n}

xij ≥ 0 ∀i ∈ M, and ∀j ∈ N

xij ∈ Z ∀i ∈ M and j ∈ N ⊆ N

(MNKP)

where x = (x11, x12, . . . xmn) ∈ Rnm, fj(xij) and gj(xij) are nonlinear
non-negative non-decreasing functions.

No further assumption: fj(xij) and gj(xij) can be nonconvex/nonconcave.

NP-hard (generalization of single linear knapsack problem).



The problem of the poster
The general multiple nonlinear knapsack problem is

max
∑
i∈M

∑
j∈N

fj(xij)

s.t.
∑
j∈N

gj(xij) ≤ ci ∀i ∈ M = {1, . . . ,m}

∑
i∈M

xij ≤ uj ∀j ∈ N = {1, . . . , n}

xij ≥ 0 ∀i ∈ M, and ∀j ∈ N

xij ∈ Z ∀i ∈ M and j ∈ N ⊆ N

(MNKP)

where x = (x11, x12, . . . xmn) ∈ Rnm, fj(xij) and gj(xij) are nonlinear
non-negative non-decreasing functions.

No further assumption: fj(xij) and gj(xij) can be nonconvex/nonconcave.

NP-hard (generalization of single linear knapsack problem).



Our heuristic algorithm

Generalization of heuristic procedure for single (non)linear knapsack
problem [D’Ambrosio and Martello, 2011].

Fast constructive heuristic plus post-processing procedure (local search).

Constructive Heuristic:

• Sort the capacities in non-increasing way: ci ≤ ci+1 (i = 1, . . . ,m − 1).

• Sampling the profit-to-weight functions and compute the best
profit-to-weight ratio for each item.

• Apply greedy algorithm for general integer knapsack problem.

• If current ci doesn’t allow to introduce other items, then i = i + 1.

Local Search:

• For a capacity, evaluate local feasible changes between two items.

• Take the best one, if it improves the objective function.



Our heuristic algorithm

Generalization of heuristic procedure for single (non)linear knapsack
problem [D’Ambrosio and Martello, 2011].

Fast constructive heuristic plus post-processing procedure (local search).

Constructive Heuristic:

• Sort the capacities in non-increasing way: ci ≤ ci+1 (i = 1, . . . ,m − 1).

• Sampling the profit-to-weight functions and compute the best
profit-to-weight ratio for each item.

• Apply greedy algorithm for general integer knapsack problem.

• If current ci doesn’t allow to introduce other items, then i = i + 1.

Local Search:

• For a capacity, evaluate local feasible changes between two items.

• Take the best one, if it improves the objective function.



Our heuristic algorithm

Generalization of heuristic procedure for single (non)linear knapsack
problem [D’Ambrosio and Martello, 2011].

Fast constructive heuristic plus post-processing procedure (local search).

Constructive Heuristic:

• Sort the capacities in non-increasing way: ci ≤ ci+1 (i = 1, . . . ,m − 1).

• Sampling the profit-to-weight functions and compute the best
profit-to-weight ratio for each item.

• Apply greedy algorithm for general integer knapsack problem.

• If current ci doesn’t allow to introduce other items, then i = i + 1.

Local Search:

• For a capacity, evaluate local feasible changes between two items.

• Take the best one, if it improves the objective function.



Our heuristic algorithm

Generalization of heuristic procedure for single (non)linear knapsack
problem [D’Ambrosio and Martello, 2011].

Fast constructive heuristic plus post-processing procedure (local search).

Constructive Heuristic:

• Sort the capacities in non-increasing way: ci ≤ ci+1 (i = 1, . . . ,m − 1).

• Sampling the profit-to-weight functions and compute the best
profit-to-weight ratio for each item.

• Apply greedy algorithm for general integer knapsack problem.

• If current ci doesn’t allow to introduce other items, then i = i + 1.

Local Search:

• For a capacity, evaluate local feasible changes between two items.

• Take the best one, if it improves the objective function.



Our heuristic algorithm

Generalization of heuristic procedure for single (non)linear knapsack
problem [D’Ambrosio and Martello, 2011].

Fast constructive heuristic plus post-processing procedure (local search).

Constructive Heuristic:

• Sort the capacities in non-increasing way: ci ≤ ci+1 (i = 1, . . . ,m − 1).

• Sampling the profit-to-weight functions and compute the best
profit-to-weight ratio for each item.

• Apply greedy algorithm for general integer knapsack problem.

• If current ci doesn’t allow to introduce other items, then i = i + 1.

Local Search:

• For a capacity, evaluate local feasible changes between two items.

• Take the best one, if it improves the objective function.



Our heuristic algorithm

Generalization of heuristic procedure for single (non)linear knapsack
problem [D’Ambrosio and Martello, 2011].

Fast constructive heuristic plus post-processing procedure (local search).

Constructive Heuristic:

• Sort the capacities in non-increasing way: ci ≤ ci+1 (i = 1, . . . ,m − 1).

• Sampling the profit-to-weight functions and compute the best
profit-to-weight ratio for each item.

• Apply greedy algorithm for general integer knapsack problem.

• If current ci doesn’t allow to introduce other items, then i = i + 1.

Local Search:

• For a capacity, evaluate local feasible changes between two items.

• Take the best one, if it improves the objective function.



Our heuristic algorithm

Generalization of heuristic procedure for single (non)linear knapsack
problem [D’Ambrosio and Martello, 2011].

Fast constructive heuristic plus post-processing procedure (local search).

Constructive Heuristic:

• Sort the capacities in non-increasing way: ci ≤ ci+1 (i = 1, . . . ,m − 1).

• Sampling the profit-to-weight functions and compute the best
profit-to-weight ratio for each item.

• Apply greedy algorithm for general integer knapsack problem.

• If current ci doesn’t allow to introduce other items, then i = i + 1.

Local Search:

• For a capacity, evaluate local feasible changes between two items.

• Take the best one, if it improves the objective function.



Results and conclusions

Test bed: 1680 challenging instances, randomly generated according to
[Martello and Toth, 1990] and [D’Ambrosio, Lee and Wächter, 2009].

The heuristic algorithm was compared with:

• heuristic solvers: Ipopt for real instance, Bonmin for integer instances.

• exact solvers: Scip, both for real and integer instances

Very difficult multiple nonlinear knapsack problem that nonlinear solvers
are unable to handle for instances of realistic size.

Constructive heuristic can provide a high-quality feasible solution to
global optimization methods.



Results and conclusions

Test bed: 1680 challenging instances, randomly generated according to
[Martello and Toth, 1990] and [D’Ambrosio, Lee and Wächter, 2009].

The heuristic algorithm was compared with:

• heuristic solvers: Ipopt for real instance, Bonmin for integer instances.

• exact solvers: Scip, both for real and integer instances

Very difficult multiple nonlinear knapsack problem that nonlinear solvers
are unable to handle for instances of realistic size.

Constructive heuristic can provide a high-quality feasible solution to
global optimization methods.


