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e d fixed, f convex (Grdtschel, Lovasz, Schrijver '1988)
e d fixed, f and constraints quasi-convex polynomials (Khachiyan, Porkolab '2000)
e d =2 and f polynomial of degree two (Del Pia, Weismantel '2014)
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e Separable-convex integer programming (Hochbaum, Shanthikumar '1990)
e N-fold integer programming (De Loera, Hemmecke, Onn, Weismantel '2008)
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The Problem

Solve
min {f(Wz) : Az <b, x € Z"}

Given

> Matrices A € Z™*™ and W € Z%*™, a vector b € Z™

> A function f : Q% — Q presented by an integer minimization oracle.
(Query: y* < argmin{f(y) : By<c¢,y € A})

> We assume to have access to a fiber oracle.

Given ay € Z returns x € {2 € Z" : Az < b},
such that Wz = y, or states that no such x exists.

Question: under which conditions on the input is this problem
tractable?



Our Main Result (from a optimization point of view)



Our Main Result (from a optimization point of view)

> Let A€ Zm>X", W € Z4%" b€ Z™ and f: R? — R.



Our Main Result (from a optimization point of view)

> Let A€ Zm>X", W € Z4%" b€ Z™ and f: R? — R.

» We assume d to be fixed.



Our Main Result (from a optimization point of view)

> Let A€ Zm>X", W € Z4%" b€ Z™ and f: R? — R.

> We assume d to be fixed.
> We assume W to be given in unary representation.
Let w=[|[W|lmaz-



Our Main Result (from a optimization point of view)

v

Let A € Zm™*" W € 24X b e Z™ and f:R* — R.

We assume d to be fixed.

v

v

We assume W to be given in unary representation.
Let w=[|[W|lmaz-

Let A denote the maximum sub-determinant of A.

v



Our Main Result (from a optimization point of view)

v

Let A € Zm™*" W € 24X b e Z™ and f:R* — R.

We assume d to be fixed.

v

> We assume W to be given in unary representation.
Let w=[|[W|lmaz-

Let A denote the maximum sub-determinant of A.

v

Theorem. There is an algorithm that solves the non-linear optimization problem
min{f(Wz) : Az <b, x € Z"}.

The number of oracle calls it performs (to the optimization and fiber oracles) is
polynomial in n, w and A.
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Our Approach

Understand the set
R={Wz:zcZ", Az <b} CZ¢

Clearly,

RCQ={Wz : Az <b}nzd

However, typically

R#Q

[0,3]> nz?

121
W:(—Q 0 1)
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Definition (Frobenius Number). Given integers a1, - - ,an with ged(ai, -+ ,an) =1,
the Frobenius number F(a1,--- ,ay) is the largest integer k that can not be
expressed as a positive integer combination of a1, ,anp.

» Finding F(a1, - ,an) is also known as the coin problem.
> F(a1,a2) = aiaz — (a1 + a2) (Sylvester '1884).

> NP-hard to compute F(a1,- - ,an) (Kannan '1992).

> Flai, - ,an) < cpll(a1, - ,an)||3 (e.g. Brauer '1942).
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Definition (Diagonal Frobenius Number). Let M € Z¢%™ (d < m) such that
» W has HNF lIdentity, and
> C(W)={WX : X >0} is a pointed cone.

Let v = W1. The diagonal Frobenius number F'(W) is defined as the smallest integer
t such that
(tv+CW)NZ C {Wz : z €T}

Theorem (Aliev, Henk 2010).

M det(WWT).

F(W) ;

IN

> For fixed d, the bound is polynomial in the unary encoding of W.
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{(Wx : x€ PNZ"} vs. {Wx : € P}nZ?

P =R} w e Z" HHHHH

P:Ri Wezdxn =g

P={zeR" : Az <b}

W e 7dxn
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0-Regular Sets

Definition (d-regular set). We call a set S C 74 §-regular, with respect to a region
B C RY, if there exists a family of full-dimensional affine sub-lattices A1, --- , Ay of
74 with determinants det(A;) <4 such that

SmB:UAimB.

Example.
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> Let P={z € R" : Az < b}, with A € Z™*"™ and b € Z™.
> Let A denote the maximum absolute sub-determinant of A.

> Let Q = WP and let R = W(PNZ") with W € Z4x"

v

Define Q- := {z € R? : =+ B, C Q}.

Qv

Theorem. The set R is J-regular with respect to the polyhedron @, where v and ¢
are bounded polynomially in A, ||W||;naz and n.
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The Algorithm

v

For all affine lattices A C Z% with det(A) <6,

solve min{f(y) : y € QyNA} = ya.

Obtain z* = argmin{f(Wz) : « € PNZ"™ such that Wz = yp for some A}.
For each affine subspace L, sufficiently close to boundary

> Recursively find a solution to min{f(Wz) : z € W 'LNnP} = 2’
> Replace z* with 2’ if its objective value is smaller.

v

v

» Return x*.
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» Can we improve our polynomial bounds v and §

> |s it possible to realise the fiber oracle, whenever the maximum sub-determinant
of A is bounded.

» {Wa : € PNZ™ x Rz}

Thank You!



