A Polyhedral Frobenius Theorem with Applications to Integer Optimization in Variable Dimension

David Adjiashvili, Timm Oertel, Robert Weismantel

IFOR, ETH Zürich

June 2, 2014

▲口▶ ▲圖▶ ▲필▶ ▲필▶ - 필 -

Solve

 $\min \left\{ f(Wx) : Ax \le b, \, x \in \mathbb{Z}^n \right\}$

Solve

 $\min \left\{ f(Wx) : Ax \le b, x \in \mathbb{Z}^n \right\}$

Given

Solve

 $\min \left\{ f(Wx) : Ax \le b, x \in \mathbb{Z}^n \right\}$

Given

• Matrices $A \in \mathbb{Z}^{m \times n}$ and $W \in \mathbb{Z}^{d \times n}$, a vector $b \in \mathbb{Z}^m$

Solve

$$\min\left\{f(Wx) : Ax \le b, x \in \mathbb{Z}^n\right\}$$

Given

- Matrices $A \in \mathbb{Z}^{m \times n}$ and $W \in \mathbb{Z}^{d \times n}$, a vector $b \in \mathbb{Z}^m$
- A function f : Q^d → Q presented by an integer minimization oracle.
 (Query: y* ← arg min{f(y) : By ≤ c, y ∈ Λ})

Solve

$\min\left\{f(Wx) : Ax \le b, x \in \mathbb{Z}^n\right\}$

Given

- Matrices $A \in \mathbb{Z}^{m \times n}$ and $W \in \mathbb{Z}^{d \times n}$, a vector $b \in \mathbb{Z}^m$
- A function $f : \mathbb{Q}^d \to \mathbb{Q}$ presented by an integer minimization oracle.

(Query: $y^* \leftarrow \arg\min\{f(y) : By \le c, y \in \Lambda\}$)

- d fixed, f convex (Grötschel, Lovasz, Schrijver '1988)
- d fixed, f and constraints quasi-convex polynomials (Khachiyan, Porkolab '2000)

• d = 2 and f polynomial of degree two (Del Pia, Weismantel '2014)

Solve

$$\min\left\{f(Wx) : Ax \le b, x \in \mathbb{Z}^n\right\}$$

Given

- Matrices $A \in \mathbb{Z}^{m \times n}$ and $W \in \mathbb{Z}^{d \times n}$, a vector $b \in \mathbb{Z}^m$
- A function f : Q^d → Q presented by an integer minimization oracle.
 (Query: y* ← arg min{f(y) : By ≤ c, y ∈ Λ})

Solve

$$\min\left\{f(Wx) : Ax \le b, x \in \mathbb{Z}^n\right\}$$

Given

- Matrices $A \in \mathbb{Z}^{m \times n}$ and $W \in \mathbb{Z}^{d \times n}$, a vector $b \in \mathbb{Z}^m$
- A function f : Q^d → Q presented by an integer minimization oracle.
 (Query: y^{*} ← arg min{f(y) : By ≤ c, y ∈ Λ})
- We assume to have access to a fiber oracle.

Given a $y \in \mathbb{Z}^d$ returns $x \in \{z \in \mathbb{Z}^n : Az \leq b\}$, such that Wx = y, or states that no such x exists.

Solve

$$\min\left\{f(Wx) : Ax \le b, x \in \mathbb{Z}^n\right\}$$

Given

- Matrices $A \in \mathbb{Z}^{m \times n}$ and $W \in \mathbb{Z}^{d \times n}$, a vector $b \in \mathbb{Z}^m$
- A function $f : \mathbb{Q}^d \to \mathbb{Q}$ presented by an integer minimization oracle.

(Query: $y^* \leftarrow \arg\min\{f(y) : By \le c, y \in \Lambda\}$)

We assume to have access to a fiber oracle.

Given a $y \in \mathbb{Z}^d$ returns $x \in \{z \in \mathbb{Z}^n : Az \leq b\}$, such that Wx = y, or states that no such x exists.

- Separable-convex integer programming (Hochbaum, Shanthikumar '1990)
- N-fold integer programming (De Loera, Hemmecke, Onn, Weismantel '2008)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Dynamic programming

Solve

$$\min\left\{f(Wx) : Ax \le b, x \in \mathbb{Z}^n\right\}$$

Given

- Matrices $A \in \mathbb{Z}^{m \times n}$ and $W \in \mathbb{Z}^{d \times n}$, a vector $b \in \mathbb{Z}^m$
- A function f : Q^d → Q presented by an integer minimization oracle.
 (Query: y^{*} ← arg min{f(y) : By ≤ c, y ∈ Λ})
- We assume to have access to a fiber oracle.

Given a $y \in \mathbb{Z}^d$ returns $x \in \{z \in \mathbb{Z}^n : Az \leq b\}$, such that Wx = y, or states that no such x exists.

Solve

$$\min\left\{f(Wx) : Ax \le b, x \in \mathbb{Z}^n\right\}$$

Given

- Matrices $A \in \mathbb{Z}^{m \times n}$ and $W \in \mathbb{Z}^{d \times n}$, a vector $b \in \mathbb{Z}^m$
- A function f : Q^d → Q presented by an integer minimization oracle.
 (Query: y^{*} ← arg min{f(y) : By ≤ c, y ∈ Λ})
- We assume to have access to a fiber oracle.

Given a $y \in \mathbb{Z}^d$ returns $x \in \{z \in \mathbb{Z}^n : Az \leq b\}$, such that Wx = y, or states that no such x exists.

Question: under which conditions on the input is this problem tractable?

• Let $A \in \mathbb{Z}^{m \times n}$, $W \in \mathbb{Z}^{d \times n}$, $b \in \mathbb{Z}^m$ and $f : \mathbb{R}^d \to \mathbb{R}$.

<□ > < @ > < E > < E > E のQ @

• Let $A \in \mathbb{Z}^{m \times n}$, $W \in \mathbb{Z}^{d \times n}$, $b \in \mathbb{Z}^m$ and $f : \mathbb{R}^d \to \mathbb{R}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We assume *d* to be fixed.

- Let $A \in \mathbb{Z}^{m \times n}$, $W \in \mathbb{Z}^{d \times n}$, $b \in \mathbb{Z}^m$ and $f : \mathbb{R}^d \to \mathbb{R}$.
- We assume d to be fixed.
- We assume W to be given in unary representation. Let $\omega = ||W||_{max}$.

- Let $A \in \mathbb{Z}^{m \times n}$, $W \in \mathbb{Z}^{d \times n}$, $b \in \mathbb{Z}^m$ and $f : \mathbb{R}^d \to \mathbb{R}$.
- We assume d to be fixed.
- We assume W to be given in unary representation. Let $\omega = ||W||_{max}$.
- Let Δ denote the maximum sub-determinant of A.

- Let $A \in \mathbb{Z}^{m \times n}$, $W \in \mathbb{Z}^{d \times n}$, $b \in \mathbb{Z}^m$ and $f : \mathbb{R}^d \to \mathbb{R}$.
- ▶ We assume *d* to be fixed.
- We assume W to be given in unary representation. Let $\omega = ||W||_{max}$.
- Let Δ denote the maximum sub-determinant of A.

Theorem. There is an algorithm that solves the non-linear optimization problem

 $\min \{ f(Wx) : Ax \le b, x \in \mathbb{Z}^n \}.$

The number of oracle calls it performs (to the optimization and fiber oracles) is polynomial in n, ω and Δ .

Understand the set

 $\mathcal{R} = \{Wx : x \in \mathbb{Z}^n, \ Ax \le b\} \subset \mathbb{Z}^d$

Understand the set

$$\mathcal{R} = \{ Wx : x \in \mathbb{Z}^n, \ Ax \le b \} \subset \mathbb{Z}^d$$

Clearly,

$$\mathcal{R} \subset Q = \{Wx : Ax \le b\} \cap \mathbb{Z}^d$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Understand the set

$$\mathcal{R} = \{Wx : x \in \mathbb{Z}^n, \ Ax \le b\} \subset \mathbb{Z}^d$$

Clearly,

$$\mathcal{R} \subset Q = \{Wx : Ax \le b\} \cap \mathbb{Z}^d$$

However, typically

 $\mathcal{R} \neq Q$

Understand the set

 $\mathcal{R} = \{ Wx : x \in \mathbb{Z}^n, \ Ax \le b \} \subset \mathbb{Z}^d$

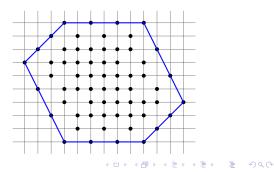
Clearly,

$$\mathcal{R} \subset Q = \{Wx : Ax \le b\} \cap \mathbb{Z}^d$$

However, typically

 $\mathcal{R} \neq Q$

 $[0,3]^3 \cap \mathbb{Z}^3$ $W = \left(\begin{array}{rrr} 1 & 2 & 1 \\ -2 & 0 & 1 \end{array}\right)$



Definition (Frobenius Number). Given integers a_1, \dots, a_n with $gcd(a_1, \dots, a_n) = 1$, the *Frobenius number* $F(a_1, \dots, a_n)$ is the largest integer k that can not be expressed as a positive integer combination of a_1, \dots, a_n .

Definition (Frobenius Number). Given integers a_1, \dots, a_n with $gcd(a_1, \dots, a_n) = 1$, the *Frobenius number* $F(a_1, \dots, a_n)$ is the largest integer k that can not be expressed as a positive integer combination of a_1, \dots, a_n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Finding $F(a_1, \dots, a_n)$ is also known as the *coin problem*.

Definition (Frobenius Number). Given integers a_1, \dots, a_n with $gcd(a_1, \dots, a_n) = 1$, the *Frobenius number* $F(a_1, \dots, a_n)$ is the largest integer k that can not be expressed as a positive integer combination of a_1, \dots, a_n .

- Finding $F(a_1, \dots, a_n)$ is also known as the *coin problem*.
- $F(a_1, a_2) = a_1 a_2 (a_1 + a_2)$ (Sylvester '1884).

Definition (Frobenius Number). Given integers a_1, \dots, a_n with $gcd(a_1, \dots, a_n) = 1$, the *Frobenius number* $F(a_1, \dots, a_n)$ is the largest integer k that can not be expressed as a positive integer combination of a_1, \dots, a_n .

- Finding $F(a_1, \dots, a_n)$ is also known as the *coin problem*.
- $F(a_1, a_2) = a_1 a_2 (a_1 + a_2)$ (Sylvester '1884).
- ▶ NP-hard to compute $F(a_1, \dots, a_n)$ (Kannan '1992).

Definition (Frobenius Number). Given integers a_1, \dots, a_n with $gcd(a_1, \dots, a_n) = 1$, the *Frobenius number* $F(a_1, \dots, a_n)$ is the largest integer k that can not be expressed as a positive integer combination of a_1, \dots, a_n .

- Finding $F(a_1, \dots, a_n)$ is also known as the *coin problem*.
- $F(a_1, a_2) = a_1 a_2 (a_1 + a_2)$ (Sylvester '1884).
- NP-hard to compute $F(a_1, \dots, a_n)$ (Kannan '1992).
- $F(a_1, \dots, a_n) \le c_n ||(a_1, \dots, a_n)||_2^2$ (e.g. Brauer '1942).

Definition (Frobenius Number). Given integers a_1, \dots, a_n with $gcd(a_1, \dots, a_n) = 1$, the *Frobenius number* $F(a_1, \dots, a_n)$ is the largest integer k that can not be expressed as a positive integer combination of a_1, \dots, a_n .

- Finding $F(a_1, \dots, a_n)$ is also known as the *coin problem*.
- $F(a_1, a_2) = a_1 a_2 (a_1 + a_2)$ (Sylvester '1884).
- NP-hard to compute $F(a_1, \dots, a_n)$ (Kannan '1992).
- $F(a_1, \dots, a_n) \le c_n ||(a_1, \dots, a_n)||_2^2$ (e.g. Brauer '1942).

Definition (Diagonal Frobenius Number). Let $W \in \mathbb{Z}^{d \times m}$ $(d \leq m)$ such that

- W has HNF Identity, and
- $C(W) = \{W\lambda : \lambda \ge 0\}$ is a pointed cone.

Let v = W1. The diagonal Frobenius number F(W) is defined as the smallest integer t such that

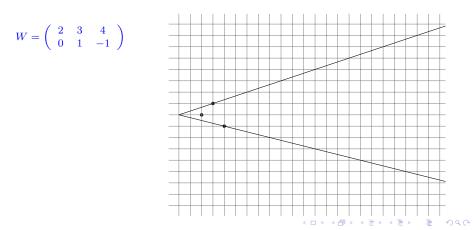
$$(tv + C(W)) \cap \mathbb{Z}^d \subset \{Wx : x \in \mathbb{Z}^m_+\}.$$

Definition (Diagonal Frobenius Number). Let $W \in \mathbb{Z}^{d \times m}$ $(d \leq m)$ such that

- ▶ W has HNF Identity, and
- $C(W) = \{W\lambda : \lambda \ge 0\}$ is a pointed cone.

Let v = W1. The diagonal Frobenius number F(W) is defined as the smallest integer t such that

 $(tv + C(W)) \cap \mathbb{Z}^d \subset \{Wx : x \in \mathbb{Z}^m_+\}.$

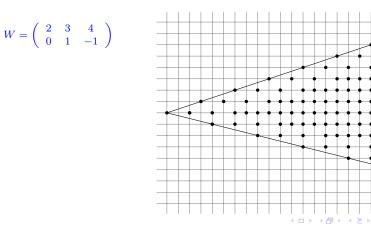


Definition (Diagonal Frobenius Number). Let $W \in \mathbb{Z}^{d \times m}$ $(d \leq m)$ such that

- ▶ W has HNF Identity, and
- $C(W) = \{W\lambda : \lambda \ge 0\}$ is a pointed cone.

Let v = W1. The diagonal Frobenius number F(W) is defined as the smallest integer t such that

 $(tv + C(W)) \cap \mathbb{Z}^d \subset \{Wx : x \in \mathbb{Z}^m_+\}.$



 $\mathcal{O} \land \mathcal{O}$

э

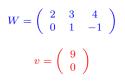
- 🔹 🗄

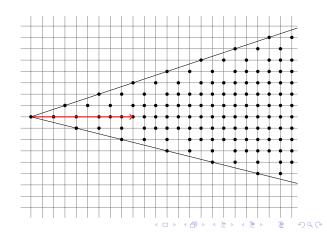
Definition (Diagonal Frobenius Number). Let $W \in \mathbb{Z}^{d \times m}$ $(d \leq m)$ such that

- ▶ W has HNF Identity, and
- $C(W) = \{W\lambda : \lambda \ge 0\}$ is a pointed cone.

Let v = W1. The diagonal Frobenius number F(W) is defined as the smallest integer t such that

 $(tv + C(W)) \cap \mathbb{Z}^d \subset \{Wx : x \in \mathbb{Z}^m_+\}.$



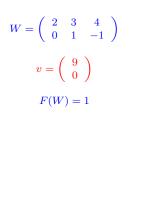


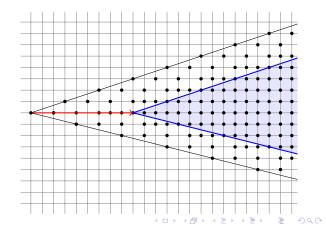
Definition (Diagonal Frobenius Number). Let $W \in \mathbb{Z}^{d \times m}$ $(d \leq m)$ such that

- ▶ W has HNF Identity, and
- $C(W) = \{W\lambda : \lambda \ge 0\}$ is a pointed cone.

Let v = W1. The diagonal Frobenius number F(W) is defined as the smallest integer t such that

 $(tv + C(W)) \cap \mathbb{Z}^d \subset \{Wx : x \in \mathbb{Z}^m_+\}.$





Definition (Diagonal Frobenius Number). Let $M \in \mathbb{Z}^{d \times m}$ $(d \leq m)$ such that

- ▶ W has HNF Identity, and
- $C(W) = \{W\lambda : \lambda \ge 0\}$ is a pointed cone.

Let v = W1. The diagonal Frobenius number F(W) is defined as the smallest integer t such that

 $(tv + C(W)) \cap \mathbb{Z}^d \subset \{Wx : x \in \mathbb{Z}^m_+\}.$

Theorem (Aliev, Henk 2010).

$$F(W) \le \frac{(m-d)\sqrt{m}}{2}\sqrt{\det(WW^T)}$$

Definition (Diagonal Frobenius Number). Let $M \in \mathbb{Z}^{d \times m}$ $(d \leq m)$ such that

- ▶ W has HNF Identity, and
- $C(W) = \{W\lambda : \lambda \ge 0\}$ is a pointed cone.

Let v = W1. The diagonal Frobenius number F(W) is defined as the smallest integer t such that

 $(tv + C(W)) \cap \mathbb{Z}^d \subset \{Wx : x \in \mathbb{Z}^m_+\}.$

Theorem (Aliev, Henk 2010).

$$F(W) \leq \frac{(m-d)\sqrt{m}}{2}\sqrt{\det(WW^T)}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

▶ For fixed *d*, the bound is polynomial in the unary encoding of *W*.

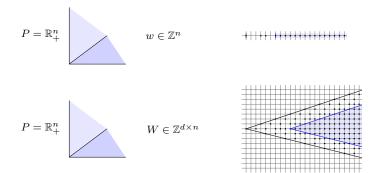
 $\{Wx : x \in P \cap \mathbb{Z}^n\}$ vs. $\{Wx : x \in P\} \cap \mathbb{Z}^d$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

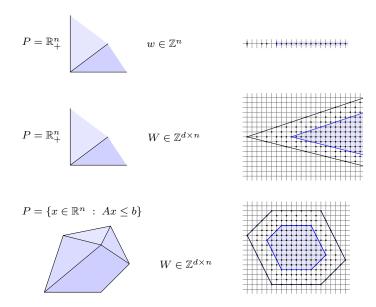
 $\{Wx : x \in P \cap \mathbb{Z}^n\}$ vs. $\{Wx : x \in P\} \cap \mathbb{Z}^d$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\{Wx \ : \ x \in P \cap \mathbb{Z}^n\}$ vs. $\{Wx \ : \ x \in P\} \cap \mathbb{Z}^d$



 $\{Wx : x \in P \cap \mathbb{Z}^n\}$ vs. $\{Wx : x \in P\} \cap \mathbb{Z}^d$



Definition (δ -regular set). We call a set $S \subset \mathbb{Z}^d$ δ -regular, with respect to a region $B \subset \mathbb{R}^d$, if there exists a family of full-dimensional affine sub-lattices $\Lambda_1, \dots, \Lambda_k$ of \mathbb{Z}^d with determinants $\det(\Lambda_i) \leq \delta$ such that

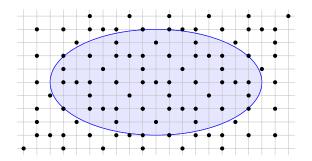
$$\mathcal{S} \cap B = \bigcup_i \Lambda_i \cap B.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition (δ -regular set). We call a set $S \subset \mathbb{Z}^d$ δ -regular, with respect to a region $B \subset \mathbb{R}^d$, if there exists a family of full-dimensional affine sub-lattices $\Lambda_1, \cdots, \Lambda_k$ of \mathbb{Z}^d with determinants $\det(\Lambda_i) \leq \delta$ such that

$$\mathcal{S} \cap B = \bigcup_i \Lambda_i \cap B$$

Example.

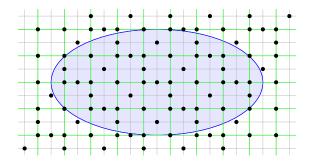


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

Definition (δ -regular set). We call a set $S \subset \mathbb{Z}^d$ δ -regular, with respect to a region $B \subset \mathbb{R}^d$, if there exists a family of full-dimensional affine sub-lattices $\Lambda_1, \cdots, \Lambda_k$ of \mathbb{Z}^d with determinants $\det(\Lambda_i) \leq \delta$ such that

$$\mathcal{S} \cap B = \bigcup_i \Lambda_i \cap B$$

Example.

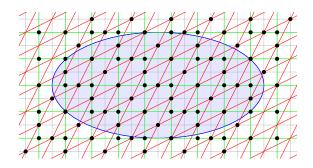


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition (δ -regular set). We call a set $S \subset \mathbb{Z}^d$ δ -regular, with respect to a region $B \subset \mathbb{R}^d$, if there exists a family of full-dimensional affine sub-lattices $\Lambda_1, \cdots, \Lambda_k$ of \mathbb{Z}^d with determinants $\det(\Lambda_i) \leq \delta$ such that

$$\mathcal{S} \cap B = \bigcup_i \Lambda_i \cap B.$$

Example.



• Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$.

- Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$.
- Let Δ denote the maximum absolute sub-determinant of A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$.
- Let Δ denote the maximum absolute sub-determinant of A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

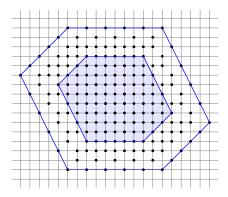
• Let Q = WP and let $\mathcal{R} = W(P \cap \mathbb{Z}^n)$ with $W \in \mathbb{Z}^{d \times n}$.

- Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$.
- Let Δ denote the maximum absolute sub-determinant of A.
- Let Q = WP and let $\mathcal{R} = W(P \cap \mathbb{Z}^n)$ with $W \in \mathbb{Z}^{d \times n}$.
- Define $Q_{\gamma} := \{x \in \mathbb{R}^d : x + B_{\gamma} \subset Q\}.$

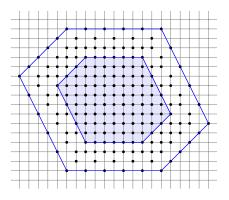
- Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$.
- Let Δ denote the maximum absolute sub-determinant of A.
- Let Q = WP and let $\mathcal{R} = W(P \cap \mathbb{Z}^n)$ with $W \in \mathbb{Z}^{d \times n}$.
- Define $Q_{\gamma} := \{x \in \mathbb{R}^d : x + B_{\gamma} \subset Q\}.$

Theorem. The set \mathcal{R} is δ -regular with respect to the polyhedron Q_{γ} , where γ and δ are bounded polynomially in Δ , $||W||_{max}$ and n.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - ∽�?

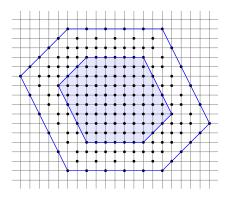


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

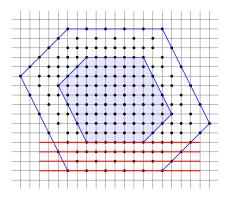


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► For all affine lattices $\Lambda \subset \mathbb{Z}^d$ with $\det(\Lambda) \leq \delta$, solve $\min\{f(y) : y \in Q_{\gamma} \cap \Lambda\} \Rightarrow y_{\Lambda}$.

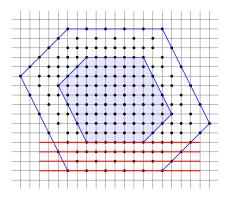


- ► For all affine lattices $\Lambda \subset \mathbb{Z}^d$ with $\det(\Lambda) \leq \delta$, solve $\min\{f(y) : y \in Q_{\gamma} \cap \Lambda\} \Rightarrow y_{\Lambda}$.
- Obtain $x^* = \operatorname{argmin} \{ f(Wx) : x \in P \cap \mathbb{Z}^n \text{ such that } Wx = y_\Lambda \text{ for some } \Lambda \}.$



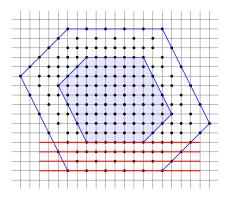
- ► For all affine lattices $\Lambda \subset \mathbb{Z}^d$ with $\det(\Lambda) \leq \delta$, solve $\min\{f(y) : y \in Q_{\gamma} \cap \Lambda\} \Rightarrow y_{\Lambda}$.
- Obtain $x^* = \operatorname{argmin} \{ f(Wx) : x \in P \cap \mathbb{Z}^n \text{ such that } Wx = y_{\Lambda} \text{ for some } \Lambda \}.$

 \blacktriangleright For each affine subspace L_{i} sufficiently close to boundary

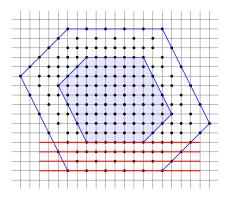


- ► For all affine lattices $\Lambda \subset \mathbb{Z}^d$ with $\det(\Lambda) \leq \delta$, solve $\min\{f(y) : y \in Q_{\gamma} \cap \Lambda\} \Rightarrow y_{\Lambda}$.
- Obtain $x^* = \operatorname{argmin} \{ f(Wx) : x \in P \cap \mathbb{Z}^n \text{ such that } Wx = y_{\Lambda} \text{ for some } \Lambda \}.$

- ▶ For each affine subspace *L*, sufficiently close to boundary
 - Recursively find a solution to $\min\{f(Wx) : x \in W^{-1}L \cap P\} \Rightarrow x'$.



- ► For all affine lattices $\Lambda \subset \mathbb{Z}^d$ with $\det(\Lambda) \leq \delta$, solve $\min\{f(y) : y \in Q_{\gamma} \cap \Lambda\} \Rightarrow y_{\Lambda}$.
- Obtain $x^* = \operatorname{argmin} \{ f(Wx) : x \in P \cap \mathbb{Z}^n \text{ such that } Wx = y_\Lambda \text{ for some } \Lambda \}.$
- ▶ For each affine subspace *L*, sufficiently close to boundary
 - Recursively find a solution to $\min\{f(Wx) : x \in W^{-1}L \cap P\} \Rightarrow x'$.
 - Replace x^* with x' if its objective value is smaller.



- ► For all affine lattices $\Lambda \subset \mathbb{Z}^d$ with $\det(\Lambda) \leq \delta$, solve $\min\{f(y) : y \in Q_{\gamma} \cap \Lambda\} \Rightarrow y_{\Lambda}$.
- Obtain $x^* = \operatorname{argmin} \{ f(Wx) : x \in P \cap \mathbb{Z}^n \text{ such that } Wx = y_\Lambda \text{ for some } \Lambda \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- ▶ For each affine subspace *L*, sufficiently close to boundary
 - Recursively find a solution to $\min\{f(Wx) : x \in W^{-1}L \cap P\} \Rightarrow x'$.
 - Replace x^* with x' if its objective value is smaller.
- Return x^{*}.

<ロ> <@> < E> < E> E のQの

 \blacktriangleright Can we improve our polynomial bounds γ and δ

<□ > < @ > < E > < E > E のQ @

- Can we improve our polynomial bounds γ and δ
- ▶ Is it possible to realise the fiber oracle, whenever the maximum sub-determinant of *A* is bounded.

- Can we improve our polynomial bounds γ and δ
- ▶ Is it possible to realise the fiber oracle, whenever the maximum sub-determinant of *A* is bounded.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\blacktriangleright \{Wx : x \in P \cap \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}\}$

- Can we improve our polynomial bounds γ and δ
- ▶ Is it possible to realise the fiber oracle, whenever the maximum sub-determinant of *A* is bounded.
- $\blacktriangleright \{Wx : x \in P \cap \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}\}$

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ