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The Problem

Solve

min {f(Wx) : Ax  b, x 2 Zn}
Given

I Matrices A 2 Zm⇥n and W 2 Zd⇥n, a vector b 2 Zm

I A function f : Qd ! Q presented by an integer minimization oracle.

(Query: y

⇤  argmin{f(y) : By  c, y 2 ⇤})

I We assume to have access to a fiber oracle.

Given a y 2 Zd returns x 2 {z 2 Zn : Az  b},
such that Wx = y, or states that no such x exists.

Question: under which conditions on the input is this problem
tractable?
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• Separable-convex integer programming (Hochbaum, Shanthikumar ’1990)
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Our Main Result (from a optimization point of view)

I Let A 2 Zm⇥n, W 2 Zd⇥n, b 2 Zm and f : Rd ! R.
I We assume d to be fixed.

I We assume W to be given in unary representation.
Let != kWk

max

.

I Let � denote the maximum sub-determinant of A.

Theorem. There is an algorithm that solves the non-linear optimization problem

min {f(Wx) : Ax  b, x 2 Zn}.

The number of oracle calls it performs (to the optimization and fiber oracles) is
polynomial in n, ! and �.



Our Main Result (from a optimization point of view)

I Let A 2 Zm⇥n, W 2 Zd⇥n, b 2 Zm and f : Rd ! R.

I We assume d to be fixed.

I We assume W to be given in unary representation.
Let != kWk

max

.

I Let � denote the maximum sub-determinant of A.

Theorem. There is an algorithm that solves the non-linear optimization problem

min {f(Wx) : Ax  b, x 2 Zn}.

The number of oracle calls it performs (to the optimization and fiber oracles) is
polynomial in n, ! and �.



Our Main Result (from a optimization point of view)

I Let A 2 Zm⇥n, W 2 Zd⇥n, b 2 Zm and f : Rd ! R.
I We assume d to be fixed.

I We assume W to be given in unary representation.
Let != kWk

max

.

I Let � denote the maximum sub-determinant of A.

Theorem. There is an algorithm that solves the non-linear optimization problem

min {f(Wx) : Ax  b, x 2 Zn}.

The number of oracle calls it performs (to the optimization and fiber oracles) is
polynomial in n, ! and �.



Our Main Result (from a optimization point of view)

I Let A 2 Zm⇥n, W 2 Zd⇥n, b 2 Zm and f : Rd ! R.
I We assume d to be fixed.

I We assume W to be given in unary representation.
Let != kWk

max

.

I Let � denote the maximum sub-determinant of A.

Theorem. There is an algorithm that solves the non-linear optimization problem

min {f(Wx) : Ax  b, x 2 Zn}.

The number of oracle calls it performs (to the optimization and fiber oracles) is
polynomial in n, ! and �.



Our Main Result (from a optimization point of view)

I Let A 2 Zm⇥n, W 2 Zd⇥n, b 2 Zm and f : Rd ! R.
I We assume d to be fixed.

I We assume W to be given in unary representation.
Let != kWk

max

.

I Let � denote the maximum sub-determinant of A.

Theorem. There is an algorithm that solves the non-linear optimization problem

min {f(Wx) : Ax  b, x 2 Zn}.

The number of oracle calls it performs (to the optimization and fiber oracles) is
polynomial in n, ! and �.



Our Main Result (from a optimization point of view)

I Let A 2 Zm⇥n, W 2 Zd⇥n, b 2 Zm and f : Rd ! R.
I We assume d to be fixed.

I We assume W to be given in unary representation.
Let != kWk

max

.

I Let � denote the maximum sub-determinant of A.

Theorem. There is an algorithm that solves the non-linear optimization problem

min {f(Wx) : Ax  b, x 2 Zn}.

The number of oracle calls it performs (to the optimization and fiber oracles) is
polynomial in n, ! and �.



Our Approach

Understand the set
R = {Wx : x 2 Zn

, Ax  b} ⇢ Zd

Clearly,

R ⇢ Q = {Wx : Ax  b} \ Zd

However, typically

R 6= Q

[0, 3]3 \ Z3

W =

✓
1 2 1
�2 0 1

◆
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The Main Tool - (Diagonal) Frobenius Number

Definition (Frobenius Number). Given integers a1, · · · , an with gcd(a1, · · · , an) = 1,
the Frobenius number F (a1, · · · , an) is the largest integer k that can not be
expressed as a positive integer combination of a1, · · · , an.

I Finding F (a1, · · · , an) is also known as the coin problem.

I
F (a1, a2) = a1a2 � (a1 + a2) (Sylvester ’1884).

I NP-hard to compute F (a1, · · · , an) (Kannan ’1992).

I
F (a1, · · · , an)  c

n

k(a1, · · · , an)k22 (e.g. Brauer ’1942).

Definition (Diagonal Frobenius Number). Let W 2 Zd⇥m (d  m) such that

I
W has HNF Identity, and

I
C(W ) = {W� : � � 0} is a pointed cone.

Let v = W1. The diagonal Frobenius number F (W ) is defined as the smallest integer
t such that

(tv + C(W )) \ Zd ⇢ {Wx : x 2 Zm

+ }.
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The Main Tool - (Diagonal) Frobenius Number

Definition (Diagonal Frobenius Number). Let M 2 Zd⇥m (d  m) such that

I
W has HNF Identity, and

I
C(W ) = {W� : � � 0} is a pointed cone.

Let v = W1. The diagonal Frobenius number F (W ) is defined as the smallest integer
t such that

(tv + C(W )) \ Zd ⇢ {Wx : x 2 Zm

+ }.

Theorem (Aliev, Henk 2010).

F (W ) 
(m� d)

p
m

2

q
det(WW

T ).

I For fixed d, the bound is polynomial in the unary encoding of W .
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�-Regular Sets

Definition (�-regular set). We call a set S ⇢ Zd

�-regular, with respect to a region
B ⇢ Rd, if there exists a family of full-dimensional a�ne sub-lattices ⇤1, · · · ,⇤

k

of
Zd with determinants det(⇤

i

) � such that

S \B =
[

i

⇤
i

\B.

Example.



�-Regular Sets

Definition (�-regular set). We call a set S ⇢ Zd

�-regular, with respect to a region
B ⇢ Rd, if there exists a family of full-dimensional a�ne sub-lattices ⇤1, · · · ,⇤

k

of
Zd with determinants det(⇤

i

) � such that

S \B =
[

i

⇤
i

\B.

Example.



�-Regular Sets

Definition (�-regular set). We call a set S ⇢ Zd

�-regular, with respect to a region
B ⇢ Rd, if there exists a family of full-dimensional a�ne sub-lattices ⇤1, · · · ,⇤

k

of
Zd with determinants det(⇤

i

) � such that

S \B =
[

i

⇤
i

\B.

Example.



�-Regular Sets

Definition (�-regular set). We call a set S ⇢ Zd

�-regular, with respect to a region
B ⇢ Rd, if there exists a family of full-dimensional a�ne sub-lattices ⇤1, · · · ,⇤

k

of
Zd with determinants det(⇤

i

) � such that

S \B =
[

i

⇤
i

\B.

Example.



Main Result (from a geometric point of view)

I Let P = {x 2 Rn : Ax  b}, with A 2 Zm⇥n and b 2 Zm.

I Let � denote the maximum absolute sub-determinant of A.

I Let Q = WP and let R = W (P \ Zn) with W 2 Zd⇥n.

I Define Q

�

:= {x 2 Rd : x+B

�

⇢ Q}.

Q

�

Theorem. The set R is �-regular with respect to the polyhedron Q

�

, where � and �

are bounded polynomially in �, kWk
max

and n.
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The Algorithm

I For all a�ne lattices ⇤ ⇢ Zd with det(⇤)  �,
solve min{f(y) : y 2 Q

�

\ ⇤} ) y⇤.

I Obtain x

⇤ = argmin{f(Wx) : x 2 P \ Zn such that Wx = y⇤ for some ⇤}.
I For each a�ne subspace L, su�ciently close to boundary

I Recursively find a solution to min{f(Wx) : x 2 W

�1
L \ P} ) x

0.
I Replace x

⇤ with x

0 if its objective value is smaller.

I Return x
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