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— Scheduling under Uncertainty
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— Scheduling under Uncertainty

How can we consider the presence
of uncertainty preventively?

¥

Possible “preventive” scheduling approaches

Stochastic Programming: Use stochastic information to
solve for the expected value (only if available)

Robust optimization: Robustify against worst-case
uncertainty realization

Multiparametric programming: Solve the optimization
problem for the whole state and parameter space
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— Hybrid Control

Hybrid Control: Control a system consisting of
continuous and discrete variables

Example
| ] System 1
4 Product
System 2
Online Hybrid Control -@ MILP / MIQP

Computational Effort!
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— General Problem Formulation

= All of these problems eventually result in a MILP or
MIQP of the general form

4
z (0) = min (QTw + c) W
s.t. Aw < b
we N =R"x{0,1}"

= |f Q does not contain diagonal elements, then itis a
MILP. If it does, then it is a MIQP.
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— Problem Formulation

= When uncertainty is considered in these problems,
we obtain mp-MILP or mp-MIQP problems of the
general form

2 (0) = min (@T(:J /PTé\’—k c) ' W

S.t.

W E Q ]R”g({() 1}m
fcO={0cRI|gn <G <= [=1,...4q}

* The main challenges are
How to treat the (possible) non-convexities
How to handle the binary/integer variables
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— Solution characterization

= Consider the general mp-QP
z(0) = min (Qurx+ HO+¢)' «
s.t. Ax < b+ F0

xr eR"
feO={0cRIG" < <M =1,..,q}

= Note: The term 87 HT x can be avoided using the z-
Transformation z = x + Q" 1H'@.

= |If Q > 0, then the solution to this problem is given by

X(H) — KLH + 17 if 0 € CRl
with
CR; = CR{*6 + CR}

Critical Region 3 with the solution
X(0) = K30 + 13
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— Nonconvexity

= However, when integer variables or uncertainty in the
constraint matrix is present, then the critical regions
might be described by non-affine inequalities!

> Nonconvexity
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— An Overview

(Pistikopoulos, 2012)

mp-LP
mp-QP
mp-NLP
mp-MILP

s

mp-MINLP

mp-MPC

mp-Scheduling

Robust mp-MPC

Gal and Nedoma (1972), Gal (1975), Acevedo (1996), Dua, Bozinis and
Pistikopoulos (2002)

Bemporad et al. (2002), Dua et al. (2002), Tgndel et al. (2003), Spjatvold
et al. (2006), Gupta et al. (2011), Feller and Johanson (2013)

Fiacco (1976), Bank et al. (1983), Acevedo (1996), Dua and Pistikopoulos
(1998)

Acevedo and Pistikopoulos (1997), Dua and Pistikopoulos (2000), Li and
lerapetritou (2007), Wittmann-Hohlbein and Pistikopoulos (2012),
~ Oberdieck et al. (2014), Mitsos and Barton (2009)

Dua et al. (2002), Oberdieck et al. (2014) Axehill et al (2014)

Dua and Pistikopoulos (1999), Dua et al. (2004), Dominguez and
Pistikopoulos (2013)

Bemporad et al. (2002), Sakizlis et al. (2003), Kouramas et al. (2011)

Wittmann-Hohlbein and Pistikopoulos (2013), Kopanos and Pistikopoulos
(2014)

Bemporad et al. (2003), Sakizlis et al. (2004), Faisca et al. (2008)
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— Solution framework

{ Pre-Processing

|

—{ Integer Handling

[ mp-QP solution
[ Non-convexity

~— )

Imperial College
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— Pre-Processing

{ Pre-Processing ]

1) Initialization of Algorithm

Set the constants and options needed for the execution of
the algorithm

2) Robustification of mp-MIQP problem

Select certain parameters in the problem formulation and
robustify the problem according to Wittmann-Hohlbein and
Pistikopoulos (2013)

3) Upper Bound Creation

By using global optimization, create an upper bound on the
problem (helpful if branch-and-bound is used)
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— Integer Handling

[ Integer Handling J

1) Choice of Integer Handling

The three techniques known are: (i) the decomposition

algorithm (Dua and Pistikopoulos, 2002), (ii) the branch-
and-bound algorithm (Oberdieck et al. 2014; Axehill et al.,
2014) and (iii) exhaustive enumeration.

2) Fixing the Integer Value

Given a certain integer combination y*, fix this combination

in the mp-MIQP problem and create a corresponding mp-
QP problem
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— mp-QP solution

[ mp-QP solution J

1) Handling of left-hand side uncertainty
If uncertainty is present in the constraint matrix, use the

approach devised by Wittmann-Hohlbein and Pistikopoulos
(2012)

2) Solution of mp-QP problem

The two techniques known are: (i) the geometrical
approach (Bemporad et al., 2002; Dua et al., 2002; Tgndel
et al., 2003; Spjgtvold et al., 2006), (ii) the combinatorial
approach (Gupta et al., 2011, Feller and Johanson, 2013).

3) Determination of valid solution

Given a certain mp-QP solution, classify whether this
solution is a valid solution of not. This classification
depends on the choice of the integer handling
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— Non-convexity

[ Non-convexity J

Choice of handling non-convexity

Option 1: No comparison procedure, an envelope of solutions
Is created (Dua et al., 2002; Axehill et al., 2014).

Option 2: The solution and the upper bound are compared,
and the resulting non-convexity is enclosed using affine
relaxation (Oberdieck et al., 2014).

Option 3: The solution and the upper bound are compared
and the resulting non-convexity is taken into account
explicitly, resulting in non-convex critical regions. This
approach has not been presented in the open literature

(ongoing).
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— Termination

[ Termination J

1) Determine parallelization strategy

The solution procedure can be parallelized on different
machines. The amount of communication between the

main program and the machines determines the autonomy
of these threads.

2) Termination criterion

Depending on the integer handling strategy, this criterion
varies. However, if it is fulfilled then the algorithm
terminates, if not then another iteration is performed
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— A Motivating Example

" Consider the following example problem

2(0) = min 22 + 6zx1y1 + 22 — 20z2ys + 2 + y2 — 51601 + 20y1 — 15.5%9
1 o 1 2
.y
5t r1— 3y <2465
rxo+y1+2y2 < 1+64
T+ a9 < 501 + 369

reR? >0, ye{0,1}?
hcO={ecR?|0<6<10,l=1,2}

Matrix of mp-

i 0 QP problem
—20 1 0] /

0 Qx_lo 1

O = O O

Q

|
oo o~
OO~ O

Full @w matrix
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— Pre-Processing

" |In order to obtain a good upper bound, one iteration
of the decomposition algorithm is solved:

i) = 1111% zf + 61y + 15 — 20010 + ;z,ff - ';/3 — 52161 + 20y1 — 15.5y9
T,y\g

a.t. 1 — 241 < 3+ 65
T2ty t2p < 146, Solve MINLP to
r1 + xo < 561 + 365 . .
global optimality!

reR2 >0, ye {0, 1}2
heo={cR*0<6 <10,l=1,2}

Retrieve y* = [1,1] and solve

210 (0) = min 27 + 23 — 52161 + 621 — 2022 + 6.5
s.t. 1 <5+ 6

€T S -2+ 91

r1 + xo < 561 + 365

:I:ER?, x>0
hcO={cR?*0<6 <10,1=1,2}
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4 Feasible Region Fragments

Optimal Objective Value

Infeasibility!
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— Integer Handling

* The three possible options are

Decomposition Algorithm (as shown in the Pre-Processing)

Branch-And-Bound
Exhaustive Enumeration

x1 + 19 < 501 + 309

Y2 = 0 Vo = 1
— _ : 2 2
V1 = 0 20,0 (0) = | + x5 — Sx164 201 (0) = min 27 + a3 — 521601 — 2029 — 14.5
x
s.t. I S 2 + 62 s.t. v <2+ 6
xo < 1+6; x9 < —14 6,

T + 1o < 56 + 365

Yi=1  zo@®)=min ot +ad—smbh+6m 421
s.t. x <5+ 0
ro < 0
r1 + 2o < 5601 + 3605

21,1 (f) = min r7 + 23 — 5x16) + 621 — 2022 + 6.5
S.C. r1 <5+ 6

o < —2+4 6,

1+ a9 < 5601 + 369
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— Non-convexity

= Consider the two solutions

]

11;1

4 Feasible Region Fragments

6 Feasible Region Fragments
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— Non-convexity

= Two options:

Envelope of Solutions (accumulate the solutions)

Create affine relaxation of Az = 0 (e.g. McCormick relaxation,
McCormick (1976)), and proceed accordingly

Non-convexity in solution
10
T T T

9

8
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mp-MIGQP Frameworlk — Example Solution

15 Feasible Region Fragments

Objective Function Value
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— Comments

= This framework captures all developments in the
area of mp-MIQP problems so far

= Any combination of the options inside one box
results in an alternative mp-MIQP algorithm!

= As long as there is no new way of handling integer
variables, all mp-MIQP algorithms will follow this
structure!

= Let us have a closer look at the two extreme cases:
the decomposition algorithm and the branch-and-
bound algorithm
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— Decomposition Algorithm

Set the parameters as regular
continuous optimization variables

Solve the resulting
MILP/MIQP/MINLP

Substitute the solution y* into
the initial mp-MIP, making it a mp-P

Set that new solution has to be better
than old one (parametric cuts), and that

the new integer combination was Solve the mp-P

not evaluated yet (integer cuts)

Set the parameters as regular Store the solution as a parametric
continuous optimization variables upper bound
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— Branch-And-Bound Algorithm

Relax the integer variables
y €{0,1} - y € [0,1]

Create a binary search tree

|

each node S mp-LP, ar =1
Node 0
ompare DET~SQUNC

0 48" Remove the parameter space wher ’ 0
1) Problem infeasible

2) Aninteger solution is found

The solution greater than

Va — Y

v, =1

Infea part of
parameter space

meter space t
ue until all no

ass the remai
next node, ar

Imperial College
London
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— Parallelization

The main algorithm consists
of an iterative procedure

¥

Solve the same problem
over and over!

Parallelization!

N/k problems

N Problems on -
1 thread on k threads
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— Preliminary Results Parallelization

First results indicate a reduction of computational
time of 50 — 60% when parallelized on 4 threads

Impact of Parallelization

—Exhaustive Enumeration
—Branch And Bound

0.26

Overall Time elapsed [s]

Number of Threads
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— Applications

= Scheduling under Uncertainty
" Integration of Scheduling and mp-MPC

= Robust/nominal hybrid MPC
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— Scheduling under Uncertainty (Wittmann-
Hohlbein and Pistikopoulos, 2013)

1. Classification of Uncertainty

Identify and group parameters according to their
availability at decision stage:

- Revealing: Their value is known

- Non-revealing: Value is not known

A scheduling problem
under uncertainty

reduces to the solution
of a multiparametric
MILP/MIQP

2. Approximation Stage

A) Immunize the problem against uncertainty
- in the constraint matrix A attributed to
the revealing parameters
- in all coefficients attributed to non-revealing
parameters

B) Transform the problem into its robust counterpart,
resulting in a multiparametric MILP

T
1 T T
3. Multiparametric Programming _mJ“(P H+C) w+d'o

z(0)
Solve the mp-MILP using one of the available >’ » s.t. Aw < b+ F0
weQ=R"x{0,1}"

hecO = {9 c RY |92m71n < < Hgnaw’l — 1,.-.,(]}

solvers
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— Scheduling under Uncertainty (Wittmann-
Hohlbein and Pistikopoulos, 2013)

N,
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Imperial College
London

Explicit solution of partially
robust scheduling model

7 Feasible Region Fragments
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— Integration of Scheduling and mp-MPC
(Kopanos and Pistikopoulos, 2014)

Step 0: DERIVE A STATE-SPACE SCHEDULING MODEL State-space representation for a linear discrete-time
system: A - .
Identify the inputs, the state variables, and the disturbances of the X(r4+1) =Alr)x(t) + Blr)ulr) +D(r)d (1)
system. And then, reformulate the original scheduling model to a x(t=0) =xp
state-space scheduling model.
J; y(t) =C(t)x(r)

d)
—_—

Step 1: FORMULATE A MULTIPARAMETRIC
PROGRAMMING STATE-SPACE SCHEDULING MODEL

Xo

D
u(t /L x(t+1 x(t ¥t
Use the state-space scheduling model, and consider as bounded . B : o C L
uncertain parameters the disturbances & the initial state variables.

¢ =

[SELZ SOLVE THE RESULTING MULTIPARAMETRIC } Block diagram for the state-space representation of linear

PROGRAMMING (MP) PROBLEM [OFF-LINE & ONCE] discrete-time systems.

_~

<. =m \+U’T

X ,.\

efine a prediction horizon & solve the resulting multiparametric
problem. Then, save the critical regions & the corresponding
variables functions for the whole range of uncertain parameters.

v

Step 3: REACTIVE SCHEDULING VIA A MP-BASED
ROLLING HORIZON APPROACH

subject to

mpMILP-RHS ¢ Av+ Ey <bh+FO

Define a control horizon, and use the output of Step 2 within a

xeR" ye{0. 1}
rolling horizon scheme for the iterative reactive scheduling. y€1{0.1}

0cO®:={0cRI|O"™ < <O =1

Reactive scheduling via multiparametric programming rolling horizon.
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— Integration of Scheduling and mp-MPC
(Kopanos and Pistikopoulos, 2014)

=

! time
]
U S 15,
v
[
-
' _
EI;I time
past future | 4o g,
v

past eH future

sz

time

: prediction horizon
[ : control horizon

IS, : state of the system
at the start of prediction

horizon h

FS, : state of the system
at the end of control

horizon A

Reactive scheduling via arolling horizon framework.

Note:

» The initial state of the system in the actual
prediction horizon is equal to the final
state of the system in the previous control
horizon.

» The system receives feedback (e.g.,
actual demand, updated state of system)
at every discrete time instant.

Initialization Step

Define: (i) the total scheduling horizon length (SH), (i) the control
horizen length (CH), and (iii) the initial state ofthe system.
Forthe given prediction horizon (PH), calculate the total number
of iterations (tot = (SH-PH+CH)/CH). Set iter=1.

A

Update Step

Update the uncertain parameters (e.g., energy
demands), and the current state of the system.

A 4

Calculate Solution Step

Locate the critical region in the multiparametric
programming profiles and calculate the variable
values through simple function evaluations.

193

Y

Save Solution Step

Save the values ofthe variables for the
predefined CH.

L +J8)

no

END

An algorithm for rolling horizon via multiparametric programming.
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— Hybrid Control (Rivotti and Pistikopoulos,
2014; Oberdieck and Pistikopoulos, 2014)

Two-stage approach for optimal/robust hybrid control

1) Use Dynamic Programming to
decompose the problem into
smaller subproblems

Each subproblem only solves
for the current stage k

Treat states and future control
actions as parameters

2) Solve the resulting mp-MILP/
mp-MIQP for each stage!

Xt

!

Ut —»

Stage t

Xt+l

Utsl —P

Stage t+1

Xt+2

—
lXHN-I

UtsN-1 —P

Stage t+N-1

lXHN
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— Outlook and Future Research

= |n a nutshell
A framework for the general solution of mp-MIQP problems

Applicability to a wide class of engineering problems
= Ongoing
A. Research towards the exact solution of mp-MIQP problems

B. Complete software implementation of the framework

C. Applications
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