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Motivation: Two-Stage Mixed Integer Optimization

We have the following general formulation:

z2SMILP = min
x∈P1

Ψ(x) = min
x∈P1

{
c>x + Ξ(x)

}
, (1)

where
P1 = {x ∈ X | Ax = b, x ≥ 0} (2)

is the first-stage feasible region with X = Zr1
+ × Rn1−r1

+ .
Ξ represents the impact of future uncertainty.
The canonical form employed in stochastic programming with recourse is

Ξ(x) = Eω∈Ω [φ(hω − Tωx)] , (3)

φ is the second-stage value function to be defined shortly.
Tω ∈ Qm2×n1 and hω ∈ Qm2 represent the input to the second-stage problem for
scenario ω ∈ Ω.

This is a MINLP. How do we solve it?
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The Second-Stage Value Function

The structure of the objective function Ψ depends primarily on the structure of
the value function

φ(β) = min
y∈P2(β)

q>y (RP)

where
P2(β) = {y ∈ Y | Wy = β} (4)

is the second-stage feasible region with respect to a given right-hand side β and
Y = Zr2

+ × Rn2−r2
+ .

The second-stage problem is parameterized on the unknown value β of the
right-hand side.
This value is determined jointly by the realized value of ω and the values of the
first-stage decision variables.
We assume

ω follows a uniform distribution with a finite support,
P1 is compact, and
Ew∈Ω[φ(hω − Tωx)] is finite for all x ∈ X.
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MILP Value Function (Pure)

The MILP value function is non-convex, discontinuous,and piecewise polyhedral in
general.

Example 1
φ(b) = min 3x1 +

7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = b

x1, x2, x3, x4, x5, x6 ∈ Z+
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MILP Value Function (Mixed)

Example 2
φ(b) = min 3x1 +

7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = b

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+
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Continuous and Integer Restriction of an MILP

Consider the general form of the second-stage value function

φ(β) = min q>I yI + q>C yC

s.t. WIyI + WCyC = b,

y ∈ Zr2
+ × Rn2−r2

+

(MILP)

The structure is inherited from that of the continuous restriction:

φC(β) = min q>C yC

s.t. WCyC = β,

yc ∈ Rn2−r2
+

(CR)

and the similarly defined integer restriction:

φI(β) = min q>I yI

s.t. WIyI = β

yI ∈ Zr2
+

(IR)
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Value Function of the Continuous Restriction

Example 3
φC(β) = min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = β

y1, y2, y3 ∈ R+
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Points of Strict Local Conexity

Example 4

Theorem 1 [Hassanzadeh et al., 2014]
Under the assumption that {β ∈ Rm2 | φI(β) <∞} is finite, there exists a finite set
S ⊆ Y such that

φ(β) = min
yI∈S
{q>I yI + φC(β −WIyI)}. (5)
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Representing the Value Function

In practice, the value function can be represented in primarily two different ways.
1 On the one hand, the value function is uniquely determined by its points of strict

local convexity.
Embedding the value function using this representation involves explicitly listing
these points and choosing one (binary variables).
The corresponding continuous part of the solution can be generated dynamically or
can also be represented explicitly by dual extreme points.

2 The value function can also be represented explicitly in terms of its polyhedral
pieces.

In this case, the points of strict local convexity are implicit and the selection is of the
relevant piece or pieces.
This yields a much larger representation.
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Embedding the Value Function

Algorithmically, the value function can be embedded in a number of ways.
1 If the objective functions of the inner and outer optimizations “agree,” we can

embed the inner constraints and evaluate the value function implicitly.
This amounts to solving the extensive form in the case of stochastic integer
programming.
For stochastic programs with many scenarios, this form can be too large to solve
explicitly.

2 We can generate the value function a priori and then embed the full
representation.

The full representation might be very large
It is likely that most of the representation is irrelevant to the computation.

3 We can dynamically generate “relevant” parts of the representation ala cut
generation.

It is also possible to take a hybrid approach in which we, e.g., generate the full
representation a priori, but add parts dynamically.
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Conceptual Algorithm for Generating the Value Function

Algorithm

Initialize: Let z̄(b) =∞ for all b ∈ B, Γ0 =∞, x0
I = 0, S0 = {x0

I }, and k = 0.
while Γk > 0 do:

Let z̄(b) = min{z̄, z̄(b; xk
I )} for all b ∈ B.

k← k + 1.
Solve

Γk = max z̄(b)− c>I xI

s.t. AIxI = b

xI ∈ Zr
+.

(SP)

to obtain xk
I .

Set Sk ← Sk−1 ∪ {xk}
end while
return z(b) = z̄(b) for all b ∈ B.
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Conceptual Algorithm for Generating the Value Function
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Figure : Upper bounding functions obtained at right-hand sides bi, i = 1, . . . , 5.

Ralphs, et al. (COR@L Lab) Piecewise Polyhedral Functions



Formulating (SP)

Surprisingly, the “cut generation” problem (SP) can be formulated easily as an
MINLP.

Γk = max θ

s.t. θ + c>I xI ≤ c>I xi
I + (AIxI − AIxi

I)
>ν i i = 1, . . . , k − 1

A>C ν
i ≤ cC i = 1, . . . , k − 1

ν i ∈ Rm i = 1, . . . , k − 1
xI ∈ Zr

+.

(6)
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Computational Results

Figure : Normalized approximation gap vs. iteration number.
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Generating the Value Function by Branch and Bound

Our first algorithm was based on refining a single upper approximation
(essentially a restriction of the full value function).
It is also possible to construct the value function by lower approximation using
branch and bound.
Any branch-and-bound tree yields a lower approximation of the value function.
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Dual Functions from Branch-and-Bound [Wolsey, 1981]

Let T be set of the terminating nodes of the tree. Then in a terminating node t ∈ T we
solve:

min c>x

s.t. Ax = b,

lt ≤ x ≤ ut, x ≥ 0

(7)

The dual at node t:

max {πtb + πtlt + π̄tut}
s.t. πtA + πt + π̄t ≤ c>

π ≥ 0, π̄ ≤ 0

(8)

We obtain the following strong dual function:

min
t∈T
{πtb + πtlt + π̄tut} (9)
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Iterative Refinement

The tree obtained from evaluating φ(b) yields a dual function strong at b.
By solving for other right-hand sides, we obtain additional dual functions that
can be aggregated.
These additional solves can be done within the same tree, eventually yielding a
single tree representing the entire function.

Node 0

Node 2Node 1

x2 = 0 x2 ≥ 1

Node 0

Node 2

Node 4Node 3

x2 = 1 x2 ≥ 2

Node 1

x2 = 0 x2 ≥ 1
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Tree Representation of the Value Function

Continuing the process, we eventually generate the entire value function.
Consider the strengthened dual

φ∗(β) = min
t∈T

q>It
yt

It
+ φN\It (β −WIt y

t
It
), (10)

It is the set of indices of fixed variables, yt
It

are the values of the corresponding
variables in node t.
φN\It is the value function of the linear program including only the unfixed
variables.

Theorem 2 Under the assumption that {β ∈ Rm2 | φI(β) <∞} is finite, there
exists a branch-and-bound tree with respect to which φ∗ = φ.
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Example of Value Function Tree

Node 0

Node 8

Node 10

Node 12

Node 14

Node 16

Node 18
β + 30

Node 17
max{β + 25,−2β − 5}

y3 = 5 y3 ≥ 6

Node 15
max{β + 20,−2β − 4}

y3 = 4 y3 ≥ 5

Node 13
max{β + 15,−2β − 3}

y3 = 3 y3 ≥ 4

Node 11
max{β + 10, g9 = −2β − 2}

y3 = 2 y3 ≥ 3

Node 9
max{β + 5, g7 = −2β − 1}

y3 = 1 y3 ≥ 2

Node 1

Node 3

Node 5

Node 7
−2β + 42

Node 6
max{2β + 28, β − 2}

y2 = 2 y2 ≥ 3

Node 4
max{−2β + 14, β − 1}

y2 = 1 y2 ≥ 2

Node 2
max{−2β, β}

y2 = 0 y2 ≥ 1

y3 = 0 y3 ≥ 1
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Correspondence of Nodes and Local Stability Regions
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Back to Stochastic Programming: Lit Review

First Stage Second Stage Stochasticity
R Z B R Z B W T h q

[Laporte and Louveaux, 1993] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Carøe and Tind, 1997] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Carøe and Tind, 1998] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Carøe and Schultz, 1998] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Schultz et al., 1998] ∗ ∗ ∗ ∗
[Sherali and Fraticelli, 2002] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Ahmed et al., 2004] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Sen and Higle, 2005] ∗ ∗ ∗ ∗ ∗
[Sen and Sherali, 2006] ∗ ∗ ∗ ∗ ∗ ∗
[Sherali and Zhu, 2006] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Kong et al., 2006] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Sherali and Smith, 2009] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Yuan and Sen, 2009] ∗ ∗ ∗ ∗ ∗ ∗
[Ntaimo, 2010] ∗ ∗ ∗ ∗ ∗
[Gade et al., 2012] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Trapp et al., 2013] ∗ ∗ ∗ ∗ ∗
Current work ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Benders Master Variables

Notation:
s, r ∈ {1, . . . , S} where S is the number of scenarios
p ∈ {1, . . . , k} where k is the iteration number
n ∈ {1, . . . ,N(p, r)} where N(p, r) is the number of terminating nodes in the
B&B tree solved for scenario r at iteration p.
θs = F(h(s)− β)

tspr = Fp
r (h(s)− β) the approximation of scenario s’s recourse obtained from the

optimal dual function of iteration p and scenario r.
νprn, aprn respectively, the dual vector and intercept obtained from node n of the
B&B tree solved for scenario r in iteration p.
ps probability of scenario s

M > 0 an appropriate large number
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Benders Master Formulation

f k = min c>x +

S∑
s=1

psθs

s.t. θs ≥ tspr ∀s, p, r
tspr ≤ aprn + ν>prn(h(s)− T(s)x) ∀s, r, p, n
tspr ≥ aprn + ν>prn(h(s)− T(s)x)−Musprn ∀s, p, r, n

N∑
n=1

usprn = N(p, r)− 1 ∀s, p, r

x ∈ X, usprn ∈ B ∀s, p, r, n

(master)

Ralphs, et al. (COR@L Lab) Piecewise Polyhedral Functions



Example

Consider

min f (x) = min − 3x1 − 4x2 +

2∑
s=1

0.5Q(x, s)

s.t. x1 + x2 ≤ 5
x ∈ Z+

(11)

where

Q(x, s) = min 3y1 +
7
2

y2 + 3y3 + 6y4 + 7y5

s.t. 6y1 + 5y2 − 4y3 + 2y4 − 7y5 = h(s)− 2x1 −
1
2

x2

y1, y2, y3 ∈ Z+, y4, y5 ∈ R+

(12)

with h(s) ∈ {−4, 10}.
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Example
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Solving the Master Problem

A fundamental question is how to solver the master problem efficiently.
It is a large integer program with many constraints, most of which will be
redundant.
It seems clear that we need to dynamically manage the LP relaxations.
There are several options

1 Put constraints in to a cut pool and add them only as they are violated.
2 Add all constraints in the beginning, but aggressively remove slack ones.

Our attempts have so far failed.
Not having the full formulation makes branching less effective.
We are currently investigating.
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The Stochastic Server Location Problem sslp5-25 from the SIPLIB library has the
following statistics. The second column indicates the number of variables in each
second-stage problem. For each test problem, we denote the number of scenarios in
parenthesis.

Problem 1st Stage 2nd Stage
All Vars Int Vars Const All Vars Int Vars Const

sslp5-25 5 5 1 135 130 30

In all of the experiments preprocessing and heuristics are turned off. In the following
tables, we use the following abbreviations
TLP: Average time spent in solving LPs (s) in all iterations
No. LPs: Average number of calls to LP solver in all iterations
No. Cuts: Average number of added cuts to LPs in all iterations
DT: Average depth of trees solved in all iterations
ST: Average size of trees solved in all iterations
and
DC: Dynamic cut generation SC: Static cut generation
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TLP No. LPs No. Cuts ST DT
DC SC DC SC DC SC DC SC DC SC

iteration 1 0.008 0.004 2 1 10 0 1 1 0 0
iteration 2 0.024 0.016 10 5 21 3 7 3 3 1
iteration 3 0.168 0.06 49 21 45 6 19 15 5 4
iteration 4 0.25 0.15 58 38 95 54 33 21 6 5
iteration 5 0.6 0.22 128 43 235 75 61 33 13 7
iteration 6 0.72 0.3 147 41 177 101 63 31 13 6
iteration 7 0.8 0.38 118 40 255 110 61 27 11 6
iteration 8 1.38 0.47 186 53 347 145 119 29 16 5
iteration 9 0.86 0.94 114 75 313 192 71 23 15 10
iteration 10 0.94 0.96 118 71 331 127 63 51 13 9
iteration 11 1.48 1.57 164 125 451 338 75 43 12 10
iteration 12 2.61 1.35 2.77 102 551 233 137 69 15 9
iteration 13 3.82 1.60 376 109 663 240 191 51 14 10
iteration 14 4.37 2.09 435 134 748 477 203 59 14 10
iteration 15 3.94 2.15 393 115 703 315 139 61 14 10
iteration 16 6.98 2.7 571 136 918 639 255 81 16 10
iteration 17 14.42 2.73 1161 151 2289 377 447 79 17 3

Average 2.55 1.04 237.22 74.11 479.52 201.88 114.41 39.82 11.58 6.76

Table : sslp5-25(10)

Total running time is 22.2 seconds with the cuts vs 54.0 seconds with dynamic cuts.
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TLP No. LPs No. Cuts ST DT
DC SC DC SC DC SC DC SC DC SC

sslp-5-25 (10) 2.55 1.04 237.22 74.11 479.52 201.88 114.41 39.82 11.58 6.76
sslp-5-25(15) 676.11 119.94 24.94 15.35 2557.58 370 977.47 153.11 32.38 3.50
sslp5-25(25) 94.17 9.96 44.23 22.23 2367.35 220.76 2554.82 265.23 6792.47 717.76

Table : Comparison of average statistics

DC SC
sslp-5-25 (10) 54 22.2
sslp-5-25(15) 622 81
sslp5-25(25) 1885 204

Table : Comparison of running times (seconds)

TLP No. LPs No. Cuts ST DT Running Time (s)
sslp-5-25 (50) 18.65 582.17 530.05 218.29 26.47 402
sslp-5-25(80) 29.21 783.52 538 198.64 33.17 630
sslp5-25(100) 99.25 1553 782 337 44 936

Table : Average of statistics for larger instances with static cut generation
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Conclusions

We have developed an algorithm for the two-stage problem with general mixed integer
variables in both stages.
The algorithm uses the Benders’ framework with B&B dual functions as the optimality
cuts.
Such cuts have computationally desirable properties such as warm-starting.
We need to keep the size of approximations small. This can be done through
warm-starting trees and scenario bunching.
There are still many questions to be answered about how to make all of this as efficient as
possible.
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Future Work

We have implemented the algorithm using SYMPHONY as our mixed-integer
linear optimization solver.
Warm-starting a B&B tree is possible in the solver.
We can create an a priori cut pool.
We so far have a fairly “naive” implementation and anticipate much
improvement is possible.
There is still much more to be learned about how to manage these piecewise
polyhedral functions effectively.
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