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Motivation: Two-Stage Mixed Integer Optimization

@ We have the following general formulation:

Losve — ‘nelgll v (’C) = 32},,511 {CTX + E(’C)} ) (D
where
Pr={xeX|Ax=b,x >0} (2)

is the first-stage feasible region with X = 7 »x R,
@ = represents the impact of future uncertainty.
@ The canonical form employed in stochastic programming with recourse is

(X) - Ewe&l [C)U%J - Tw/‘)} ) (3)

(1]

@ ¢ is the second-stage value function to be defined shortly.
e 7, € Q™ and h, € Q™ represent the input to the second-stage problem for

scenario w € ().

This is a MINLP. How do we solve it?
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The Second-Stage Value Function

@ The structure of the objective function WV depends primarily on the structure of
the value function
(RP)

5(B) = min gy
o(8) [ Jnin_ g

where
P(B)={yey|W=2 ©)
is the second-stage feasible region with respect to a given right-hand side /5 and
Y=7"7 xR?™"
= At +
@ The second-stage problem is parameterized on the unknown value /3 of the

right-hand side.
@ This value is determined jointly by the realized value of w and the values of the
first-stage decision variables.

@ We assume
e w follows a uniform distribution with a finite support,

e P is compact, and
o Eycalp(h, — Tux)] is finite for all x € X.
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MILP Value Function (Pure

The MILP value function is non-convex, discontinuous,and piecewise polyhedral in
general.
Example 1
5
¢(b) = min 3x; + Ew\'z + 3x3 + 6x4 + 7x5 + S5x6
S.5.6x1 +5xp —dxs +2x4 — Txs +x6 = b

X1,X2,X3,X4,X5,X6 € Lt
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MILP Value Function (Mixed)

Example 2
7
¢(b) = min 3x; + 70 + 3x3 + 6x4 + Txs + 5x6
S.1. 6x1 + 5x0 —4x3 +2x4 — Txs +x6 = b

X1,X2,X3 € gy X4,X5,%6 € R
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Continuous and Integer Restriction of an MILP

Consider the general form of the second-stage value function
¢(8) =ming; yr + gt ye
S.t. W/)’/ + W(fyc = b, (MILP)
yeZ} xRP™"

The structure is inherited from that of the continuous restriction:

#c(B) =minglyc
s.t. Weye = B, (CR)
yo € R

and the similarly defined integer restriction:

¢1(3) = min CI1T}'1
s.t. Wiy = [ (IR)
yr € Zfﬁ
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Value Function of the Continuous Restriction

Example 3
oc(B) = min 6y + Tys + Sy3

SL2y =Ty +y3=0
Yi,y2,¥3 € Ry

00
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Points of Strict Local Conexity

Example 4

b

-9 -8 -7 -6 -5 -4 -3 -2 1 12 3 4 5 6 7 8 9
x,=[001] %,=[000]  x=[010] x,=[100]

Theorem 1 [Hassanzadeh et al., 2014]
Under the assumption that {J € R™ | ¢;() < oo} is finite, there exists a finite set

S C Y such that

6(8) = min{g/ yr + éc (5~ Wiyn)}. 5)
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Representing the Value Function

In practice, the value function can be represented in primarily two different ways.

@ On the one hand, the value function is uniquely determined by its points of strict
local convexity.
o Embedding the value function using this representation involves explicitly listing
these points and choosing one (binary variables).
e The corresponding continuous part of the solution can be generated dynamically or
can also be represented explicitly by dual extreme points.
@ The value function can also be represented explicitly in terms of its polyhedral
pieces.
o In this case, the points of strict local convexity are implicit and the selection is of the
relevant piece or pieces.
o This yields a much larger representation.

Ralphs, et al. (COR@L Lab) Piecewise Polyhedral Functions



Embedding the Value Function

Algorithmically, the value function can be embedded in a number of ways.
@ If the objective functions of the inner and outer optimizations “agree,” we can
embed the inner constraints and evaluate the value function implicitly.
e This amounts to solving the extensive form in the case of stochastic integer
programming.
e For stochastic programs with many scenarios, this form can be too large to solve
explicitly.
@ We can generate the value function a priori and then embed the full
representation.
o The full representation might be very large
o Itis likely that most of the representation is irrelevant to the computation.
© We can dynamically generate “relevant” parts of the representation ala cut
generation.

It is also possible to take a hybrid approach in which we, e.g., generate the full
representation a priori, but add parts dynamically.
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Conceptual Algorithm for Generating the Value Function

Algorithm

Initialize: Let 7(b) = oo forall b € B, T = 00, ¥ = 0, 8° = {1}, and k = 0.
while I'* > 0 do:
e Letz(b) = min{z,z(b;x¥)} for all b € B.
@ k+k+1.
@ Solve
I'* = max z(b) — ¢/ x;
St.Ax;=5>b
X; € Z’+
to obtain x¥.
@ Set Sk « ST U {x}
end while
return z(b) = z(b) forall b € B.

Ralphs, et al. (COR@L Lab)
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Conceptual Algorithm for Generating the Value Function
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Figure : Upper bounding functions obtained at right-hand sides b;,7i = 1,...,5.
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Formulating (SP)

Surprisingly, the “cut generation” problem (SP) can be formulated easily as an
MINLP.

I'* = max 6
st.O4c x <cfxi+ (A —AX)TY i=1,... k-1
Al <ce i=1,...,k—1 (6)
VER" i=1,... k-1
xp €72
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Computational Results
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Figure : Normalized approximation gap vs. iteration number.




Generating the Value Function by Branch and Bound

@ Our first algorithm was based on refining a single upper approximation
(essentially a restriction of the full value function).

@ It is also possible to construct the value function by lower approximation using
branch and bound.

@ Any branch-and-bound tree yields a lower approximation of the value function.
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Dual Functions from Branch-and-Bound [Wolsey, 1981]

Let T be set of the terminating nodes of the tree. Then in a terminating node 1 € 7" we
solve:

T

min ¢ x
s.t.Ax = b, (7
F<x<u,x>0
The dual at node #:
max {7'b + ©'l' + 7'u'}
st.TA+ +7 <cl (8)
7>0,7<0
We obtain the following strong dual function:
st 1t —t t
r’n€17r_1{ub—|—il+7ru} 9)

Ralphs, et al. (COR@L Lab)
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Iterative Refinement

o The tree obtained from evaluating ¢(b) yields a dual function strong at b.

@ By solving for other right-hand sides, we obtain additional dual functions that
can be aggregated.

@ These additional solves can be done within the same tree, eventually yielding a
single tree representing the entire function.

Pyuef)
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Tree Representation of the Value Function

o Continuing the process, we eventually generate the entire value function.

@ Consider the strengthened dual

¢"(8) = mingy ¥}, + ¢, (B — Wiy),), (10)

@ /; is the set of indices of fixed variables, y; are the values of the corresponding
variables in node 7.

@ ¢y, is the value function of the linear program including only the unfixed
variables.

Theorem 2 Under the assumption that {3 € R™ | ¢;(3) < oo} is finite, there
exists a branch-and-bound tree with respect to which Q* = .
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Example of Value Function Tree

Node 0

Node 1 Node 8

Node 2

max{—28, 8} Node 3
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max{8+5,g = 26— 1} Node 10
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ode 5 , 12
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vizs
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Correspondence of Nodes and Local Stability Regions
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Back to Stochastic Programming: Lit Review

First Stage Second Stage Stochasticity

R Z B R Z B W T h q
[Laporte and Louveaux, 1993] * * ok * * * %
[Carge and Tind, 1997] * * * * * ok %
[Carge and Tind, 1998] * * * * %
[Carge and Schultz, 1998] * * * * * ok ¥
[Schultz et al., 1998] * * *
[Sherali and Fraticelli, 2002] * * * * * %
[Ahmed et al., 2004] * ok % * * * *
[Sen and Higle, 2005] * * * ok
[Sen and Sherali, 2006] * * * * %
[Sherali and Zhu, 2006] * * * * * ok
[Kong et al., 2006] * ok * * * * ok %
[Sherali and Smith, 2009] * * * * ok %
[Yuan and Sen, 2009] * * % % %
[Ntaimo, 2010] * * * *
[Gade et al., 2012] * * * * % %
[Trapp et al., 2013] * * *
Current work * * * * * %
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Benders Master Variables

Notation:
@ s,rc {l,...,5} where S is the number of scenarios
e p e {l,... k} where k is the iteration number

e nec{l,...,N(p,r)} where N(p, r) is the number of terminating nodes in the

B&B tree solved for scenario r at iteration p.

@ 0, = F(h(s) —p)

@ 1, = F(h(s) — ) the approximation of scenario s’s recourse obtained from the
optimal dual function of iteration p and scenario r.

@ Uy, apy Tespectively, the dual vector and intercept obtained from node 7 of the
B&B tree solved for scenario r in iteration p.

ps probability of scenario s

M > 0 an appropriate large number
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Benders Master Formulation

S
f/‘ =minc x+ Zp.ﬁ.\

s=1
S.t. 0 > t\'pr VS.,p7 r
‘I” S Aprn +v ’/nn(l (S') - T(S‘)X) VS, r,p,n
(master)

Lspr > Aprn + 1V, pm(l (g) - T(Y)X) - Mu.s‘pm VS:P-, r,n
N

Z Usprn = N(P I") -1 Vs,p, r
n=1

X € X, Usprn €B VS,[?, r,n
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Consider ,
minf(x) = min — 3x; — 4x, + Z 0.50(x, )
s=1 (11)
S.t.x;+x <5
X €Ly
where

. 7
Q(x,s) = min 3y; + 772 + 3y3 + Oys + 7ys

1
s.t. 6y1 + 5y — 4ys + 2y4 — Tys = h(s) — 2x; — X2 (12)

Y1,Y2,¥3 € Z+a V4,5 € R+

with i(s) € {—4,10}.
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Solving the Master Problem

@ A fundamental question is how to solver the master problem efficiently.

o Itis alarge integer program with many constraints, most of which will be
redundant.

o It seems clear that we need to dynamically manage the LP relaxations.

@ There are several options

@ Put constraints in to a cut pool and add them only as they are violated.
© Add all constraints in the beginning, but aggressively remove slack ones.

@ Our attempts have so far failed.
@ Not having the full formulation makes branching less effective.

@ We are currently investigating.

Ralphs, et al. (COR@L Lab) Piecewise Polyhedral Functions



The Stochastic Server Location Problem sslp5-25 from the SIPLIB library has the
following statistics. The second column indicates the number of variables in each
second-stage problem. For each test problem, we denote the number of scenarios in
parenthesis.

Problem Ist Stage 2nd Stage
All Vars | Int Vars | Const | All Vars | Int Vars | Const
sslp5-25 5 5 1 135 130 30

In all of the experiments preprocessing and heuristics are turned off. In the following
tables, we use the following abbreviations

TLP: Average time spent in solving LPs (s) in all iterations

No. LPs: Average number of calls to LP solver in all iterations

No. Cuts: Average number of added cuts to LPs in all iterations

DT: Average depth of trees solved in all iterations

ST: Average size of trees solved in all iterations

and

DC: Dynamic cut generation  SC: Static cut generation
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TLP No. LPs No. Cuts ST DT
DC SC DC SC DC SC DC SC DC SC

iteration 1 | 0.008 | 0.004 2 1 10 0 1 1 0 0
iteration 2 | 0.024 | 0.016 10 5 21 3 7 3 3 1
iteration 3 | 0.168 | 0.06 49 21 45 6 19 15 5 4
iteration4 | 0.25 | 0.15 58 38 95 54 33 21 6 5
iteration 5 0.6 0.22 128 43 235 75 61 33 13 7
iteration 6 | 0.72 0.3 147 41 177 101 63 31 13 6
iteration 7 0.8 0.38 118 40 255 110 61 27 11 6
iteration 8 1.38 | 047 186 53 347 145 119 29 16 5
iteration9 | 0.86 | 0.94 114 75 313 192 71 23 15 10
iteration 10 | 0.94 | 0.96 118 71 331 127 63 51 13

9

iteration 11 | 1.48 1.57 164 125 451 338 75 43 12 10
iteration 12 | 2.61 1.35 2.77 102 551 233 137 69 15 9
iteration 13 | 3.82 1.60 376 109 663 240 191 51 14 10
iteration 14 | 4.37 | 2.09 435 134 748 477 203 59 14 10
iteration 15 | 3.94 | 2.15 393 115 703 315 139 61 14 10
iteration 16 | 6.98 2.7 571 136 918 639 255 81 16 10

iteration 17 | 14.42 | 2.73 1161 151 2289 377 447 79 17 3
Average 2.55 1.04 | 237.22 | 74.11 | 479.52 | 201.88 | 114.41 | 39.82 | 11.58 | 6.76

Table : sslp5-25(10)

Total running time is 22.2 seconds with the cuts vs 54.0 seconds with dynamic cuts.
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TLP No. LPs No. Cuts ST DT
DC SC DC SC DC SC DC SC DC SC
sslp-5-25 (10) | 2.55 1.04 | 237.22 | 74.11 | 479.52 | 201.88 | 114.41 39.82 11.58 6.76
sslp-5-25(15) | 676.11 | 119.94 | 2494 | 15.35 | 2557.58 370 977.47 | 153.11 32.38 3.50
sslp5-25(25) | 94.17 9.96 4423 | 22.23 | 2367.35 | 220.76 | 2554.82 | 265.23 | 6792.47 | 717.76

Table : Comparison of average statistics

DC | SC
sslp-5-25 (10) | 54 | 22.2
sslp-5-25(15) | 622 81
sslp5-25(25) | 1885 | 204

Table : Comparison of running times (seconds)

TLP | No. LPs | No. Cuts ST DT | Running Time (s)
sslp-5-25 (50) | 18.65 | 582.17 530.05 | 218.29 | 26.47 402
sslp-5-25(80) | 29.21 | 783.52 538 198.64 | 33.17 630
sslp5-25(100) | 99.25 1553 782 337 44 936

Table : Average of statistics for larger instances with static cut generation
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Conclusions

@ We have developed an algorithm for the two-stage problem with general mixed integer
variables in both stages.

@ The algorithm uses the Benders’ framework with B&B dual functions as the optimality
cuts.

@ Such cuts have computationally desirable properties such as warm-starting.

@ We need to keep the size of approximations small. This can be done through
warm-starting trees and scenario bunching.

@ There are still many questions to be answered about how to make all of this as efficient as
possible.
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@ We have implemented the algorithm using SYMPHONY as our mixed-integer
linear optimization solver.

@ Warm-starting a B&B tree is possible in the solver.
@ We can create an a priori cut pool.

@ We so far have a fairly “naive” implementation and anticipate much
improvement is possible.

@ There is still much more to be learned about how to manage these piecewise
polyhedral functions effectively.
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