Optimal Steiner trees subject to mechanical constraints or: Routing steam pipes in power plants

Lars Schewe, Jakob Schelbert 2014-06-03 Discrete Optimization Friedrich-Alexander-University Erlangen-Nürnberg

NATURWISSENSCHAFTLICHE FAKULTÄT

What's our problem?

Why is it interesting?

Combinatorics: Path/Steiner tree

Nonlinearities: Mechanics

Our sponsors

- Part of BMBF-Project LeOpIn Lifecycle oriented optimization for a resource- and energy-efficient infrastructure
- In cooperation with Bilfinger, sponsored by the German ministry of education and research
- With the groups of Michael Stingl, Günter Leugering and Eberhard Bänsch at FAU Erlangen-Nürnberg

Bundesministerium für Bildung und Forschung

More about the application

Physical dimensions

- Power plant: $50 \text{ m} \times 75 \text{ m} \times 100 \text{ m}$
- Pipe length: $\approx 450 \,\mathrm{m}$ per section
- Pipe diameter: 770 mm, wall thickness: 63 mm
- Working conditions: 631 °C, 300 bar

Requirements

- Mainly two types of cost: Operating costs and building costs
- Main constraint: Mechanical stresses must lie in tolerances
- Two scenarios: Cold and hot

Basic problem statement

 $\begin{array}{ll} \mbox{min } c_{\mbox{pipe}}(x) + c_{\mbox{hangers}}(y, u(x, y)) \\ \mbox{s.t.} & \mbox{Steiner tree}(x) \\ & \mbox{pipe } \mbox{physics}(x, y, u(x, y)) \\ & \mbox{hangers}(x, y, u(x, y)) \\ & \mbox{industrial standards}(x, y, u(x, y)) \end{array}$

Variables

- x Pipe variables
- y Hanger variables
- \mathbf{u} Displacement variables (depend on \mathbf{x} and \mathbf{y})

Steinertree model

- Huge catalogue of Steiner tree models available
- \bullet Only few terminals in our application \rightarrow Use a flow formulation
- Computational study shows advantage over other models

Modeling the physics

Groundstructure approach

- Fixed and free nodes
- Potential elements between nodes
- Elements follow laws of linear elasticity

Linear Timoshenko beam

- Axial dimension is dominating length scale
- Cross-sections may rotate independently of the beam axis

Figure : Source: Y. Lou, An Efficient 3D Timoshenko Beam Element with Consistent Shape Functions

- Variables for the displacement of the center line (u, v, w)
- Variables for the rotation of the cross-section (ϕ, θ, ψ)

Linear 3D Timoshenko beam equations

$$EAu'' + q_x = 0$$

$$kGA(v'' - \theta') + q_y = 0$$

$$kGA(w'' + \psi') + q_z = 0$$

$$GI_t \phi'' + m_x = 0$$

$$EI_z \psi'' - kGA(w' + \psi) + m_y = 0$$

$$EI_y \theta'' + kGA(v' - \theta) + m_z = 0$$

- EA: extensional stiffness
- kGA: shear stiffness with factor
 - GIt: torsional stiffness
 - EI: bending stiffness

- Analytical solutions to homogeneous Timoshenko equations as ansatz functions give rise to proper stiffness matrices (Luo, 2008)
- Global stiffness matrix: $K(x) = \sum_{i=1}^{n} T_{i}^{T} K_{i} T_{i} x_{i}$

$$K(\mathbf{x})\mathbf{u} = \sum_{i=1}^{n} g_i x_i + \sum_{j=1}^{m} l_j h_j$$

Industrial standards (DIN EN 13480)

- Restrictions on the maximal supporting forces at fixed nodes
- Pipe must fulfill constraints based on moments
- Several constraints involve the difference of the moments from different loading scenarios

$$\begin{split} R\mathbf{u} \leqslant r \\ \mathcal{M}_{e}^{h} &= \hat{N}^{h}\mathbf{u}_{e}^{h} \\ \mathcal{M}_{e}^{c} &= \hat{N}^{c}\mathbf{u}_{e}^{c} \\ \mathcal{M}_{e}^{c} &= \hat{N}^{c}\mathbf{u}_{e}^{c} \\ \mathcal{M}_{e}^{D} &= \mathcal{M}_{e}^{h} - \mathcal{M}_{e}^{c} \\ (\mathcal{M}_{e1}^{h})^{2} + (\mathcal{M}_{e2}^{h})^{2} + (\mathcal{M}_{e3}^{h})^{2} \leqslant (\mathcal{M}_{max}^{h})^{2} \\ (\mathcal{M}_{e1}^{D})^{2} + (\mathcal{M}_{e2}^{D})^{2} + (\mathcal{M}_{e3}^{D})^{2} \leqslant (\mathcal{M}_{max}^{D})^{2} \end{split}$$

Solution approaches

 $\begin{array}{ll} \mbox{min } c_{\mbox{pipe}}(x) + c_{\mbox{hangers}}(y,u(x,y)) \\ \mbox{s.t.} & \mbox{Steiner tree}(x) \\ & \mbox{pipe } \mbox{physics}(x,y,u(x,y)) \\ & \mbox{hangers}(x,y,u(x,y)) \\ & \mbox{industrial standards}(x,y,u(x,y)) \end{array}$

MILP Model

 Linearize non-convex terms

 $z_{il} = x_i u_l$

 Can be done completely or adaptive

MISOCP Model

- Replace industrial standards with substitute constraint
- Problem becomes convex

Decomposition

- Decompose in master- and subproblem
- Both problems are convex

Decomposition approach

• General Idea: GBD

• Applied for truss problems: Muñoz and Stolpe [2011]

Masterproblem

Subproblem for fixed \hat{x}

min $c_{pipe}(x) + c_{hangers}(y, u(x, y)) \quad \longleftrightarrow$ s.t. Steinertree(x)

 $\begin{array}{ll} \mbox{min } c_{\mbox{hangers}}(y, \mathbf{u}(\hat{x}, y)) \\ \mbox{s.t.} & \mbox{pipe } \mbox{physics}(\hat{x}, y, \mathbf{u}(\hat{x}, y)) \\ & \mbox{hangers}(\hat{x}, y, \mathbf{u}(\hat{x}, y)) \\ & \mbox{industrial standards}(\hat{x}, y, \mathbf{u}(\hat{x}, y)) \end{array}$

Fast check for infeasibility

$$\begin{aligned} & \mathsf{K}\mathfrak{u}=\mathfrak{b}+\sum_{n\in\mathcal{V}}\mathfrak{l}_n\mathfrak{h}_n\\ \Leftrightarrow \qquad & \mathfrak{u}=\mathsf{K}^{-1}\mathfrak{b}+\sum_{n\in\mathcal{V}}\mathsf{K}^{-1}\mathfrak{l}_n\mathfrak{h}_n\end{aligned}$$

Simple test whether $\underline{u} \leqslant u \leqslant \overline{u}$ is attainable If

$$\sum_{n \in \mathcal{V}} \max \left\{ K^{-1} l_n h^{max}, 0 \right\} < \underline{\mathbf{u}} - K^{-1} \mathbf{b}$$

or

$$\sum_{n\in\mathcal{V}}\min\left\{K^{-1}l_{n}h^{max},0\right\}>\overline{u}-K^{-1}b$$

holds, then the subproblem is infeasible.

Cutting planes for the subproblem

- To speed up subproblem we use cutting planes
- Derived by using MIR on single node sets on the equilibrium equation

$$\mathbf{u} = \mathbf{K}^{-1}\mathbf{b} + \sum_{\mathbf{n}\in\mathcal{V}}\mathbf{K}^{-1}\mathbf{l}_{\mathbf{n}}\mathbf{h}_{\mathbf{n}}$$

Still to do

We have no idea how to generalize this to larger node sets

Numerical examples

Name	$ \mathcal{V} $	3	$ \mathfrak{I} $	MIP (adaptive)		Decomposition		
				Time (s)	Gap (%)	Time (s)	# cb	Gap (%)
cube04	9	32	2	6.3	0	0.27	3	0
temptest	63	434	2	7200	41.7	515.6	2	0
BB-04	123	974	3	7200	27.8	7200	5074	0.07
BB-04_ff	141	964	3	7200	—	7200	5367	0.04
big-04	250	2241	4	7200	_	4249.8	10	0

Numerical examples

