
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Analyzing Structured Optimization Models with
Automatic Transformations

William E. Hart and John D. Siirola

Analytics Department
Sandia National Laboratories

Albuquerque, NM USA

{wehart,jdsiiro}@sandia.gov

June 4, 2014

MINLP Workshop – CMU

SAND 2014-2616C

Hart and Siirola, p. 2

Is this an optimization model?

n

T

x

bAxts

xc

..

min

Hart and Siirola, p. 3

Models are for Modelers

• I would argue this is an optimization problem!

• So, what’s a model?
– A general representation of a class of problems

• Data (instance) independent

– Represents the modeler’s understanding of the class of problems

• Explicitly annotates and conveys the class structure

– Incorporates assumptions and simplifications

– Is both tractable and valid

• (although these are often contradictory goals)

n

T

x

bAxts

xc

..

min

Hart and Siirola, p. 4

Models are for Modelers

• I would argue this is an optimization problem!

• So, what’s a model?
– A general representation of a class of problems

• Data (instance) independent

– Represents the modeler’s understanding of the class of problems

• Explicitly annotates and conveys the class structure

– Incorporates assumptions and simplifications

– Is both tractable and valid

• (although these are often contradictory goals)

n

T

x

bAxts

xc

..

min

Hart and Siirola, p. 5

Optimization problems: Model instances

• We seldom have a single problem to solve
– Rather we would like to write a single model for a class of problems

• Key design feature of many AMLs (e.g. strongly encouraged by AMPL)

– Why?

• Test small, deploy big

• Tomorrow’s problem is different from today’s

• Data may be

– Huge

– Machine-generated

– Stored externally (loaded from external tools, e.g. databases)

Model Data Problem +

Hart and Siirola, p. 6

Models are for Modelers

• I would argue this is an optimization problem!

• So, what’s a model?
– A general representation of a class of problems

• Data (instance) independent

– Represents the modeler’s understanding of the class of problems

• Explicitly annotates and conveys the class structure

– Incorporates assumptions and simplifications

– Is both tractable and valid

• (although these are often contradictory goals)

n

T

x

bAxts

xc

..

min

Hart and Siirola, p. 7

What is model structure?

• Unlike a solver, modelers don’t think in terms of “A”
– Rather, I think in terms of repeated (indexed) units

• Sets (1-, 2-, n- dimensional)

• Vectors or matrices of variables

• Groups of related constraints (blocks)

• The model may not be “flat”
– Block diagonal (e.g., scenarios in stochastic programming)

– Graph-based (e.g., network flow)

– Hierarchically defined (e.g., a model composed of sub-models)

n

T

x

bAxts

xc

..

min

Ax

Hart and Siirola, p. 8

Models are for Modelers

• I would argue this is an optimization problem!

• So, what’s a model?
– A general representation of a class of problems

• Data (instance) independent

– Represents the modeler’s understanding of the class of problems

• Explicitly annotates and conveys the class structure

– Incorporates assumptions and simplifications

– Is both tractable and valid

• (although these are often contradictory goals)

n

T

x

bAxts

xc

..

min

Hart and Siirola, p. 9

Tractability / validity: The optimization tug-of-war

• The “highest fidelity” model of a system is rarely tractable
– Delicate balance between the model we want to solve and the solver

we want to use

– What can we do?

• Simplify (reduce the model scope)

• Approximate (relax or recast constraints)

• Iterate (solve a series of related problems to develop the
 solution to the original problem)

– Optimization 101 ingrains this tension into us; consider:

[...]..

)3(max

ts

xabs

Hart and Siirola, p. 10

“Modeling” absolute value

• This probably makes you cringe:
– “Experienced modelers would never write abs()!”

• Instead, we write:

[...]..

)3(max

ts

xabs

[...]

}1,0{

0,0

3

)1(

..

max

y

negXposX

negXposXX

yMposX

MynegX

posXnegXabsXts

absX

Hart and Siirola, p. 11

“Modeling” absolute value

• This probably makes you cringe:
– “Experienced modelers would never write abs()!”

• Instead, we write:

• But what if “[…]” is a
nonlinear model? Then,

• Does any of this really encode our
understanding of the class of problems?
– …or is this a reflection of our understanding of the solver?

[...]..

)3(max

ts

xabs

[...]

}1,0{

0,0

3

)1(

..

max

y

negXposX

negXposXX

yMposX

MynegX

posXnegXabsXts

absX

x
e

x
absX

xabsX

hx

 /

2

1

2

Hart and Siirola, p. 12

Transformations: Projecting problems to problems

• Model Transformations
– Project from one problem space to another

– Standardize common reformulations or approximations

– Convert “unoptimizable” modeling constructs into equivalent
optimizable forms

+ Model Data Compile Problem

Solve

Transform

Hart and Siirola, p. 13

Transformations are not entirely new

• LINGO’s automatic linearization:

– Generates the “usual” Big-M integer linear model:

MODEL:
 MAX = @ABS(X-3);
 X <= 2;
END

MAX _C3
SUBJECT TO
 X <= 2
 - _C1 - _C2 + _C3 = 0
 _C1 – 100000 _C4 <= 0
 _C2 + 100000 _C4 <= 100000
 X - _C1 + _C2 = 3
END
INTE _C4

Cunningham and Schrage, “The LINGO Algebraic Modeling Language.” In Modeling Languages in

Mathematical Optimization, Josef Kallrath ed. Springer, 2004.

Hart and Siirola, p. 14

Why are we interested in transformations?

• Separate model expression from how we intend to solve it
– Defer decisions that improve tractability until solution time

– Explore alternative reformulations or representations

– Support solver-specific model customizations (e.g., abs())

– Support iterative methods that use different solvers requiring
different representations (e.g., initializing NLP from MIP)

• Support “higher level” or non-algebraic modeling constructs
– Express models that are closer to reality, e.g.:

• Piecewise expressions

• Disjunctive models (switching decisions & logic models)

• Differential-algebraic models (dynamic models)

• Bilevel models (game theory models)

• Reduce “mechanical” errors due to manual transformation

Hart and Siirola, p. 15

GLPK

PYthon Optimization Modeling Objects

Coopr: a COmmon Optimization Python Repository

Language Extensions

 - Disjunctive Programming

 - Stochastic Programming

 - Differential Equations

 - Complementarity Constraints

 - Bilevel Programs

Decomposition Strategies

 - Progressive Hedging

 - Generalized Benders

CPLEX

Gurobi

Xpress

AMPL Solver Library

CBC

PICO

OpenOpt

P
lu

g
g
ab

le
 S

o
lv

er
 I

n
te

rf
ac

es

C
o
re

 O
p
ti

m
iz

at
io

n

In
fr

as
tr

u
ct

u
re

M
o

d
el

T
ra

n
sf

o
rm

a
ti

o
n

s
Ipopt

KNITRO

Coliny

Dakota

BONMIN

Hart and Siirola, p. 16

A Quick Tour of Pyomo

Idea: a Pythonic framework for formulating optimization models

– Provides a natural syntax to describe mathematical models

– Leverages an extensible optimization object model

– Formulates large models with a concise syntax

– Separates modeling and data declarations

– Enables data import and export in commonly used formats

Highlights:

– Python provides a
clean, readable syntax

– Python scripts provide
a flexible context for
exploring the structure
of Pyomo models

from coopr.pyomo import *

model = ConcreteModel()

model.x1 = Var()
model.x2 = Var(bounds=(-1,1))
model.x3 = Var(bounds=(1,2))

model.obj = Objective(
 expr= m.x1**2 + (m.x2*m.x3)**4 +
 m.x2*sin(m.x1+m.x3) + m.x2,
 sense= minimize)

Hart and Siirola, p. 17

Structural transformations: Disjunctive programs

• Disjunctions: selectively enforce sets of constraints
– Sequencing decisions: x ends before y or y ends before x

– Switching decisions: a process unit is built or not

– Alternative selection: selecting from a set of pricing policies

• Implementation: leverage Pyomo blocks
– Disjunct:

• Block of Pyomo components

– (Var, Param, Constraint, etc.)

• Boolean (binary) indicator variable determines
if block is enforced

– Disjunction:

• Enforces logical XOR across a set of Disjunct indicator variables

– (Logic constraints on indicator variables)

 trueY

c

oxh

Y

ikk

ik

ik

Di k

V

Hart and Siirola, p. 18

Example: Task sequencing

• Prevent tasks colliding on a single piece of equipment

– Derived from Raman & Grossmann (1994)

– Given:

• Tasks I processed on a sequence of machines (with no waiting)

• Task i starts processing at time ti with duration tim on machine m

• J(i) is the set of machines used by task i

• Cik is the set of machines used by both tasks i and j

kiIkiCj

tt

Y

tt

Y

ik

jm
iJm

imi

jm
kJm

kmk

ki

jm
kJm

kmk

jm
iJm

imi

ik

,,,

)()()()(

tttt

Hart and Siirola, p. 19

Example: Task sequencing in Coopr

def _NoCollision(model, disjunct, i, k, j, ik):

 lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)

 rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)

 if ik:

 disjunct.c = Constraint(expr= lhs + model.tau[i,j] <= rhs)

 else:

 disjunct.c = Constraint(expr= rhs + model.tau[k,j] <= lhs)

model.NoCollision = Disjunct(model.L, [0,1], rule=_NoCollision)

def _disj(model, i, k, j):

 return [model.NoCollision[i,k,j,ik] for ik in [0,1]]

model.disj = Disjunction(model.L, rule=_disj)

kiIkiCj

tt

Y

tt

Y

ik

jm
iJm

imi

jm
kJm

kjkmk

ki

jm
kJm

kmkij

jm
iJm

imi

ik

,,,

)()()()(

tttttt

Hart and Siirola, p. 20

Solving disjunctive models

• Few solvers “understand” disjunctive models
– Transform model into standard math program

– Big-M relaxation:

• Convert logic variables to binary

• Split equality constraints in disjuncts into pairs of inequality constraints

• Relax all constraints in the disjuncts with “appropriate” M values

Hart and Siirola, p. 21

Why is the transformation interesting?

• Model preserves explicit disjunctive structure

• Automated transformation reduces errors

• Automatically identifies appropriate M values (for bounded linear)

• Big-M is not the only way to relax a disjunction!

– Convex hull transformation (Balas, 1985; Lee and Grossmann, 2000)

– Algorithmic approaches

• e.g., Trespalacios and Grossmann (submitted 2013)

– Prematurely choosing one relaxation makes trying others difficult

Hart and Siirola, p. 22

Expression transformations: MPEC

• Mathematical Programming with Equilibrium Constraints
(MPEC)
– Engineering design, economic equilibrium, multilevel games

– Feasible region may be nonconvex and disconnected

• Equilibrium Constraints
– Variational inequalities

– Complementarity conditions

– Optimality conditions (for bilevel problems)

Hart and Siirola, p. 23

MPEC formulations

• General MPEC models can be expressed as

• The last set of constraints are generalized mixed
complementarity conditions (Ferris, Fourer, and Gay, ‘06),
which have the form

Hart and Siirola, p. 24

Modeling languages support MPECs

• AMPL

– The complements keyword is used to denote complementarity between
two constraints, expressions or variables

• GAMS

– The complements keyword is used to denote complementarity between
two constraints, expressions or variables

• AIMMS

– Express mixed complementarity conditions by declaring complementarity
variables along with associated constraints

• YALMIP

– The complements function declares a constraint that reflects a mixed
complementarity condition.

Common challenge: lack of control over how the complementarity
constraints are exposed to the solver

Hart and Siirola, p. 25

Expressing complementarity conditions in Coopr

from coopr.pyomo import *
from coopr.mpec import Complementarity

M = ConcreteModel()
M.x = Var(bounds=(-1,2))
M.y = Var()

M.c3 = Complementarity(expr=(M.y - M.x**2 + 1 >= 0, M.y >= 0))

• The Complementarity component declares a
 complementarity condition

• The tuple argument specifies the two constraints,
expressions, or variables in the complementarity condition.

This model definition is solver agnostic!

Hart and Siirola, p. 26

A simple nonlinear reformulation

• NOTE: There are serious difficulties with solving this
formulation as standard stability assumptions are not met.
– But other nonlinear transformations exist!

min 𝑓 𝑥

s.t. ℎ 𝑥 = 0

𝑎𝑖 ≤ 𝜔𝑖 ≤ 𝑏𝑖 𝑖 = 1 …𝑚

𝜔𝑖 = 𝑤𝑖 𝑥 𝑖 = 1 …𝑚

 𝜔𝑖 − 𝑎𝑖 𝑣𝑖 𝑥 ≤ 0 𝑖 = 1 …𝑚

 𝜔𝑖 − 𝑏𝑖 𝑣𝑖 𝑥 ≤ 0 𝑖 = 1 …𝑚

Hart and Siirola, p. 27

A simple disjunctive reformulation

min 𝑓 𝑥

s.t. ℎ 𝑥 = 0

𝑦1,𝑖

𝑤𝑖 𝑥 = 𝑎𝑖

𝑣𝑖 𝑥 ≥ 0
 ∨

𝑦2,𝑖

𝑤𝑖 𝑥 = 𝑏𝑖

𝑣𝑖 𝑥 ≤ 0
 ∨

𝑦3,𝑖

𝑎𝑖 < 𝑤𝑖 𝑥 < 𝑏𝑖

𝑣𝑖 𝑥 = 0
 𝑖 = 1 …𝑚

𝑦1,𝑖 + 𝑦2,𝑖 + 𝑦3,𝑖 = 1 𝑖 = 1 …𝑚

𝑦1,𝑖 , 𝑦2,𝑖 , 𝑦3,𝑖 ∈ 0,1 𝑖 = 1 …𝑚

Hart and Siirola, p. 28

model = ConcreteModel()

[…]

TransformFactory(“abs.complements”).apply(model, inplace=True)

TransformFactory(“mpec.disjunctive”).apply(model, inplace=True)

TransformFactory(“gdp.bigm”).apply(model, inplace=True)

Back to our original example: ABS(x)

• Chaining transformations

0,0

)1(

0,0

0000

)(

xx

yMx

Myx

xxx

xxf

xx

x

Y

x

Y
xxx

xxf

xx

xxx

xxf

xabsf

Hart and Siirola, p. 29

Summary

• Model transformations can significantly impact modeling

– Separates the intent of the Modeler from the needs of the solver

– Expands the set of (high-level) modeling constructs

• Models can closer represent how a Modeler “thinks”

– Defers decisions on how to map the problem class to the solver to just before
solve time

– Reduces / eliminates manual transcription errors

– Chaining transformations is a powerful operation

• Complex transformations are cast as a series of simpler operations

• Availability of alternative transformation routes is preserved

• Other applications

– Stochastic programming

– Bilinear relaxations / linearizations

– Bilevel model reformulation

– DAE discretization

Hart and Siirola, p. 30

For more information…

• Project homepage
– https://software.sandia.gov/coopr

• Mailing lists

– “coopr-forum” Google Group

– “coopr-developers” Google Group

• “The Book”

• Mathematical Programming Computation paper:

– Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)

