SAND 2014-2616C

Analyzing Structured Optimization Models with Automatic Transformations

William E. Hart and John D. Siirola

Analytics Department Sandia National Laboratories Albuquerque, NM USA {wehart,jdsiiro}@sandia.gov

June 4, 2014

MINLP Workshop – CMU

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Is this an *optimization model*?

Models are for *Modelers*

- I would argue this is an optimization problem!
- So, what's a *model*?
 - A general representation of a class of problems
 - Data (instance) independent
 - Represents the modeler's understanding of the class of problems
 - Explicitly annotates and conveys the class structure
 - Incorporates assumptions and simplifications
 - Is both tractable and valid
 - (although these are often contradictory goals)

Models are for *Modelers*

- I would argue this is an optimization problem!
- So, what's a *model*?
 - A general representation of a class of problems
 - Data (instance) independent
 - Represents the modeler's understanding of the class of problems
 - Explicitly annotates and conveys the class structure
 - Incorporates assumptions and simplifications
 - Is both tractable and valid
 - (although these are often contradictory goals)

Optimization problems: Model instances

- We seldom have a single *problem* to solve
 - Rather we would like to write a single model for a class of problems
 - Key design feature of many AMLs (e.g. strongly encouraged by AMPL)
 - Why?
 - Test small, deploy big
 - Tomorrow's problem is different from today's
 - Data may be
 - Huge
 - Machine-generated
 - Stored externally (loaded from external tools, e.g. databases)

Models are for *Modelers*

- I would argue this is an optimization problem!
- So, what's a *model*?
 - A general representation of a class of problems
 - Data (instance) independent
 - Represents the modeler's understanding of the class of problems
 - Explicitly annotates and conveys the class structure
 - Incorporates assumptions and simplifications
 - Is both tractable and valid
 - (although these are often contradictory goals)

What is *model structure*?

- Unlike a solver, modelers don't think in terms of "A"
 - Rather, I think in terms of repeated (indexed) units
 - Sets (1-, 2-, n- dimensional)
 - Vectors or matrices of variables
 - Groups of related constraints (blocks)
- The model may not be "flat"
 - Block diagonal (e.g., scenarios in stochastic programming)
 - Graph-based (e.g., network flow)
 - Hierarchically defined (e.g., a model composed of sub-models)

Models are for *Modelers*

- I would argue this is an optimization problem!
- So, what's a *model*?
 - A general representation of a class of problems
 - Data (instance) independent
 - Represents the modeler's understanding of the class of problems
 - Explicitly annotates and conveys the class structure
 - Incorporates assumptions and simplifications
 - Is both tractable and valid
 - (although these are often contradictory goals)

Tractability / validity: The optimization tug-of-war

- The "highest fidelity" model of a system is rarely tractable
 - Delicate balance between the model we want to solve and the solver we want to use
 - What can we do?
 - Simplify (reduce the model scope)
 - Approximate (relax or recast constraints)
 - Iterate (solve a series of related problems to develop the solution to the original problem)
 - Optimization 101 ingrains this tension into us; consider:

 $\max abs(x-3)$ s.t. [...]

"Modeling" absolute value

- This probably makes you cringe:
 - "Experienced modelers would never write abs()!"
- Instead, we write:

 $\begin{array}{ll} \max & absX\\ s.t. & absX = negX + posX\\ negX \leq My\\ posX \leq M(1-y)\\ X-3 = posX - negX\\ posX \geq 0, negX \geq 0\\ y \in \{0,1\}\\ [...]\end{array}$

s.t.

max abs(x-3)

[...]

"Modeling" absolute value

- This probably makes you cringe:
 - "Experienced modelers would never write abs()!"
- Instead, we write:
- But what if "[...]" is a nonlinear model? Then,

$$absX = \sqrt{x^2 + \varepsilon}$$
$$absX = \frac{2x}{1 + e^{-x/h}} - x$$

 $\max abs(x-3)$ s.t. [...]

 $\begin{array}{ll} \max & absX\\ s.t. & absX = negX + posX\\ negX \leq My\\ posX \leq M(1-y)\\ X-3 = posX - negX\\ posX \geq 0, negX \geq 0\\ y \in \{0,1\}\\ [...]\end{array}$

• Does any of this really encode our understanding of the *class of problems*?

- ... or is this a reflection of our understanding of the *solver*?

Transformations: Projecting problems to problems

- Model Transformations
 - Project from one problem space to another
 - Standardize common reformulations or approximations
 - Convert "unoptimizable" modeling constructs into equivalent optimizable forms

Transformations are not entirely new

• LINGO's automatic linearization:

```
MODEL:

MAX = @ABS( X-3 );

X <= 2;

END
```

- Generates the "usual" Big-M integer linear model:

Cunningham and Schrage, "The LINGO Algebraic Modeling Language." In *Modeling Languages in Mathematical Optimization*, Josef Kallrath ed. Springer, 2004.

Why are we interested in transformations?

- Separate model expression from how we intend to solve it
 - Defer decisions that improve tractability until solution time
 - Explore alternative reformulations or representations
 - Support solver-specific model customizations (e.g., abs())
 - Support iterative methods that use different solvers requiring different representations (e.g., initializing NLP from MIP)
- Support "higher level" or non-algebraic modeling constructs
 - Express models that are closer to reality, e.g.:
 - Piecewise expressions
 - Disjunctive models (switching decisions & logic models)
 - Differential-algebraic models (dynamic models)
 - Bilevel models (game theory models)
- Reduce "mechanical" errors due to manual transformation

Coopr: a COmmon Optimization Python Repository

A Quick Tour of Pyomo

Idea: a Pythonic framework for formulating optimization models

- Provides a natural syntax to describe mathematical models
- Leverages an extensible optimization object model
- Formulates large models with a concise syntax
- Separates modeling and data declarations
- Enables data import and export in commonly used formats

Highlights:

- Python provides a clean, readable syntax
- Python scripts provide a flexible context for exploring the structure of Pyomo models

Structural transformations: Disjunctive programs

- Disjunctions: selectively enforce sets of constraints
 - Sequencing decisions:
 - Switching decisions:
 - Alternative selection:
- x ends before y or y ends before x a process unit is built or not
- selecting from a set of pricing policies
- Implementation: leverage Pyomo blocks
 - Disjunct:
 - Block of Pyomo components
 - (Var, Param, Constraint, etc.)
 - Boolean (binary) indicator variable determines if block is enforced
 - Disjunction:
 - Enforces logical XOR across a set of Disjunct indicator variables
 - (Logic constraints on indicator variables)

Example: Task sequencing

- Prevent tasks colliding on a single piece of equipment
 - Derived from Raman & Grossmann (1994)
 - Given:
 - Tasks I processed on a sequence of machines (with no waiting)
 - Task *i* starts processing at time t_i with duration τ_{im} on machine *m*
 - J(i) is the set of machines used by task i
 - C_{ik} is the set of machines used by both tasks *i* and *j*

$$\begin{bmatrix} Y_{ik} \\ t_i + \sum_{\substack{m \in J(i) \\ m \leq j}} \tau_{im} \leq t_k + \sum_{\substack{m \in J(k) \\ m < j}} \tau_{km} \end{bmatrix} \lor \begin{bmatrix} Y_{ki} \\ t_k + \sum_{\substack{m \in J(k) \\ m \leq j}} \tau_{km} \leq t_i + \sum_{\substack{m \in J(i) \\ m < j}} \tau_{im} \end{bmatrix}$$
$$\forall j \in C_{ik}, \forall i, k \in I, i < k$$

Example: Task sequencing in Coopr

def _NoCollision(model, disjunct, i, k, j, ik):

lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)
rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)
if ik:</pre>

disjunct.c = Constraint(expr= lhs + model.tau[i,j] <= rhs)</pre>

else:

disjunct.c = Constraint(expr= rhs + model.tau[k,j] <= lhs)
model.NoCollision = Disjunct(model.L, [0,1], rule=_NoCollision)</pre>

```
def _disj(model, i, k, j):
    return [ model.NoCollision[i,k,j,ik] for ik in [0,1] ]
model.disj = Disjunction(model.L, rule=_disj)
```

$$\begin{bmatrix} Y_{ik} \\ t_i + \sum_{\substack{m \in J(i) \\ m < j}} \tau_{im} + \tau_{ij} \leq t_k + \sum_{\substack{m \in J(k) \\ m < j}} \tau_{km} \\ \end{bmatrix} \lor \begin{bmatrix} Y_{ki} \\ t_k + \sum_{\substack{m \in J(k) \\ m < j}} \tau_{km} \\ + \tau_{kj} \leq t_i + \sum_{\substack{m \in J(i) \\ m < j}} \tau_{im} \\ \end{bmatrix}$$
Hart and Siirola, p. 19
$$\forall j \in C_{ik}, \forall i, k \in I, i < k$$

Solving disjunctive models

- Few solvers "understand" disjunctive models
 - Transform model into standard math program
 - Big-M relaxation:
 - Convert logic variables to binary
 - Split equality constraints in disjuncts into pairs of inequality constraints
 - Relax all constraints in the disjuncts with "appropriate" M values

Why is the transformation interesting?

- Model preserves explicit disjunctive structure
- Automated transformation reduces errors
- Automatically identifies appropriate M values (for bounded linear)
- Big-M is not the only way to relax a disjunction!
 - Convex hull transformation (Balas, 1985; Lee and Grossmann, 2000)

- Algorithmic approaches
 - e.g., Trespalacios and Grossmann (submitted 2013)
- Prematurely choosing one relaxation makes trying others difficult

Expression transformations: MPEC

- Mathematical Programming with Equilibrium Constraints (MPEC)
 - Engineering design, economic equilibrium, multilevel games
 - Feasible region may be nonconvex and disconnected
- Equilibrium Constraints
 - Variational inequalities
 - Complementarity conditions
 - Optimality conditions (for bilevel problems)

MPEC formulations

• General MPEC models can be expressed as

$$\min_{x \in \mathbb{R}^n} \qquad f(x)$$

s.t.
$$h(x) = 0$$
$$a_i \le w_i(x) \le b_i \perp v_i(x) \quad i = 1 \dots m$$

 The last set of constraints are generalized mixed complementarity conditions (Ferris, Fourer, and Gay, '06), which have the form

either
$$w_i(x) = a_i$$
 and $v_i(x) \ge 0$
or $w_i(x) = b_i$ and $v_i(x) \le 0$
or $a_i < w_i(x) < b_i$ and $v_i(x) = 0$

Modeling languages support MPECs

- AMPL
 - The complements keyword is used to denote complementarity between two constraints, expressions or variables
- GAMS
 - The complements keyword is used to denote complementarity between two constraints, expressions or variables
- AIMMS
 - Express mixed complementarity conditions by declaring complementarity variables along with associated constraints
- YALMIP
 - The complements function declares a constraint that reflects a mixed complementarity condition.
- Common challenge: lack of control over how the complementarity constraints are exposed to the solver

Expressing complementarity conditions in Coopr

from coopr.pyomo import *
from coopr.mpec import Complementarity

M = ConcreteModel()
M.x = Var(bounds=(-1,2))
M.y = Var()

M.c3 = Complementarity(expr=(M.y - M.x**2 + 1 >= 0, M.y >= 0))

- The Complementarity component declares a complementarity condition
- The tuple argument specifies the two constraints, expressions, or variables in the complementarity condition.

This model definition is solver agnostic!

A simple nonlinear reformulation

min	f(x)	
s.t.	h(x) = 0	
	$a_i \leq \omega_i \leq b_i$	i = 1 m
	$\omega_i = w_i(x)$	$i = 1 \dots m$
	$(\omega_i - a_i)v_i(x) \le 0$	$i = 1 \dots m$
	$(\omega_i - b_i)v_i(x) \le 0$	i = 1 m

- NOTE: There are serious difficulties with solving this formulation as standard stability assumptions are not met.
 - But other nonlinear transformations exist!

A simple disjunctive reformulation

 $\begin{array}{ll} \min & f(x) \\ \text{s.t.} & h(x) = 0 \\ \begin{bmatrix} y_{1,i} \\ w_i(x) = a_i \\ v_i(x) \ge 0 \end{bmatrix} \vee \begin{bmatrix} y_{2,i} \\ w_i(x) = b_i \\ v_i(x) \le 0 \end{bmatrix} \vee \begin{bmatrix} y_{3,i} \\ a_i < w_i(x) < b_i \\ v_i(x) = 0 \end{bmatrix} \quad i = 1 \dots m \\ y_{1,i} + y_{2,i} + y_{3,i} = 1 \\ y_{1,i}, y_{2,i}, y_{3,i} \in \{0,1\} \quad i = 1 \dots m \end{array}$

Back to our original example: ABS(x)

• Chaining transformations

$$f = x^{+} + x^{-} \qquad f = x^{+} + x^{-} \qquad x = x^{+} - x^{-} \qquad x^{-} \le My \qquad x^{-} \le My \qquad x^{-} \le My \qquad x^{-} \le M(1 - y) \qquad x^{+} \ge 0, \ x^{-} \ge 0 \qquad x^{-} \ge 0$$

model = ConcreteModel()
[...]
TransformFactory("abs.complements").apply(model, inplace=True)
TransformFactory("mpec.disjunctive").apply(model, inplace=True)
TransformFactory("gdp.bigm").apply(model, inplace=True)

Summary

- Model transformations can significantly impact modeling
 - Separates the intent of the Modeler from the needs of the solver
 - Expands the set of (high-level) modeling constructs
 - Models can closer represent how a Modeler "thinks"
 - Defers decisions on how to map the problem class to the solver to just before solve time
 - Reduces / eliminates manual transcription errors
 - Chaining transformations is a powerful operation
 - Complex transformations are cast as a series of simpler operations
 - Availability of alternative transformation routes is preserved
- Other applications
 - Stochastic programming
 - Bilinear relaxations / linearizations
 - Bilevel model reformulation
 - DAE discretization

For more information...

- Project homepage
 - https://software.sandia.gov/coopr
- Mailing lists
 - "coopr-forum" Google Group
 - "coopr-developers" Google Group
- "The Book"
- Mathematical Programming Computation paper:
 - Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)

D Springer

Springer Optimization and Its Applications 67

William E. Hart

Jean-Paul Watson

David L. Woodruff

Pyomo –

Modeling

in Python

Optimization

Carl Laird