
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,  

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's  

National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Analyzing Structured Optimization Models with 
Automatic Transformations 

 
William E. Hart and John D. Siirola 

 

 

Analytics Department 
Sandia National Laboratories 

Albuquerque, NM  USA 

{wehart,jdsiiro}@sandia.gov 

 

June 4, 2014 

MINLP Workshop – CMU 

SAND 2014-2616C 



Hart and Siirola, p. 2 

Is this an optimization model? 
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Models are for Modelers 

 

 

 

• I would argue this is an optimization problem! 

• So, what’s a model? 
– A general representation of a class of problems 

• Data (instance) independent 

– Represents the modeler’s understanding of the class of problems 

• Explicitly annotates and conveys the class structure 

– Incorporates assumptions and simplifications 

– Is both tractable and valid 

• (although these are often contradictory goals) 
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Optimization problems: Model instances 

 

 

 

• We seldom have a single problem to solve 
– Rather we would like to write a single model for a class of problems 

• Key design feature of many AMLs (e.g. strongly encouraged by AMPL) 

– Why? 

• Test small, deploy big 

• Tomorrow’s problem is different from today’s 

• Data may be  

– Huge 

– Machine-generated 

– Stored externally (loaded from external tools, e.g. databases) 

Model Data Problem +  
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What is model structure? 

 

 

 

• Unlike a solver, modelers don’t think in terms of “A” 
– Rather, I think in terms of repeated (indexed) units 

• Sets (1-, 2-, n- dimensional) 

• Vectors or matrices of variables 

• Groups of related constraints (blocks) 

• The model may not be “flat” 
– Block diagonal (e.g., scenarios in stochastic programming) 

– Graph-based (e.g., network flow) 

– Hierarchically defined (e.g., a model composed of sub-models) 
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Tractability / validity: The optimization tug-of-war 

• The “highest fidelity” model of a system is rarely tractable 
– Delicate balance between the model we want to solve and the solver 

we want to use 

– What can we do? 

• Simplify  (reduce the model scope) 

• Approximate (relax or recast constraints) 

• Iterate   (solve a series of related problems to develop the 
   solution to the original problem) 

 

– Optimization 101 ingrains this tension into us; consider: 
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“Modeling” absolute value 

• This probably makes you cringe: 
– “Experienced modelers would never write abs()!” 

• Instead, we write: 
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“Modeling” absolute value 

• This probably makes you cringe: 
– “Experienced modelers would never write abs()!” 

• Instead, we write: 
 

• But what if “[…]” is a  
nonlinear model?  Then, 

 

 
 

• Does any of this really encode our  
understanding of the class of problems? 
– …or is this a reflection of our understanding of the solver? 
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Transformations: Projecting problems to problems 

• Model Transformations 
– Project from one problem space to another 

– Standardize common reformulations or approximations 

– Convert “unoptimizable” modeling constructs into equivalent 
optimizable forms 

 

 

 

 

 

 

+ Model Data Compile Problem 

Solve 

Transform 
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Transformations are not entirely new 

• LINGO’s automatic linearization: 

 

 
 

– Generates the “usual” Big-M integer linear model: 

MODEL: 
  MAX = @ABS( X-3 ); 
  X <= 2; 
END 

MAX _C3 
SUBJECT TO 
  X <= 2 
  - _C1 - _C2 + _C3 = 0 
  _C1 – 100000 _C4 <= 0 
  _C2 + 100000 _C4 <= 100000 
  X - _C1 + _C2 = 3 
END 
INTE _C4 

Cunningham and Schrage, “The LINGO Algebraic Modeling Language.” In Modeling Languages in 

Mathematical Optimization, Josef Kallrath ed.  Springer, 2004. 
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Why are we interested in transformations? 

• Separate model expression from how we intend to solve it 
– Defer decisions that improve tractability until solution time 

– Explore alternative reformulations or representations 

– Support solver-specific model customizations (e.g., abs()) 

– Support iterative methods that use different solvers requiring 
different representations (e.g., initializing NLP from MIP) 

• Support “higher level” or non-algebraic modeling constructs 
– Express models that are closer to reality, e.g.: 

• Piecewise expressions 

• Disjunctive models (switching decisions & logic models) 

• Differential-algebraic models (dynamic models) 

• Bilevel models (game theory models) 

• Reduce “mechanical” errors due to manual transformation 
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GLPK 

PYthon Optimization Modeling Objects 

Coopr: a COmmon Optimization Python Repository 

Language Extensions 
 

    - Disjunctive Programming 
 

    - Stochastic Programming 
 

    - Differential Equations 

    - Complementarity Constraints 

    - Bilevel Programs 

Decomposition Strategies 
 

   - Progressive Hedging 
  

   - Generalized Benders 

CPLEX 

Gurobi 

Xpress 

AMPL Solver Library 

CBC 

PICO 

OpenOpt 
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A Quick Tour of Pyomo 

Idea: a Pythonic framework for formulating optimization models 

– Provides a natural syntax to describe mathematical models 

– Leverages an extensible optimization object model 

– Formulates large models with a concise syntax 

– Separates modeling and data declarations 

– Enables data import and export in commonly used formats  
 

Highlights: 

– Python provides a  
clean, readable syntax 

– Python scripts provide 
a flexible context for 
exploring the structure 
of Pyomo models 

 

 

from coopr.pyomo import * 
 

model = ConcreteModel() 
 

model.x1 = Var() 
model.x2 = Var(bounds=(-1,1)) 
model.x3 = Var(bounds=(1,2)) 
 

model.obj = Objective( 
    expr= m.x1**2 + (m.x2*m.x3)**4 + 
          m.x2*sin(m.x1+m.x3) + m.x2, 
    sense= minimize) 
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Structural transformations: Disjunctive programs 

• Disjunctions: selectively enforce sets of constraints 
– Sequencing decisions: x ends before y or y ends before x 

– Switching decisions:  a process unit is built or not 

– Alternative selection: selecting from a set of pricing policies 
 

• Implementation: leverage Pyomo blocks 
–  Disjunct:  

• Block of Pyomo components  

– (Var, Param, Constraint, etc.) 

• Boolean (binary) indicator variable determines  
if block is enforced 

–  Disjunction: 

• Enforces logical XOR across a set of Disjunct indicator variables 

– (Logic constraints on indicator variables) 
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Example: Task sequencing 

• Prevent tasks colliding on a single piece of equipment 

– Derived from Raman & Grossmann (1994) 

– Given: 

• Tasks I processed on a sequence of machines (with no waiting) 

• Task i starts processing at time ti with duration tim on machine m 

• J(i) is the set of machines used by task i 

• Cik is the set of machines used by both tasks i and j 
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Example: Task sequencing in Coopr 

def _NoCollision(model, disjunct, i, k, j, ik): 

    lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j) 

    rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j) 

    if ik: 

        disjunct.c = Constraint( expr= lhs + model.tau[i,j] <= rhs ) 

    else: 

        disjunct.c = Constraint( expr= rhs + model.tau[k,j] <= lhs ) 

model.NoCollision = Disjunct( model.L, [0,1], rule=_NoCollision ) 
 

def _disj(model, i, k, j): 

    return [ model.NoCollision[i,k,j,ik] for ik in [0,1] ] 

model.disj = Disjunction(model.L, rule=_disj) 
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Solving disjunctive models 

• Few solvers “understand” disjunctive models 
– Transform model into standard math program 

– Big-M relaxation: 

• Convert logic variables to binary 

• Split equality constraints in disjuncts into pairs of inequality constraints 

• Relax all constraints in the disjuncts with “appropriate” M values 
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Why is the transformation interesting? 

• Model preserves explicit disjunctive structure 

• Automated transformation reduces errors 

• Automatically identifies appropriate M values (for bounded linear) 

• Big-M is not the only way to relax a disjunction! 

– Convex hull transformation (Balas, 1985; Lee and Grossmann, 2000) 

 

 

 

 

 

 

– Algorithmic approaches  

• e.g., Trespalacios and Grossmann (submitted 2013) 

– Prematurely choosing one relaxation makes trying others difficult 
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Expression transformations: MPEC  

• Mathematical Programming with Equilibrium Constraints 
(MPEC) 
– Engineering design, economic equilibrium, multilevel games 

– Feasible region may be nonconvex and disconnected 

 

• Equilibrium Constraints 
– Variational inequalities 

– Complementarity conditions 

– Optimality conditions (for bilevel problems) 
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MPEC formulations 

• General MPEC models can be expressed as 

 

 

 

• The last set of constraints are generalized mixed 
complementarity conditions (Ferris, Fourer, and Gay, ‘06), 
which have the form 
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Modeling languages support MPECs 

• AMPL 

– The complements keyword is used to denote complementarity between 
two constraints, expressions or variables 

• GAMS 

– The complements keyword is used to denote complementarity between 
two constraints, expressions or variables 

• AIMMS 

– Express mixed complementarity conditions by declaring complementarity 
variables along with associated constraints 

• YALMIP 

– The complements function declares a constraint that reflects a mixed 
complementarity condition. 

 

Common challenge: lack of control over how the complementarity 
constraints are exposed to the solver 
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Expressing complementarity conditions in Coopr 

from coopr.pyomo import * 
from coopr.mpec import Complementarity 
 

M = ConcreteModel() 
M.x = Var(bounds=(-1,2)) 
M.y = Var() 
 

M.c3 = Complementarity(expr=(M.y - M.x**2 + 1 >= 0, M.y >= 0)) 

• The Complementarity component declares a  
 complementarity condition 

•  The tuple argument specifies the two constraints, 
expressions, or variables in the complementarity condition. 

This model definition is solver agnostic! 
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A simple nonlinear reformulation 

 

 

 

 

 

 

• NOTE: There are serious difficulties with solving this 
formulation as standard stability assumptions are not met. 
– But other nonlinear transformations exist! 

min 𝑓 𝑥 

s.t. ℎ 𝑥 = 0

𝑎𝑖 ≤ 𝜔𝑖 ≤ 𝑏𝑖 𝑖 = 1 …𝑚

𝜔𝑖 = 𝑤𝑖 𝑥 𝑖 = 1 …𝑚

 𝜔𝑖 − 𝑎𝑖 𝑣𝑖 𝑥 ≤ 0 𝑖 = 1 …𝑚

 𝜔𝑖 − 𝑏𝑖 𝑣𝑖 𝑥 ≤ 0 𝑖 = 1 …𝑚 
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A simple disjunctive reformulation 

 

 

 

 

 

 

 

min 𝑓 𝑥 

s.t. ℎ 𝑥 = 0

 

𝑦1,𝑖

𝑤𝑖 𝑥 = 𝑎𝑖

𝑣𝑖 𝑥 ≥ 0
 ∨  

𝑦2,𝑖

𝑤𝑖 𝑥 = 𝑏𝑖

𝑣𝑖 𝑥 ≤ 0
 ∨  

𝑦3,𝑖

𝑎𝑖 < 𝑤𝑖 𝑥 < 𝑏𝑖

𝑣𝑖 𝑥 = 0
 𝑖 = 1 …𝑚

𝑦1,𝑖 + 𝑦2,𝑖 + 𝑦3,𝑖 = 1 𝑖 = 1 …𝑚

𝑦1,𝑖 , 𝑦2,𝑖 , 𝑦3,𝑖 ∈  0,1 𝑖 = 1 …𝑚
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model = ConcreteModel() 

# […] 

TransformFactory(“abs.complements”).apply(model, inplace=True) 

TransformFactory(“mpec.disjunctive”).apply(model, inplace=True) 

TransformFactory(“gdp.bigm”).apply(model, inplace=True) 

 

Back to our original example:  ABS(x) 

• Chaining transformations 
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Summary 

• Model transformations can significantly impact modeling 

– Separates the intent of the Modeler from the needs of the solver 

– Expands the set of (high-level) modeling constructs 

• Models can closer represent how a Modeler “thinks” 

– Defers decisions on how to map the problem class to the solver to just before 
solve time 

– Reduces / eliminates manual transcription errors 

– Chaining transformations is a powerful operation 

• Complex transformations are cast as a series of simpler operations 

• Availability of alternative transformation routes is preserved 
 

• Other applications 

– Stochastic programming 

– Bilinear relaxations / linearizations 

– Bilevel model reformulation 

– DAE discretization 
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For more information… 

 

• Project homepage 
– https://software.sandia.gov/coopr 

 

• Mailing lists 

– “coopr-forum” Google Group 

– “coopr-developers” Google Group 

 

• “The Book” 

 
• Mathematical Programming Computation paper: 

– Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011) 


