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Is this an optimization model?
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AL
| Models are for Modelers

min  c'Xx
st. Ax<b
XeR"

e | would argue this is an optimization problem!

e So, what’s a model/?
— A general representation of a class of problems
e Data (instance) independent

— Represents the modeler’s understanding of the class of problems
e Explicitly annotates and conveys the class structure

— Incorporates assumptions and simplifications

— |Is both tractable and valid
e (although these are often contradictory goals)
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Optimization problems: Model instances

o o

e \We seldom have a single problem to solve
— Rather we would like to write a single model for a class of problems

e Key design feature of many AMLs (e.g. strongly encouraged by AMPL)
— Why?

e Test small, deploy big

e Tomorrow’s problem is different from today’s

e Data may be
— Huge
— Machine-generated
— Stored externally (loaded from external tools, e.g. databases)
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| What is model structure?

e Unlike a solver, modelers don’t think in terms of “A”
— Rather, | think in terms of repeated (indexed) units

min
S.t.

c'x
AX<b
XeR"

e Sets (1-, 2-, n- dimensional)

e \/ectors or matrices of variables

e Groups of related constraints (blocks)

e The model may not be “flat”

— Block diagonal (e.g., scenarios in stochastic programming)

— Graph-based (e.g., network flow)

— Hierarchically defined (e.g., a model composed of sub-models)
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| Models are for Modelers
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e | would argue this is an optimization problem!
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A4
| Tractability / validity: The optimization tug-of-war

e The “highest fidelity” model of a system is rarely tractable

— Delicate balance between the model we want to solve and the solver
we want to use

— What can we do?

e Simplify (reduce the model scope)
e Approximate (relax or recast constraints)
e |[terate (solve a series of related problems to develop the

solution to the original problem)

— Optimization 101 ingrains this tension into us; consider:

max abs(x —3)

s.t. [...]
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‘ “Modeling” absolute value

e This probably makes you cringe: max abs(x —3)

— “Experienced modelers would never write abs () !” SL. [..]

¢ Instead, we write:

max absX
st. absX =negX + posX
negX < My

posX <M(1-vy)
X —3 = posX —negX
posX >0,negX >0
y €{0,1}
[-]
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“Modeling” absolute value

e This probably makes you cringe: max abs(x —3)
— “Experienced modelers would never write abs () !” st [--]
¢ Instead, we write:
max absX
e e 1 - st. absX =negX + posX
e But what if “[...] ?IS a negX < My
nonlinear model? Then, 00sX <M (1-Y)
X —3 = posX —negX
(2
208X = e posX >0,negX >0
absX = 2)_( ==X y €{0,1}
1+e™ [...]

e Does any of this really encode our
understanding of the class of problems?

— ...oris this a reflection of our understanding of the solver?
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i Transformations: Projecting problems to problems

e Model Transformations
— Project from one problem space to another

— Standardize common reformulations or approximations
— Convert “unoptimizable” modeling constructs into equivalent

optimizable forms
l_[ Transform }

Model [+| Data {Compile > Problem

[ Solve }
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Transformations are not entirely new

e LINGO’s automatic linearization:

MODEL:
MAX = @ABS( X-3 );
X <= 2;

END

— Generates the “usual” Big-M integer linear model:

MAX _C3
SUBJECT TO
X <=2
- C1- C2+ C3=0
_C1 - 100000 C4 <= 0
_C2 + 100000 C4 <= 100000
X - _Cl1+ C2=23
END
INTE _C4

Cunningham and Schrage, “The LINGO Algebraic Modeling Language.” In Modeling Languages in @ Sandia

Mathematical Optimization, Josef Kallrath ed. Springer, 2004. National
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Why are we interested in transformations?

e Separate model expression from how we intend to solve it
— Defer decisions that improve tractability until solution time
— Explore alternative reformulations or representations
— Support solver-specific model customizations (e.g., abs())

— Support iterative methods that use different solvers requiring
different representations (e.g., initializing NLP from MIP)

e Support “higher level” or non-algebraic modeling constructs

— Express models that are closer to reality, e.g.:
e Piecewise expressions
e Disjunctive models (switching decisions & logic models)
e Differential-algebraic models (dynamic models)
* Bilevel models (game theory models)

e Reduce “mechanical” errors due to manual transformation
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Coopr: a COmmon Optimization Python Repository

-
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~
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' A Quick Tour of Pyomo »-PYOMO

Idea: a Pythonic framework for formulating optimization models

— Provides a natural syntax to describe mathematical models
— Leverages an extensible optimization object model

— Formulates large models with a concise syntax

— Separates modeling and data declarations

— Enables data import and export in commonly used formats

from coopr.pyomo import *
Highlights: model = ConcreteModel()
— Python provides a TedEil s e W)
clean, readable syntax model.x2 = Var(bounds=(-1,1))
— Python scripts provide model.x3 = Var(bounds=(1,2))
a flexible context for model.obj = Objective(
exploring the structure expr= m.x1**2 + (m.x2*m.x3)**4 +
£p del m.x2*¥sin(m.x1+m.x3) + m.x2,
OT Fyomo MOaels sense= minimize)
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Structural transformations: Disjunctive programs

e Disjunctions: selectively enforce sets of constraints

— Sequencing decisions: x ends before y or y ends before x
— Switching decisions: a process unit is built or not
— Alternative selection: selecting from a set of pricing policies

e Implementation: leverage Pyomo blocks "~y -
.. ik
— Disjunct: !
V| (<o
e Block of Pyomo components D
— (Var, Param, Constraint, etc.) ‘ o Ck = Jik N
e Boolean (binary) indicator variable determines Q(Y ) = frue

if block is enforced
— Disjunction:
e Enforces logical XOR across a set of Disjunct indicator variables

— (Logic constraints on indicator variables)
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| Example: Task sequencing

* Prevent tasks colliding on a single piece of equipment
— Derived from Raman & Grossmann (1994)
— Given:
« Tasks | processed on a sequence of machines (with no waiting)
 Task i starts processing at time t; with duration z;,, on machine m
« J(i) is the set of machines used by task i
 C, Is the set of machines used by both tasks i and |

| Yi 11 Yy |

t. + Zrimﬁtk+ kam t, + kam <t + Zrim
med (i) med (k) med (k) med (i)
m<j m< j | B m< m<j -

VjeC,,Vikel,i<k
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Example: Task sequencing in Coopr

def NoCollision(model, disjunct, i, k, j, ik):
lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)
rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)
if ik:

disjunct.c = Constraint( expr= lhs + model.tau[i,j] <=[rhs )

else:
disjunct.c = Constraint( expr=rhs + model.tau[k,j] <= 1lhs )
model.NoCollision = Disjunct( model.L, [0,1], rule=_NoCollision )

def disj(model, i, k, j):
return [ model.NoCollision[i,k,j,ik] for ik in [0,1] ]
model.disj = Disjunction(model.L, rule=_disj)

| Yik ] | Yki ]
bt D T+ T Sht DT |V G+ Dolin + 7 <t+ D T
med (i) med (k) med (k) med (i)
i m< m< j | m< j m< j 1

. - . di
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Solving disjunctive models

e Few solvers “understand” disjunctive models
— Transform model into standard math program

— Big-M relaxation:
e Convert logic variables to binary
e Split equality constraints in disjuncts into pairs of inequality constraints
e Relax all constraints in the disjuncts with “appropriate” M values

N )
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Why is the transformation interesting?

e Model preserves explicit disjunctive structure
e Automated transformation reduces errors
e Automatically identifies appropriate M values (for bounded linear)

e Big-M is not the only way to relax a disjunction!
— Convex hull transformation (Balas, 1985; Lee and Grossmann, 2000)

B )

— Algorithmic approaches
e e.g., Trespalacios and Grossmann (submitted 2013)

— Prematurely choosing one relaxation makes trying others difficult
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| Expression transformations: MPEC

e Mathematical Programming with Equilibrium Constraints
(MPEC)

— Engineering design, economic equilibrium, multilevel games

— Feasible region may be nonconvex and disconnected

e Equilibrium Constraints
— Variational inequalities
— Complementarity conditions
— Optimality conditions (for bilevel problems)
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| MPEC formulations

e General MPEC models can be expressed as

Min,eRn f(x)
S.t. h(x) =0
a; <w;(x)<b; Lv,(x) i=1..m

e The last set of constraints are generalized mixed
complementarity conditions (Ferris, Fourer, and Gay, ‘06),
which have the form

eitherw;(x) = a; and v;(x) =0
or w;(x) = b; and v;(x) <0
or a; <w;(x) <b; and v;(x)=0

Sandia
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Modeling languages support MPECs

e AMPL

— The complements keyword is used to denote complementarity between
two constraints, expressions or variables

GAMS

— The complements keyword is used to denote complementarity between
two constraints, expressions or variables

AIMMS

— Express mixed complementarity conditions by declaring complementarity
variables along with associated constraints

YALMIP

— The complements function declares a constraint that reflects a mixed
complementarity condition.

» Common challenge: lack of control over how the complementarity
constraints are exposed to the solver

Hart and Siirola, p. 24 ations i
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Expressing complementarity conditions in Coopr

from coopr.pyomo import *
from coopr.mpec import Complementarity

M = ConcreteModel()

M.x = Var(bounds=(-1,2))

M.y = Var()

M.c3 = Complementarity(expr=(M.y - M.x**2 + 1 >= 0, M.y >= 0))

e The Complementarity component declares a
complementarity condition

* The tuple argument specifies the two constraints,
expressions, or variables in the complementarity condition.

This model definition is solver agnostic!
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A simple nonlinear reformulation

min f(x)

s.t. h(x) =0
a; < w; < b; i=1..m
w; = w;(x) i=1..m

((,()l' — al')vi(x) <0 i=1..m
((l)l' — bi)vi(x) <0 i=1..m

e NOTE: There are serious difficulties with solving this
formulation as standard stability assumptions are not met.

— But other nonlinear transformations exist!
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A simple disjunctive reformulation

min f(x)
S.t. h(x) =0
yl,i YZ,i Y3
lWi(x) =a;|v [Wi(x) =b;|v]|a <w;(x) < bi] i=1.m
v;(x) =20 v;i(x) <0 v;(x) =0
VitV tys3i =1 i=1..m

V1, Y2i Y3, € 10,1} i=1..m

QE
Hart and Siirola, p. 27 ations i
art and Siirola, p Laboratories



Back to our original example: ABS(x)

e Chaining transformations

f=x"+x" f=x"+x"

f=x"+x" X=X"—X" X=X"—X"

f =abs(x) => Xx=x"—X :{ LN ﬂY}: X~ < My
X">0Lx >0 X =0| | x"=0 X" <M(l-Y)

X" >0,x >0 X" >0,x >0

model = ConcreteModel()

# [..]

TransformFactory(“abs.complements®).apply(model, inplace=True)
TransformFactory(“mpec.disjunctive”).apply(model, inplace=True)

TransformFactory(“gdp.bigm”).apply(model, inplace=True)

Sandia
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Summary

e Model transformations can significantly impact modeling
— Separates the intent of the Modeler from the needs of the solver

— Expands the set of (high-level) modeling constructs
e Models can closer represent how a Modeler “thinks”

— Defers decisions on how to map the problem class to the solver to just before
solve time

— Reduces / eliminates manual transcription errors

— Chaining transformations is a powerful operation
e Complex transformations are cast as a series of simpler operations
e Availability of alternative transformation routes is preserved

e Other applications
— Stochastic programming
— Bilinear relaxations / linearizations
— Bilevel model reformulation
— DAE discretization
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For more information...

* Project homepage el
— https://software.sandia.gov/coopr é‘éi?a"ﬁ%ﬁfé?&#
Pyomo —
e Mailing lists Optimization
— “coopr-forum” Google Group Modeling
— “coopr-developers” Google Group in Python

e “The Book”

@ Springer

e Mathematical Programming Computation paper:
— Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)
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