Analyzing Structured Optimization Models with Automatic Transformations

William E. Hart and John D. Siirola

Analytics Department
Sandia National Laboratories
Albuquerque, NM USA
{wehart,jdsiiro}@sandia.gov

June 4, 2014
MINLP Workshop – CMU
Is this an optimization model?

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]
Models are for *Modelers*

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

- I would argue this is an *optimization problem*!
- So, what’s a *model*?
 - A general representation of a class of problems
 - Data (instance) independent
 - Represents the modeler’s understanding of the class of problems
 - Explicitly annotates and conveys the class structure
 - Incorporates assumptions and simplifications
 - Is both tractable and valid
 - (although these are often contradictory goals)
Models are for *Modelers*

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

- I would argue this is an *optimization problem*!
- So, what’s a *model*?
 - A general representation of a class of problems
 - Data (instance) independent
 - Represents the modeler’s understanding of the class of problems
 - Explicitly annotates and conveys the class structure
 - Incorporates assumptions and simplifications
 - Is both tractable and valid
 - (although these are often contradictory goals)
Optimization problems: Model instances

- We seldom have a single problem to solve
 - Rather we would like to write a single model for a class of problems
 - Key design feature of many AMLs (e.g. strongly encouraged by AMPL)
 - Why?
 - Test small, deploy big
 - Tomorrow’s problem is different from today’s
 - Data may be
 - Huge
 - Machine-generated
 - Stored externally (loaded from external tools, e.g. databases)

Model + Data → Problem
Models are for Modelers

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

• I would argue this is an optimization problem!
• So, what’s a model?
 – A general representation of a class of problems
 • Data (instance) independent
 • Represents the modeler’s understanding of the class of problems
 • Explicitly annotates and conveys the class structure
 – Incorporates assumptions and simplifications
 – Is both tractable and valid
 • (although these are often contradictory goals)
What is *model structure*?

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

- Unlike a solver, modelers don’t think in terms of “\(A\)”
 - Rather, I think in terms of repeated (indexed) units
 - Sets (1-, 2-, n-dimensional)
 - Vectors or matrices of variables
 - Groups of related constraints (blocks)

- The model may not be “flat”
 - Block diagonal (e.g., scenarios in stochastic programming)
 - Graph-based (e.g., network flow)
 - Hierarchically defined (e.g., a model composed of sub-models)
Models are for Modelers

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathcal{R}^n
\end{align*}
\]

• I would argue this is an optimization problem!

• So, what’s a model?
 – A general representation of a class of problems
 • Data (instance) independent
 – Represents the modeler’s understanding of the class of problems
 • Explicitly annotates and conveys the class structure
 – Incorporates assumptions and simplifications
 – Is both tractable and valid
 • (although these are often contradictory goals)
Tractability / validity: The optimization tug-of-war

• The “highest fidelity” model of a system is rarely tractable
 – Delicate balance between the model we want to solve and the solver we want to use
 – What can we do?
 • Simplify (reduce the model scope)
 • Approximate (relax or recast constraints)
 • Iterate (solve a series of related problems to develop the solution to the original problem)

– Optimization 101 ingrains this tension into us; consider:

\[
\text{max } \quad abs(x - 3) \\
\text{s.t. } \quad [...] \\
\]
“Modeling” absolute value

• This probably makes you cringe:
 – “Experienced modelers would never write \(\text{abs}() \)!”

• Instead, we write:

\[
\begin{align*}
 \max \ & \ abs(x - 3) \\
 \text{s.t.} \ & \ [...]
\end{align*}
\]

\[
\begin{align*}
 \max \ & \ absX \\
 \text{s.t.} \ & \ absX = negX + posX \\
 & \ negX \leq My \\
 & \ posX \leq M(1 - y) \\
 & \ X - 3 = posX - negX \\
 & \ posX \geq 0, negX \geq 0 \\
 & \ y \in \{0,1\} \\
 & \ [...]
\end{align*}
\]
“Modeling” absolute value

- This probably makes you cringe:
 - “Experienced modelers would never write abs()!”

- Instead, we write:

- But what if “[...]” is a nonlinear model? Then,
 \[
 \text{absX} = \sqrt{x^2 + \varepsilon} \\
 \text{absX} = \frac{2x}{1 + e^{-x/h}} - x
 \]

- Does any of this really encode our understanding of the class of problems?
 - ...or is this a reflection of our understanding of the solver?
Transformations: *Projecting problems to problems*

- Model Transformations
 - Project from one problem space to another
 - Standardize common reformulations or approximations
 - Convert “unoptimizable” modeling constructs into equivalent optimizable forms
Transformations are not entirely new

• LINGO’s automatic linearization:

MODEL:
 MAX = @ABS(X-3);
 X <= 2;
END

- Generates the “usual” Big-M integer linear model:

MAX _C3
SUBJECT TO
 X <= 2
 - _C1 - _C2 + _C3 = 0
 _C1 - 100000 _C4 <= 0
 _C2 + 100000 _C4 <= 100000
 X - _C1 + _C2 = 3
END
INTE _C4

Why are we interested in transformations?

• Separate model expression from how we intend to solve it
 – Defer decisions that improve tractability until solution time
 – Explore alternative reformulations or representations
 – Support *solver-specific* model customizations (e.g., `abs()`)
 – Support iterative methods that use different solvers requiring different representations (e.g., initializing NLP from MIP)

• Support “higher level” or non-algebraic modeling constructs
 – Express models that are closer to reality, e.g.:
 • Piecewise expressions
 • Disjunctive models (switching decisions & logic models)
 • Differential-algebraic models (dynamic models)
 • Bilevel models (game theory models)

• Reduce “mechanical” errors due to manual transformation
Coopr: a COmmon Optimization Python Repository

- Decomposition Strategies
 - Progressive Hedging
 - Generalized Benders

- Language Extensions
 - Disjunctive Programming
 - Stochastic Programming
 - Differential Equations
 - Complementarity Constraints
 - Bilevel Programs

- Model Transformations

- Core Optimization Infrastructure

- Pluggable Solver Interfaces

- CPLEX
- Gurobi
- Xpress
- GLPK
- CBC
- PICO
- OpenOpt
- AMPL Solver Library
 - Ipopt
 - KNITRO
 - Coliny
 - Dakota
 - BONMIN

PYOMO
PYthon Optimization Modeling Objects
A Quick Tour of Pyomo

Idea: a Pythonic framework for formulating optimization models
- Provides a natural syntax to describe mathematical models
- Leverages an extensible optimization object model
- Formulates large models with a concise syntax
- Separates modeling and data declarations
- Enables data import and export in commonly used formats

Highlights:
- Python provides a clean, readable syntax
- Python scripts provide a flexible context for exploring the structure of Pyomo models

```python
from coopr.pyomo import *
model = ConcreteModel()
model.x1 = Var()
model.x2 = Var(bounds=(-1,1))
model.x3 = Var(bounds=(1,2))
model.obj = Objective(
    expr= m.x1**2 + (m.x2*m.x3)**4 + m.x2*sin(m.x1+m.x3) + m.x2,
    sense= minimize)
```
Structural transformations: Disjunctive programs

• Disjunctions: selectively enforce sets of constraints
 – Sequencing decisions: \(x \) ends before \(y \) or \(y \) ends before \(x \)
 – Switching decisions: a process unit is built or not
 – Alternative selection: selecting from a set of pricing policies

• Implementation: leverage Pyomo blocks
 – **Disjunct**:
 • Block of Pyomo components
 – (Var, Param, Constraint, etc.)
 • Boolean (binary) indicator variable determines if block is enforced
 – **Disjunction**:
 • Enforces logical XOR across a set of Disjunct indicator variables
 – (Logic constraints on indicator variables)
Example: Task sequencing

• Prevent tasks colliding on a single piece of equipment
 – Derived from Raman & Grossmann (1994)
 – Given:
 • Tasks I processed on a sequence of machines (with no waiting)
 • Task i starts processing at time t_i with duration τ_{im} on machine m
 • $J(i)$ is the set of machines used by task i
 • C_{ik} is the set of machines used by both tasks i and j

\[
\begin{bmatrix}
 t_i + \sum_{m \in J(i), m \leq j} Y_{ik} \\
 \sum_{m \in J(k), m < j} \tau_{im}
\end{bmatrix} \leq
\begin{bmatrix}
 t_k + \sum_{m \in J(k), m \leq j} \tau_{km} \\
 \sum_{m \in J(i), m < j} \tau_{im}
\end{bmatrix}
\]

$\forall j \in C_{ik}, \forall i, k \in I, i < k$
Example: Task sequencing in Coopr

```python
def _NoCollision(model, disjunct, i, k, j, ik):
    lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)
    rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)
    if ik:
        disjunct.c = Constraint( expr= lhs + model.tau[i,j] <= rhs )
    else:
        disjunct.c = Constraint( expr= rhs + model.tau[k,j] <= lhs )
model.NoCollision = Disjunct( model.L, [0,1], rule=_NoCollision )

def _disj(model, i, k, j):
    return [ model.NoCollision[i,k,j,ik] for ik in [0,1] ]
model.disj = Disjunction(model.L, rule=_disj)
```

\[
\begin{align*}
\forall j \in C_{ik}, \forall i, k \in I, i < k
\end{align*}
\]
Solving disjunctive models

- Few solvers “understand” disjunctive models
 - *Transform* model into standard math program
 - Big-M relaxation:
 - Convert logic variables to binary
 - Split equality constraints in disjuncts into pairs of inequality constraints
 - Relax all constraints in the disjuncts with “appropriate” M values
Why is the transformation interesting?

- Model preserves explicit disjunctive structure
- Automated transformation reduces errors
- Automatically identifies appropriate M values (for bounded linear)
- Big-M is not the only way to relax a disjunction!
 - Convex hull transformation (Balas, 1985; Lee and Grossmann, 2000)
 - Algorithmic approaches
 - e.g., Trespalacios and Grossmann (submitted 2013)
 - Prematurely choosing one relaxation makes trying others difficult
Expression transformations: MPEC

• Mathematical Programming with Equilibrium Constraints (MPEC)
 – Engineering design, economic equilibrium, multilevel games
 – Feasible region may be nonconvex and disconnected

• Equilibrium Constraints
 – Variational inequalities
 – Complementarity conditions
 – Optimality conditions (for bilevel problems)
MPEC formulations

- General MPEC models can be expressed as

\[\min_{x \in \mathbb{R}^n} \quad f(x) \]
\[\text{s.t.} \quad h(x) = 0 \]
\[a_i \leq w_i(x) \leq b_i \perp v_i(x) \quad i = 1 \ldots m \]

- The last set of constraints are generalized mixed complementarity conditions (Ferris, Fourer, and Gay, '06), which have the form

 either \(w_i(x) = a_i \) and \(v_i(x) \geq 0 \)
 or \(w_i(x) = b_i \) and \(v_i(x) \leq 0 \)
 or \(a_i < w_i(x) < b_i \) and \(v_i(x) = 0 \)
Modeling languages support MPECs

- AMPL
 - The `complements` keyword is used to denote complementarity between two constraints, expressions or variables

- GAMS
 - The `complements` keyword is used to denote complementarity between two constraints, expressions or variables

- AIMMS
 - Express mixed complementarity conditions by declaring complementarity variables along with associated constraints

- YALMIP
 - The `complements` function declares a constraint that reflects a mixed complementarity condition.

➤ Common challenge: lack of control over how the complementarity constraints are exposed to the solver
Expressing complementarity conditions in Coopr

```python
from coopr.pyomo import *
from coopr.mpec import Complementarity

M = ConcreteModel()
M.x = Var(bounds=(-1,2))
M.y = Var()

M.c3 = Complementarity(expr=(M.y - M.x**2 + 1 >= 0, M.y >= 0))
```

- The `Complementarity` component declares a complementarity condition.
- The tuple argument specifies the two constraints, expressions, or variables in the complementarity condition.

This model definition is solver agnostic!
A simple nonlinear reformulation

\[
\begin{align*}
\min \quad & f(x) \\
\text{s.t.} \quad & h(x) = 0 \\
& a_i \leq \omega_i \leq b_i \quad i = 1 \ldots m \\
& \omega_i = w_i(x) \quad i = 1 \ldots m \\
& (\omega_i - a_i)v_i(x) \leq 0 \quad i = 1 \ldots m \\
& (\omega_i - b_i)v_i(x) \leq 0 \quad i = 1 \ldots m
\end{align*}
\]

- **NOTE:** There are serious difficulties with solving this formulation as standard stability assumptions are not met.
 - But other nonlinear transformations exist!
A simple disjunctive reformulation

\[
\begin{align*}
\text{min} & \quad f(x) \\
\text{s.t.} & \quad h(x) = 0 \\
& \quad \begin{cases}
\begin{aligned}
& y_{1,i} \\
& w_i(x) = a_i \\
& v_i(x) \geq 0
\end{aligned}
\end{cases} \lor
\begin{cases}
\begin{aligned}
& y_{2,i} \\
& w_i(x) = b_i \\
& v_i(x) \leq 0
\end{aligned}
\end{cases} \lor
\begin{cases}
\begin{aligned}
& y_{3,i} \\
& a_i < w_i(x) < b_i \\
& v_i(x) = 0
\end{aligned}
\end{cases} \\
& \quad i = 1 \ldots m \\
& \quad y_{1,i} + y_{2,i} + y_{3,i} = 1 \\
& \quad y_{1,i}, y_{2,i}, y_{3,i} \in \{0,1\} \\
& \quad i = 1 \ldots m
\end{align*}
\]
Back to our original example: ABS(x)

- Chaining transformations

\[f = x^+ + x^- \]
\[f = \text{abs}(x) \Rightarrow x = x^+ - x^- \Rightarrow \begin{cases} y = 0 \lor \neg y \\ x^- = 0 \\ x^+ = 0 \end{cases} \Rightarrow x^- \leq My \]
\[x^+ \geq 0, x^- \geq 0 \]

```python
model = ConcreteModel()
# [...]  
TransformFactory("abs.complements").apply(model, inplace=True)
TransformFactory("mpec.disjunctive").apply(model, inplace=True)
TransformFactory("gdp.bigm").apply(model, inplace=True)
```
Summary

• Model transformations can significantly impact modeling
 – Separates the intent of the Modeler from the needs of the solver
 – Expands the set of (high-level) modeling constructs
 • Models can closer represent how a Modeler “thinks”
 – Defers decisions on how to map the problem class to the solver to just before solve time
 – Reduces / eliminates manual transcription errors
 – Chaining transformations is a powerful operation
 • Complex transformations are cast as a series of simpler operations
 • Availability of alternative transformation routes is preserved

• Other applications
 – Stochastic programming
 – Bilinear relaxations / linearizations
 – Bilevel model reformulation
 – DAE discretization
For more information…

- Project homepage
 - https://software.sandia.gov/coopr

- Mailing lists
 - “coopr-forum” Google Group
 - “coopr-developers” Google Group

- “The Book”

- Mathematical Programming Computation paper:
 - Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)