

€-OA for the solution of bi-objective generalized disjunctive programming problems in the synthesis of nonlinear process networks

Ali Fattahi and Metin Türkay College of Engineering Koç University, Istanbul

MINLP Workshop 2014 Carnegie Mellon University, Pittsburgh, PA June 3, 2014

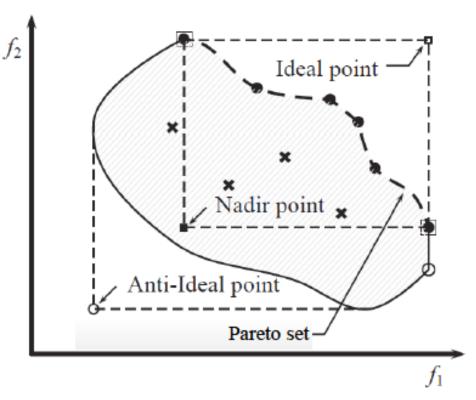
MULTI-OBJECTIVE OPTIMIZATION

> Multi-objective optimization problems (MOOP) involve optimizing simultaneously N objective functions f_1, f_2, \dots, f_N over a feasible set X.

 $\max F(x) = (f_1(x), \dots, f_N(x))$ s.t. $x \in X$

- Many survey papers were published (Ulungu&Teghem, 1994; Ehrgott&Gandibleux, 2000; Ehrgott, 2005)
- Research on solution algorithms:
 - Continuous and convex: a variety of algorithms maturing
 - Continuous and nonconvex: a few algorithms
 - Combinatorial: a number of papers in the last 5 years
 - Discrete-continuous linear: a handful of papers in the last 3 years
 - Discrete-continuous nonlinear: only 5 papers straighforward use of algorithms developed for continuous and convex problems

TERMINOLOGY



 \succ Let $x, x' \in X$ \succ x dominates x' $f_n(x) \ge f_n(x') \quad \forall n = 1, \dots, N \text{ and } \exists \tilde{n} \in \{1, \dots, N\}$ with $f_{\tilde{n}}(x) > f_{\tilde{n}}(x')$ $\succ x$ strictly dominates x' $f_n(x) > f_n(x') \quad \forall n = 1, ..., N$ \succ x weakly dominates x' $f_n(x) \ge f_n(x') \quad \forall n = 1, \dots, N$ $\succ x$ is Pareto optimal or efficient $\forall x' \in X$ that does not dominate x

- Ideal Point (Utopia Point): all objectives are optimized simultaneously
- Anti-Ideal Point: all objectives are at their worst
- Pareto set: entire set of non-dominated solutions
- > *Nadir Point:* lower bound of each objective in the Pareto set

ϵ -CONSTRAINT APPROACH

≻Haimes et al., 1971

- \checkmark Presented the ϵ -constraint approach to solving MOOP.
- ✓ The maximum and minimum values for all objectives are found separately
- One of the objectives is retained and the rest of the objectives are converted into constraints
- \checkmark A virtual grid is constructed to include all *N*-1 objective functions.
- ✓ Then the following sub-problem is solved iteratively for each i_i

$$\max f_{1}(x)$$
s.t.
$$f_{j}(x) \ge Lb_{j} + i_{j}\epsilon_{j} \quad \forall j = 2,...,N$$

$$x \in X$$

 Lb_j : the lower bound on the objective *j* ϵ_j : range of the objective *j* in the iteration i_j

AUGMENTED ϵ -CONSTRAINTAPPROACH

- >The ϵ -constraint approach may find weakly efficient solutions.
- ≻Mavrotas, 2009
 - ✓ Modified the ϵ -constraint method by introducing a slack variable to the each objective that is converted into a constraint.
 - ✓ A penalty term with scalar μ (10⁻³-10⁻⁶) is added to the objective

$$\max f_{1}(x) + \mu \sum_{j=2}^{N} \frac{s_{j}}{r_{j}}$$
s.t.

$$f_{j}(x) - s_{j} = Lb_{j} + i_{j}\epsilon_{j} \quad \forall j = 2, ..., N$$

$$s_{j} \ge 0 \quad \forall j = 2, ..., N$$

$$x \in X$$

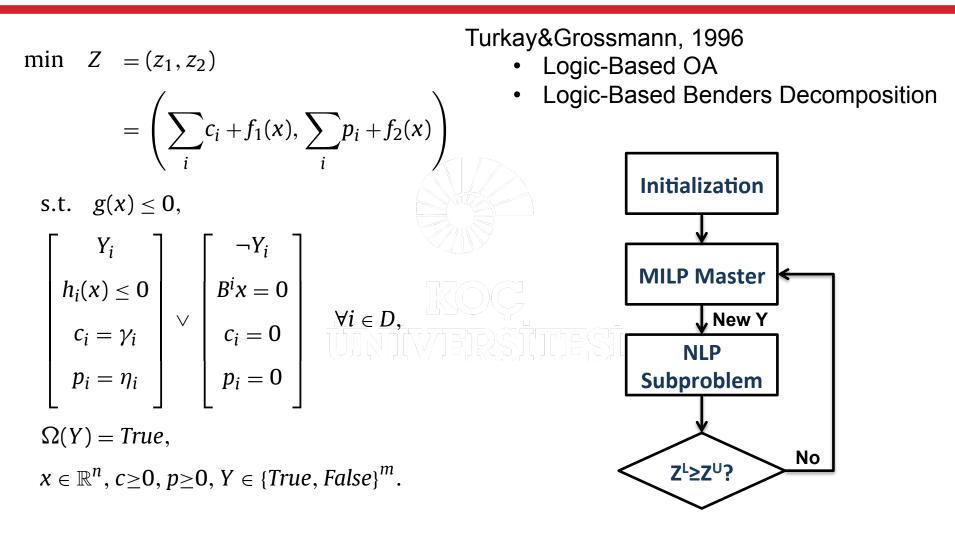
 s_j : slack variable for each objective j that is converted into a constraint r_j : the range of objective j Lb_j : the lower bound on the objective j ϵ_j : range of the objective j in the iteration i_j

LITERATURE ON MOMINLP

> **T**- ϵ -con: Straightforward extension of ϵ -constraint approach

- Chakraborty&Linninger (2002), Plant-wide waste management. 1. Synthesis and multi-objective design
- Cucek, P.S. Varbanov, J.J. Klemes, Z. Kravanja (2012), Total footprintsbased multi-criteria optimisation of regional biomass energy supply chains
- Cucek, J.J. Klemes, P.S. Varbanov, Z. Kravanja (2102), Reducing the dimensionality of criteria in multi-objective optimisation of biomass energy supply chains
- Martinez, A.M. Eliceche (2008), Minimization of life cycle greenhouse emissions and cost in the operation of steam and power plants
- Martinez, A.M. Eliceche (2011), Bi-objective minimization of environmental impact and cost in utility plants
- > Theoretical analysis of the problem (MOMINLP) and computational issues with the striaghtforward extension of ϵ -constraint approach are missing

LOGIC-BASED OA



NLP SUBPROMLEMS & MILP MASTER

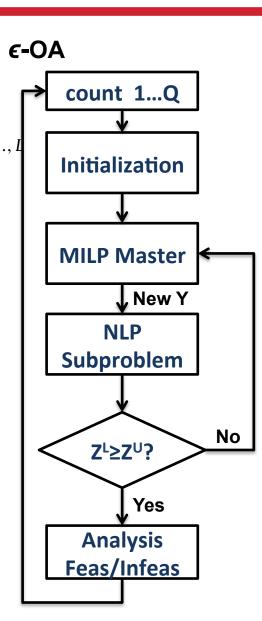
NLP Subproblems
min
$$Z_U^{aug} = \sum_i c_i + f_1(x) - \frac{\mu}{r}s$$

s.t. $\sum_i p_i + f_2(x) + s = z_2^U - j\epsilon_i$
 $g(x) \le 0,$
 $h_i(x) \le 0$
 $c_i = \gamma_i$
 $p_i = \eta_i$
 $\forall \overline{Y_i} = True,$
 $B^i x = 0$
 $c_i = 0$
 $p_i = 0$
 $\forall \overline{Y_i} = False,$

 $x \in \mathbb{R}^n, c \ge 0, p \ge 0.$

MILP Master

$$\begin{array}{ll} \min & Z_L^{aug} = \sum \gamma_i y_i + \alpha_{oa} - \frac{\mu}{r} s \\ \text{s.t.} & \alpha_{oa} \ge f_1(x^{l\,i}) + \nabla f_1(x^{l\,i})^T (x - x^l) \quad \forall l = 1, \\ g(x^l) + \nabla g(x^l)^T (x - x^l) \le 0 \quad \forall l = 1, \dots, L \\ \sum \eta_i y_i + f_2(x^l) + \nabla f_2(x^{l\,i})^T (x - x^l) + s \\ &= z_2^U - j \epsilon \quad \forall l = 1, \dots, L \\ \nabla h_i(x^l)^T x \le \left(-h_i(x^l) + \nabla h_i(x^l)^T x^l \right) y_i \\ \forall l = 1, \dots, L, \ i \in D \\ B^i x \le M_i y_i \quad \forall i \in D \\ Ay \le a \\ \alpha_{oa} \in \mathbb{R}^1, \ x \in \mathbb{R}^n, \ y \in \{0, 1\}^m. \\ + \text{ No good cuts} \end{array}$$



Theorem 1: The optimal solution found by the sub-problem in the augmented ε-constraint method is efficient within the search region of the sub-problem.

> Proof: $Z_A = f_1(x_A) + \mu \sum_{j=2}^{N} \frac{f_j(x_A) - Lb_j - i_j\epsilon_j}{r_j}$ $Z_B = f_1(x_B) + \mu \sum_{j=2}^{N} \frac{f_j(x_B) - Lb_j - i_j\epsilon_j}{r_j}$ $\Rightarrow Z_A - Z_B = f_1(x_A) - f_1(x_B) + \mu \sum_{j=2}^{N} \frac{f_j(x_A) - f_j(x_B)}{r_j}$

2 cases are possible: 1 $f_1(x_A) \ge f_1(x_B)$ and $\sum_{j=2}^N \frac{f_j(x_A)}{r_j} > \sum_{j=2}^N \frac{f_j(x_B)}{r_j}$, so $Z_A > Z_B$ 2 $f_1(x_A) > f_1(x_B)$ and $\sum_{j=2}^N \frac{f_j(x_A)}{r_j} = \sum_{j=2}^N \frac{f_j(x_B)}{r_j}$, so $Z_A - Z_B > 0$

EFFICIENT SOLUTIONS

- Theorem 2: The efficient solution found by the sub-problem in the augmented ε-constraint method is also efficient for the original MOMINLP.
- Proof by contradiction:
- ✓ Consider x_A as the optimal solution for a particular sub-problem. Theorem 1 proves that it is efficient the same sub-problem. $\hat{i}_2, \cdots, \hat{i}_N$
- ✓ Assume that x_C is feasible for the original MOOP but not the feasible for the particular sub-problem where x_A is optimal.
- ✓ Therefore, $x_C \in X$ but $f_j(x_C) \ge Lb_j + \hat{i}_j \epsilon_j, \ j = 2, \cdots, N$
- ✓ Suppose that x_C dominates x_A meaning that $f_j(x_C) \ge f_j(x_A)$ with at least one strict inequality
- $\checkmark \text{ Since } f_j(x_A) \ge Lb_j + \hat{i}_j \epsilon_j \text{ , then } f_j(x_C) \ge f_j(x_A) \ge Lb_j + \hat{i}_j \epsilon_j$
- ✓ Therefore, x_C must be feasible for the same sub-problem which contradicts with
 - ✓ assumption of x_c being not feasible for the particular sub-problem
 - \checkmark x_A being the optimal solution for the particular sub-problem

THEORETICAL ANALYSIS-BRIEF

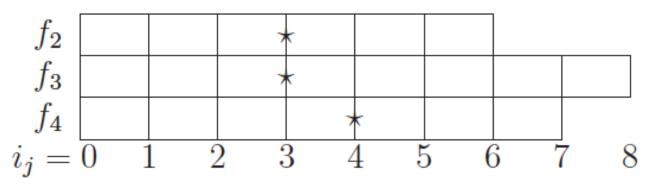
- > Theorem1 and Theorem 2 proves that as long as each subproblem is solved to optimality, then the augmented ϵ -constraint method guarantees that every solution generated is contained in the Pareto set.
- These theorems are valid for all deterministic optimization problems.
- Computational Issues:
 - ➤ Infeasible Subproblems \/ R
 - Feasible Subproblems

INFEASIBLE SUB-PROBLEMS

> If there is sub-problem, $\hat{i}_2, \dots, \hat{i}_N$, that is infeasible;

$$\nexists x \in X \text{ such that } f_j(x) \ge Lb_j + \hat{i}_j \epsilon_j, \ \forall j = 2, \cdots, N$$

- > Then, increasing the iteration count (\hat{i}_j) would make the problem more restrictive. So, the next iteration will be infeasible for all possible combinations of these indices.
- > Ex: Sub-problem for $i_2=3$, $i_3=3$ and $i_4=4$ is infeasible.



> Any sub-problem generated such that $i_2 \ge 3$, $i_3 \ge 3$ and $i_4 \ge 4$ is also infeasible.

FEASIBLE SUB-PROBLEMS

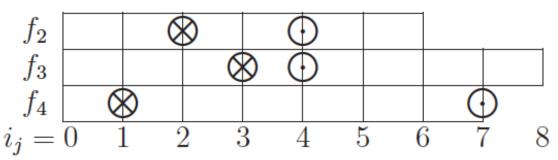
> If the sub-problem, $\hat{i}_2, \dots, \hat{i}_N$, is optimal;

$$f_j(\hat{x}) \ge Lb_j + \hat{i}_j\epsilon_j, \ \forall j = 2, \cdots, N$$

> Then, $\tilde{i}_j = \max_{i_j = \hat{i}_j, \hat{i}_j + 1, \cdots, q_j} \{f_j(\hat{x}) \ge Lb_j + i_j\epsilon_j\}, \forall j = 2, \cdots, N$

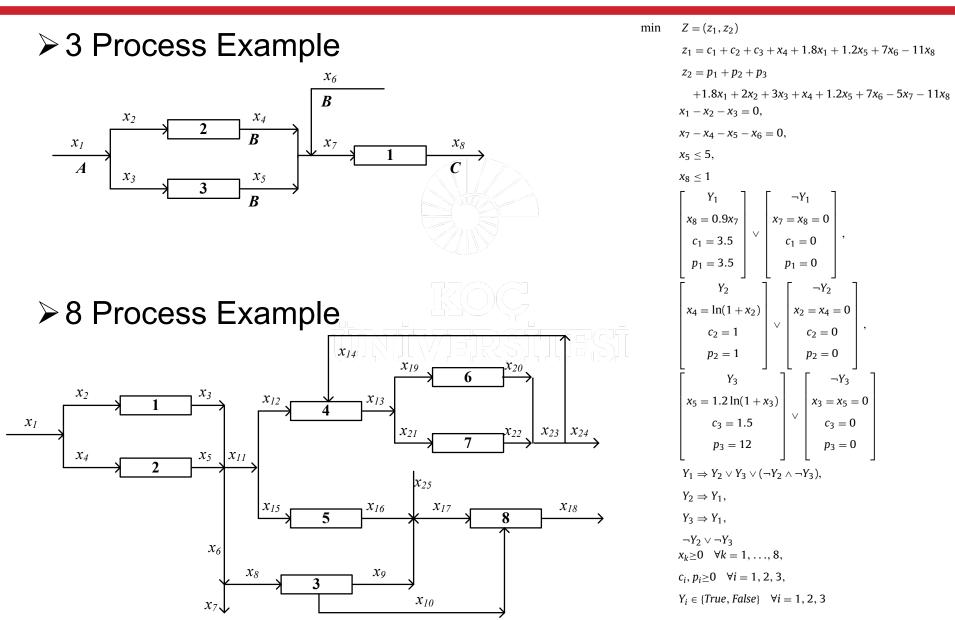
satisfies the same inequality.

- \succ For any set of indices, i_2, \cdots, i_N , such that $\hat{i}_j \leq i_j \leq \tilde{i}_j, \ \forall j=2, \cdots, N$ the optimal solution is the same and we do not need to solve them again.
- > Ex: Sub-problem for $i_2=2$, $i_3=3$ and $i_4=1$ is optimal and each ϵ -constraint until $i_2=4$, $i_3=4$ and $i_4=7$ is feasible.



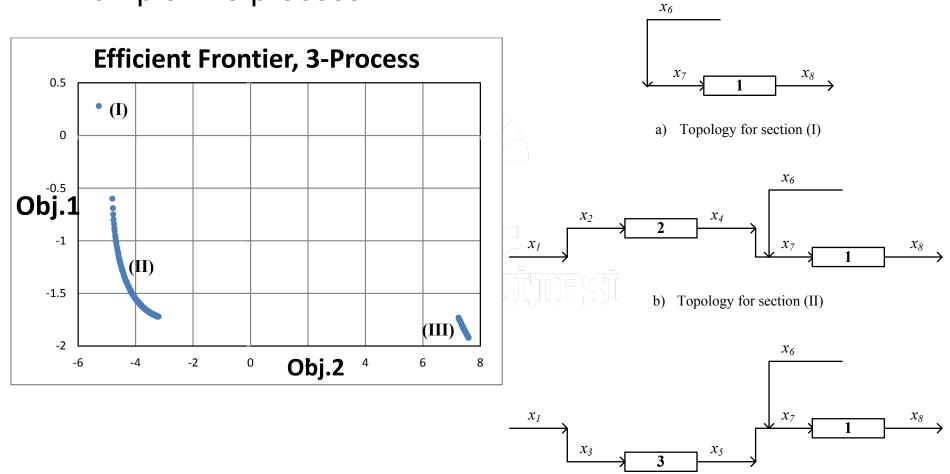
> Any sub-problem generated such that $2 \ge i_2 \ge 4$, $3 \ge i_3 \ge 4$ and $1 \ge i_4 \ge 7$ have the same optimal solution.

EXAMPLES



PARETO SOLUTIONS-1

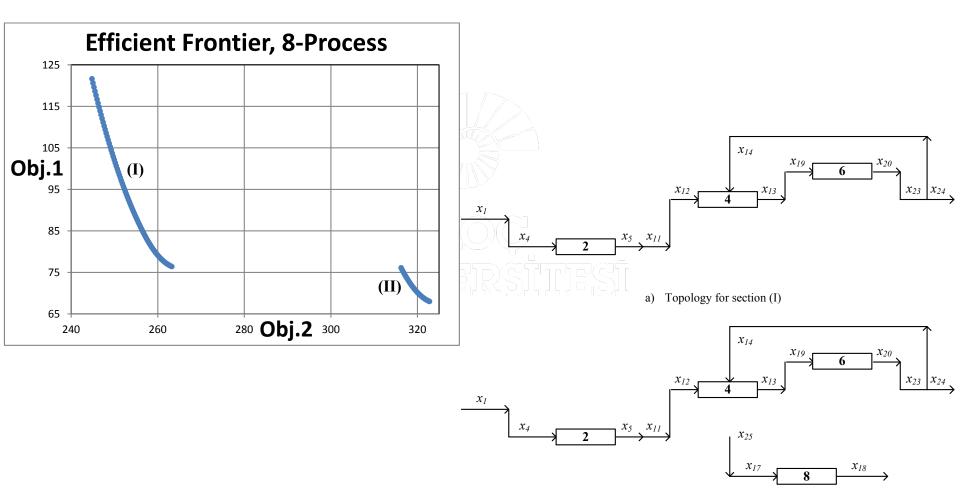
➤ Example 1: 3 process



c) Topology for section (III)

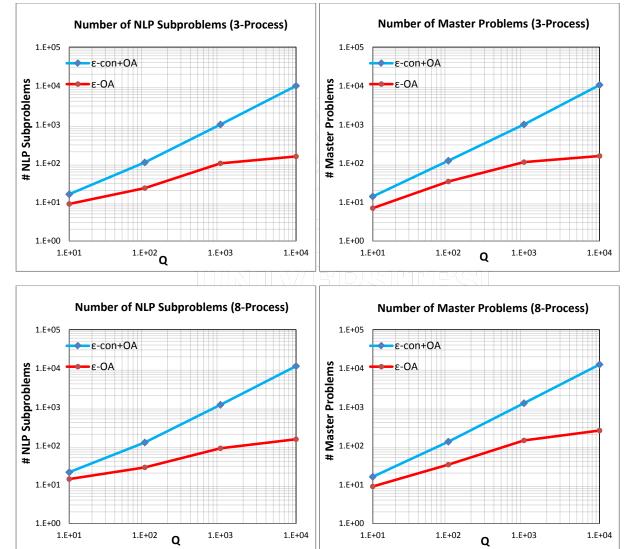
PARETO SOLUTIONS-2

Example 1: 8 process

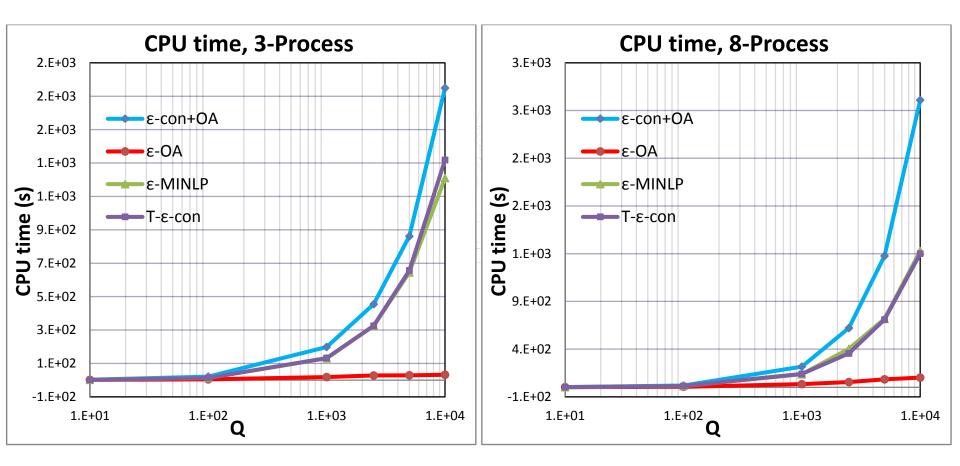


ITERATIONS

The number of NLP subproblems and MILP master problems



➤ CPU time comparison



SUMMARY

Generation of the Pareto set for MOMINLP is challenging

The augmented ε-constraint method for nonlinear process network synthesis

Theoretical analysis

- The solution of each sub-problem is theoretically guaranteed to be efficient provided that it is optimal
- > Augmented penalty value is critical
- > Algorithmic improvements

Infeasible solutions

Feasible solutions

Computational performance on two benchmark problems

ACKNOWLEDGEMENTS

➢IBM: SUR Award + Faculty Award

≻TUBITAK: 104M322 Project

European Commission: InTraRegio Project (Contract: 286975)

Paper is available online:

Fattahi, A. and M. Turkay (2014), ϵ -OA for the Solution of Bi-Objective Generalized Disjunctive Programming Problems in the Synthesis of Nonlinear Process Networks <u>doi</u>