
ϵ-OA for the solution of bi-objective
generalized disjunctive programming

problems in the synthesis of
nonlinear process networks

Ali Fattahi and Metin Türkay
College of Engineering
Koç University, Istanbul

MINLP Workshop 2014
Carnegie Mellon University, Pittsburgh, PA

June 3, 2014

MULTI-OBJECTIVE OPTIMIZATION

Ø  Multi-objective optimization problems (MOOP) involve
optimizing simultaneously N objective functions f1, f2,…,fN
over a feasible set X.

Ø  Many survey papers were published (Ulungu&Teghem, 1994;
Ehrgott&Gandibleux, 2000; Ehrgott, 2005)

Ø  Research on solution algorithms:
Ø  Continuous and convex: a variety of algorithms – maturing
Ø  Continuous and nonconvex: a few algorithms
Ø  Combinatorial: a number of papers in the last 5 years
Ø  Discrete-continuous – linear: a handful of papers in the last 3 years
Ø  Discrete-continuous – nonlinear: only 5 papers straighforward use

of algorithms developed for continuous and convex problems

max F(x) = f1(x),..., fN (x)()
s.t. x ∈X

TERMINOLOGY
Ø Let
Ø  x dominates x’

Ø  x strictly dominates x’

Ø  x weakly dominates x’

Ø x is Pareto optimal or efficient
 that does not dominate x

 Ø  Ideal Point (Utopia Point): all objectives are optimized simultaneously

Ø Anti-Ideal Point: all objectives are at their worst
Ø Pareto set: entire set of non-dominated solutions
Ø Nadir Point: lower bound of each objective in the Pareto set

 x,x ' ∈X

fn(x) ≥ fn(x ') ∀n = 1,..., N and ∃ !n∈{1,..., N}

with f !n(x) > f !n(x ')

 fn(x) > fn(x ') ∀n = 1,..., N

 fn(x) ≥ fn(x ') ∀n = 1,..., N

 ∀x ' ∈X

Ø Haimes et al., 1971
ü  Presented the ϵ-constraint approach to solving MOOP.
ü  The maximum and minimum values for all objectives are found separately
ü  One of the objectives is retained and the rest of the objectives are

converted into constraints
ü  A virtual grid is constructed to include all N-1 objective functions.
ü  Then the following sub-problem is solved iteratively for each ij

 Lbj: the lower bound on the objective j
 ϵj: range of the objective j in the iteration ij

ϵ-CONSTRAINT APPROACH

max f1(x)

s.t.
f j (x) ≥ Lbj + ijε j ∀j = 2,..., N

 x ∈X

Ø The ϵ-constraint approach may find weakly efficient solutions.
Ø Mavrotas, 2009

ü  Modified the ϵ-constraint method by introducing a slack variable to the
each objective that is converted into a constraint.

ü  A penalty term with scalar µ (10-3-10-6) is added to the objective

 sj: slack variable for each objective j that is converted into a constraint
 rj: the range of objective j
 Lbj: the lower bound on the objective j
 ϵj: range of the objective j in the iteration ij

AUGMENTED ϵ-CONSTRAINT
APPROACH

max f1(x)+ µ
sj

rjj=2

N

∑
s.t.
f j (x)− sj = Lbj + ijε j ∀j = 2,..., N

sj ≥ 0 ∀j = 2,..., N

 x ∈X

Ø  T-ϵ-con: Straightforward extension of ϵ-constraint approach

Ø  Chakraborty&Linninger (2002), Plant-wide waste management. 1.
Synthesis and multi-objective design

Ø  Cucek, P.S. Varbanov, J.J. Klemes, Z. Kravanja (2012), Total footprints-
based multi-criteria optimisation of regional biomass energy supply chains

Ø  Cucek, J.J. Klemes, P.S. Varbanov, Z. Kravanja (2102), Reducing the
dimensionality of criteria in multi-objective optimisation of biomass energy
supply chains

Ø  Martinez, A.M. Eliceche (2008), Minimization of life cycle greenhouse
emissions and cost in the operation of steam and power plants

Ø  Martinez, A.M. Eliceche (2011), Bi-objective minimization of environmental
impact and cost in utility plants

Ø  Theoretical analysis of the problem (MOMINLP) and computational issues with

the striaghtforward extension of ϵ-constraint approach are missing

LITERATURE ON MOMINLP

LOGIC-BASED OA

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

2 A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx

efficient solutions to this problem. Cucek et al. (2012) reduced the
dimensionality of the criteria in MOMINLP of biomass energy sup-
ply chains based on similar behavior among criteria. Chakraborty
and Linninger (2002) presented combinatorial process synthesis
for developing plant-wide recovery and treatment policies with
conflicting objectives cost and environmental impact. A common
issue in all of the previous work is the straightforward use of exist-
ing methods, specially the traditional !-constraint (T-!-con), to
solve the MCO problems. In T-!-con, one of the objectives optimized
while the values of other criteria are bounded by a parameter, !.
Then, a set of efficient solutions are found by systematic variation of
! (Haimes et al., 1971; Hwang and Masud, 1979). Several methods
for selecting !-values are studied (Goicoechea et al., 1976; Stadler,
1988). The drawback of T-!-con is, however, the possibility of
generating weekly efficient solutions. The augmented !-constraint
method overcomes this impediment by including the slacks of the
constraints that are added due to the other criteria to the objective
function, weighted by a parameter ", to eliminate the possibility of
generating weekly dominated solutions (Mavrotas, 2009; Mavrotas
and Florios, 2013). In this paper, we investigate bi-objective non-
linear networks where two objective functions are simultaneously
minimized (without loss of generality), and develop an efficient
algorithm (!-OA), using augmented !-constraint and OA, to find
efficient solutions in a very short CPU time.

MINLPs are categorized as the most difficult problems as they
include both discrete and continuous variables and involve nonlin-
earity in objective function and constraints. Several methods have
been proposed to solve MINLPs including NLP-based branch and
bound (Nabar and Schrage, 1991), generalized Beneders decom-
position (Geoffrion, 1972), and OA (Duran and Grossmann, 1986).
The OA is suitable for convex MINLPs and its execution involves
repeatedly solving the NLP subproblem, generated by fixing the val-
ues of discrete variables, and the Master problem, constructed by
replacing the nonlinear functions by their linear approximations,
until the bounds from these two problems converge. In this paper,
we use logic-based OA to develop our !-OA algorithm to solve
bi-objective GDPs in the synthesis of nonlinear process networks.
The !-OA uses the results of the previously solved subproblems
to eliminate the unnecessary operations in subsequent iterations.
We conduct an experiment to compare the effectiveness of !-
OA with the straightforward use of OA to solve subproblems of
the augmented !-constraint method (!-con + OA), the augmented
!-constraint with MINLP solvers (!-MINLP), and T-!-con. We illus-
trate these four algorithms on 3 and 8 process networks and show
that !-OA is very effective than others. Moreover, compared to T-!-
con, our novel algorithm !-OA enhances the quality of the results
as it guarantees the efficiency of the solutions.

The design of this paper goes as follows. Section 2 presents
the bi-objective nonlinear process networks and illustrates on 3
and 8 process problems. The augmented !-constraint model of this
problem is given in Section 3. Section 4 outlines the foundation
of logic-based OA with respect to the bi-objective nonlinear pro-
cess networks problem. We propose the novel !-OA algorithm in
Section 5. A computational experiment is presented in Section 6 to
illustrate the efficiency of !-OA. This is followed by conclusion.

2. Bi-objective nonlinear process networks

The generalized disjunctive programming model of bi-objective
nonlinear process networks (P) is represented as follows.

min Z = (z1, z2)

=

(
∑

i

ci + f1(x),
∑

i

pi + f2(x)

)
(1)

s.t. g(x) ≤ 0, (2)
⎡

⎢⎢⎢⎢⎢⎣

Yi

hi(x) ≤ 0

ci = #i

pi = $i

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Yi

Bix = 0

ci = 0

pi = 0

⎤

⎥⎥⎥⎥⎥⎦
∀i ∈ D, (3)

%(Y) = True, (4)

x ∈ Rn, c≥0, p≥0, Y ∈ {True, False}m. (5)

The bi-objective optimization model involves continuous (x,
c, and p) and Boolean (Y) decision variables. The Boolean vari-
ables are defined for process units in the network and show the
existence of the corresponding unit. The objective function simul-
taneously minimizes two functions, z1 and z2. Eq. (2) represents
global inequalities that always hold independent of the values of
Boolean variables. Disjunctions (Eq. 3) are written for all processing
units; if the corresponding Boolean variable is “True”, then a par-
ticular relation among x’s hold and the relevant fixed costs (c and p)
are paid, otherwise the associated c, p, and x’s become zero. Here,
Bi = [bT

k], where bT
k = eT

k if xk = 0, and bT
k = 0T if xk /= 0. Eq. (4) is

the logic relations between Boolean variables based on the connec-
tions and interactions among units. In this model, f1(x), f2(x), g(x),
and hi(x) can be linear or nonlinear convex functions.

2.1. Example: 3-process network

In this section, we present the well-known 3-process network
synthesis example (Kocis and Grossmann, 1989) to illustrate the
bi-objective model given by Eqs. (1)–(5). This example consists of
3 processing units, as shown in Fig. 1. The raw material A should
be processed in either units 2 or 3 to produce B. The material B can
be also purchased from outside. Unit 1 processes B and produces C.
The variables xk, k = 1, . . ., 8, are the amount of material flows.

The objective function of this problem is to simultaneously mini-
mize z1 and z2. Note that we generate the second objective function,
z2, so that the solution corresponding to the best compromise
between these objectives is found.

min Z = (z1, z2)

z1 = c1 + c2 + c3 + x4 + 1.8x1 + 1.2x5 + 7x6 − 11x8

z2 = p1 + p2 + p3

+1.8x1 + 2x2 + 3x3 + x4 + 1.2x5 + 7x6 − 5x7 − 11x8

(6)

The material balance equations at mixing/splitting points, and
specifications on the flows are as follows. These relations are gen-
eral and hold independent of the values of Boolean variables.

x1 − x2 − x3 = 0,

x7 − x4 − x5 − x6 = 0,

x5 ≤ 5,

x8 ≤ 1

(7)

3

x1

x3 x5

x7

x6

1
x8

2
x2 x4

A

B

B

B

C

Fig. 1. Superstructure for the 3-process network synthesis.

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

2 A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx

efficient solutions to this problem. Cucek et al. (2012) reduced the
dimensionality of the criteria in MOMINLP of biomass energy sup-
ply chains based on similar behavior among criteria. Chakraborty
and Linninger (2002) presented combinatorial process synthesis
for developing plant-wide recovery and treatment policies with
conflicting objectives cost and environmental impact. A common
issue in all of the previous work is the straightforward use of exist-
ing methods, specially the traditional !-constraint (T-!-con), to
solve the MCO problems. In T-!-con, one of the objectives optimized
while the values of other criteria are bounded by a parameter, !.
Then, a set of efficient solutions are found by systematic variation of
! (Haimes et al., 1971; Hwang and Masud, 1979). Several methods
for selecting !-values are studied (Goicoechea et al., 1976; Stadler,
1988). The drawback of T-!-con is, however, the possibility of
generating weekly efficient solutions. The augmented !-constraint
method overcomes this impediment by including the slacks of the
constraints that are added due to the other criteria to the objective
function, weighted by a parameter ", to eliminate the possibility of
generating weekly dominated solutions (Mavrotas, 2009; Mavrotas
and Florios, 2013). In this paper, we investigate bi-objective non-
linear networks where two objective functions are simultaneously
minimized (without loss of generality), and develop an efficient
algorithm (!-OA), using augmented !-constraint and OA, to find
efficient solutions in a very short CPU time.

MINLPs are categorized as the most difficult problems as they
include both discrete and continuous variables and involve nonlin-
earity in objective function and constraints. Several methods have
been proposed to solve MINLPs including NLP-based branch and
bound (Nabar and Schrage, 1991), generalized Beneders decom-
position (Geoffrion, 1972), and OA (Duran and Grossmann, 1986).
The OA is suitable for convex MINLPs and its execution involves
repeatedly solving the NLP subproblem, generated by fixing the val-
ues of discrete variables, and the Master problem, constructed by
replacing the nonlinear functions by their linear approximations,
until the bounds from these two problems converge. In this paper,
we use logic-based OA to develop our !-OA algorithm to solve
bi-objective GDPs in the synthesis of nonlinear process networks.
The !-OA uses the results of the previously solved subproblems
to eliminate the unnecessary operations in subsequent iterations.
We conduct an experiment to compare the effectiveness of !-
OA with the straightforward use of OA to solve subproblems of
the augmented !-constraint method (!-con + OA), the augmented
!-constraint with MINLP solvers (!-MINLP), and T-!-con. We illus-
trate these four algorithms on 3 and 8 process networks and show
that !-OA is very effective than others. Moreover, compared to T-!-
con, our novel algorithm !-OA enhances the quality of the results
as it guarantees the efficiency of the solutions.

The design of this paper goes as follows. Section 2 presents
the bi-objective nonlinear process networks and illustrates on 3
and 8 process problems. The augmented !-constraint model of this
problem is given in Section 3. Section 4 outlines the foundation
of logic-based OA with respect to the bi-objective nonlinear pro-
cess networks problem. We propose the novel !-OA algorithm in
Section 5. A computational experiment is presented in Section 6 to
illustrate the efficiency of !-OA. This is followed by conclusion.

2. Bi-objective nonlinear process networks

The generalized disjunctive programming model of bi-objective
nonlinear process networks (P) is represented as follows.

min Z = (z1, z2)

=

(
∑

i

ci + f1(x),
∑

i

pi + f2(x)

)
(1)

s.t. g(x) ≤ 0, (2)
⎡

⎢⎢⎢⎢⎢⎣

Yi

hi(x) ≤ 0

ci = #i

pi = $i

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Yi

Bix = 0

ci = 0

pi = 0

⎤

⎥⎥⎥⎥⎥⎦
∀i ∈ D, (3)

%(Y) = True, (4)

x ∈ Rn, c≥0, p≥0, Y ∈ {True, False}m. (5)

The bi-objective optimization model involves continuous (x,
c, and p) and Boolean (Y) decision variables. The Boolean vari-
ables are defined for process units in the network and show the
existence of the corresponding unit. The objective function simul-
taneously minimizes two functions, z1 and z2. Eq. (2) represents
global inequalities that always hold independent of the values of
Boolean variables. Disjunctions (Eq. 3) are written for all processing
units; if the corresponding Boolean variable is “True”, then a par-
ticular relation among x’s hold and the relevant fixed costs (c and p)
are paid, otherwise the associated c, p, and x’s become zero. Here,
Bi = [bT

k], where bT
k = eT

k if xk = 0, and bT
k = 0T if xk /= 0. Eq. (4) is

the logic relations between Boolean variables based on the connec-
tions and interactions among units. In this model, f1(x), f2(x), g(x),
and hi(x) can be linear or nonlinear convex functions.

2.1. Example: 3-process network

In this section, we present the well-known 3-process network
synthesis example (Kocis and Grossmann, 1989) to illustrate the
bi-objective model given by Eqs. (1)–(5). This example consists of
3 processing units, as shown in Fig. 1. The raw material A should
be processed in either units 2 or 3 to produce B. The material B can
be also purchased from outside. Unit 1 processes B and produces C.
The variables xk, k = 1, . . ., 8, are the amount of material flows.

The objective function of this problem is to simultaneously mini-
mize z1 and z2. Note that we generate the second objective function,
z2, so that the solution corresponding to the best compromise
between these objectives is found.

min Z = (z1, z2)

z1 = c1 + c2 + c3 + x4 + 1.8x1 + 1.2x5 + 7x6 − 11x8

z2 = p1 + p2 + p3

+1.8x1 + 2x2 + 3x3 + x4 + 1.2x5 + 7x6 − 5x7 − 11x8

(6)

The material balance equations at mixing/splitting points, and
specifications on the flows are as follows. These relations are gen-
eral and hold independent of the values of Boolean variables.

x1 − x2 − x3 = 0,

x7 − x4 − x5 − x6 = 0,

x5 ≤ 5,

x8 ≤ 1

(7)

3

x1

x3 x5

x7

x6

1
x8

2
x2 x4

A

B

B

B

C

Fig. 1. Superstructure for the 3-process network synthesis.

Turkay&Grossmann, 1996
•  Logic-Based OA
•  Logic-Based Benders Decomposition

Ini$aliza$on	

MILP	 Master	

NLP	
Subproblem	

ZL≥ZU?	

New Y

No

NLP SUBPROMLEMS & MILP MASTER

NLP Subproblems MILP Master

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

4 A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx

and
∑

ip
A
i + f2(xA) ≤ zU

2 − j!. In the above, we proved that "A can-
not be dominated by feasible solutions of the same subproblem.
So, suppose that "C is a feasible solution of problem (P), but is
not feasible for subproblem (SPj). Therefore, "C is feasible for
Eqs. (2)–(5), but it does not satisfy

∑
ip

C
i + f2(xC) ≤ zU

2 − j!. Sup-
pose that, on the contrary, "C dominates "A, thus

∑
ip

C
i + f2(xC) ≤∑

ip
A
i + f2(xA). Since

∑
ip

A
i + f2(xA) ≤ zU

2 − j!, then
∑

ip
C
i + f2(xC) ≤∑

ip
A
i + f2(xA) ≤ zU

2 − j!. It follows that
∑

ip
C
i + f2(xC) ≤ zU

2 − j!,
meaning that "C is feasible for subproblem (SPj). This is a contradic-
tion. Hence, any efficient solution of subproblem (SPj) is efficient
for problem (P). !

The efficient frontier that can be approximated by solving sub-
problems SPj’s for j = 1, . . ., Q provides useful trade-off information
between objectives and can be used by decision maker to choose
from the possible efficient alternatives. The impediment, however,
is solving these NP-hard subproblems, specially when Q is very
large. The state-of-the-art MINLP solvers, such as DICOPT, can be
used to solve the subproblems (SPj). Algorithm 1 represents this
method to produce efficient solutions for the bi-objective nonlin-
ear network synthesis problems (!-MINLP). In Section 6, we show
that !-MINLP using DICOPT is very slow in solving the 3 and 8 pro-
cess network synthesis examples. In the remaining of this paper,
we present an effective algorithm to find the efficient solutions for
very large values of Q in a short computing time.

Algorithm 1. The !-MINLP for the bi-objective discrete GDPs for
nonlinear convex network synthesis problems

4. Foundations of logic-based OA

In this section, we present the logic-based OA (Turkay and
Grossmann, 1996a) to solve the subproblems of the augmented
!-constraint method. The OA was first developed by Duran and
Grossmann (1986) to solve convex MINLPs. The logic-based OA
starts with solving a set covering problem to find the minimum
number of alternatives that cover all of the processing units. The
NLP subproblem is solved for each of these alternatives and the
best upper bound is obtained. The Maser problem is constructed by
linearizing the nonlinear functions, and a lower bound is found by
solving the Master problem. If the optimality gap is small enough,
the algorithm terminates and the solution of the NLP subprob-
lem is optimal, otherwise, the NLP subproblem is solved using
the Boolean variable values found by the Master problem. If the
remaining optimality gap is within tolerance limits, the algorithm
stops, otherwise the Master problem is constructed and solved. This
procedure continues until the lower and upper bounds converge.
The NLP subproblem of (SPj) for a fixed choice of Boolean variables,
Yi, is as follows.

min Zaug
U =

∑

i

ci + f1(x) − #
r

s (17)

s.t.
∑

i

pi + f2(x) + s = zU
2 − j!, (18)

g(x) ≤ 0, (19)

hi(x) ≤ 0

ci = $i

pi = %i

⎫
⎪⎪⎬

⎪⎪⎭
∀Yi = True, (20)

Bix = 0

ci = 0

pi = 0

⎫
⎪⎪⎬

⎪⎪⎭
∀Yi = False, (21)

x ∈ Rn, c≥0, p≥0. (22)

Solving the NLP subproblem provides a feasible solution and
an upper bound on the optimal value of (SPj). The solution of this
problem is used as the input to construct the MILP Master problem.
Suppose that L values have been obtained for x from solving the
NLP subproblems by the current iteration, i.e. xl, l = 1, . . ., L. Then,
the master problem is written as follows.

min Zaug
L =

∑

i

$iyi + ˛oa − #
r

s (23)

s.t. ˛oa≥f1(xl) + ∇f1(xl)
T
(x − xl) ∀l = 1, . . ., L (24)

g(xl) + ∇g(xl)
T
(x − xl) ≤ 0 ∀l = 1, . . ., L (25)

∑

i

%iyi + f2(xl) + ∇f2(xl)
T
(x − xl) + s

= zU
2 − j! ∀l = 1, . . ., L

(26)

∇hi(xl)
T
x ≤
(

−hi(xl) + ∇hi(xl)
T
xl
)

yi

∀l = 1, . . ., L, i ∈ D
(27)

Bix ≤ Miyi ∀i ∈ D (28)

Ay ≤ a (29)

˛oa ∈ R1, x ∈ Rn, y ∈ {0, 1}m. (30)

Eq. (29) represents the logic relations between yi’s. Solving the MILP
Master problem provides a lower bound on the optimal value of
(SPj). The Master problem finds a new values for Boolean variables
to generate and solve NLP subproblem.

The logic-based OA can be applied to each subproblem of the
augmented !-constraint method (SPj) when solving a bi-objective
discrete nonlinear problem to find efficient solutions; however, this

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

4 A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx

and
∑

ip
A
i + f2(xA) ≤ zU

2 − j!. In the above, we proved that "A can-
not be dominated by feasible solutions of the same subproblem.
So, suppose that "C is a feasible solution of problem (P), but is
not feasible for subproblem (SPj). Therefore, "C is feasible for
Eqs. (2)–(5), but it does not satisfy

∑
ip

C
i + f2(xC) ≤ zU

2 − j!. Sup-
pose that, on the contrary, "C dominates "A, thus

∑
ip

C
i + f2(xC) ≤∑

ip
A
i + f2(xA). Since

∑
ip

A
i + f2(xA) ≤ zU

2 − j!, then
∑

ip
C
i + f2(xC) ≤∑

ip
A
i + f2(xA) ≤ zU

2 − j!. It follows that
∑

ip
C
i + f2(xC) ≤ zU

2 − j!,
meaning that "C is feasible for subproblem (SPj). This is a contradic-
tion. Hence, any efficient solution of subproblem (SPj) is efficient
for problem (P). !

The efficient frontier that can be approximated by solving sub-
problems SPj’s for j = 1, . . ., Q provides useful trade-off information
between objectives and can be used by decision maker to choose
from the possible efficient alternatives. The impediment, however,
is solving these NP-hard subproblems, specially when Q is very
large. The state-of-the-art MINLP solvers, such as DICOPT, can be
used to solve the subproblems (SPj). Algorithm 1 represents this
method to produce efficient solutions for the bi-objective nonlin-
ear network synthesis problems (!-MINLP). In Section 6, we show
that !-MINLP using DICOPT is very slow in solving the 3 and 8 pro-
cess network synthesis examples. In the remaining of this paper,
we present an effective algorithm to find the efficient solutions for
very large values of Q in a short computing time.

Algorithm 1. The !-MINLP for the bi-objective discrete GDPs for
nonlinear convex network synthesis problems

4. Foundations of logic-based OA

In this section, we present the logic-based OA (Turkay and
Grossmann, 1996a) to solve the subproblems of the augmented
!-constraint method. The OA was first developed by Duran and
Grossmann (1986) to solve convex MINLPs. The logic-based OA
starts with solving a set covering problem to find the minimum
number of alternatives that cover all of the processing units. The
NLP subproblem is solved for each of these alternatives and the
best upper bound is obtained. The Maser problem is constructed by
linearizing the nonlinear functions, and a lower bound is found by
solving the Master problem. If the optimality gap is small enough,
the algorithm terminates and the solution of the NLP subprob-
lem is optimal, otherwise, the NLP subproblem is solved using
the Boolean variable values found by the Master problem. If the
remaining optimality gap is within tolerance limits, the algorithm
stops, otherwise the Master problem is constructed and solved. This
procedure continues until the lower and upper bounds converge.
The NLP subproblem of (SPj) for a fixed choice of Boolean variables,
Yi, is as follows.

min Zaug
U =

∑

i

ci + f1(x) − #
r

s (17)

s.t.
∑

i

pi + f2(x) + s = zU
2 − j!, (18)

g(x) ≤ 0, (19)

hi(x) ≤ 0

ci = $i

pi = %i

⎫
⎪⎪⎬

⎪⎪⎭
∀Yi = True, (20)

Bix = 0

ci = 0

pi = 0

⎫
⎪⎪⎬

⎪⎪⎭
∀Yi = False, (21)

x ∈ Rn, c≥0, p≥0. (22)

Solving the NLP subproblem provides a feasible solution and
an upper bound on the optimal value of (SPj). The solution of this
problem is used as the input to construct the MILP Master problem.
Suppose that L values have been obtained for x from solving the
NLP subproblems by the current iteration, i.e. xl, l = 1, . . ., L. Then,
the master problem is written as follows.

min Zaug
L =

∑

i

$iyi + ˛oa − #
r

s (23)

s.t. ˛oa≥f1(xl) + ∇f1(xl)
T
(x − xl) ∀l = 1, . . ., L (24)

g(xl) + ∇g(xl)
T
(x − xl) ≤ 0 ∀l = 1, . . ., L (25)

∑

i

%iyi + f2(xl) + ∇f2(xl)
T
(x − xl) + s

= zU
2 − j! ∀l = 1, . . ., L

(26)

∇hi(xl)
T
x ≤
(

−hi(xl) + ∇hi(xl)
T
xl
)

yi

∀l = 1, . . ., L, i ∈ D
(27)

Bix ≤ Miyi ∀i ∈ D (28)

Ay ≤ a (29)

˛oa ∈ R1, x ∈ Rn, y ∈ {0, 1}m. (30)

Eq. (29) represents the logic relations between yi’s. Solving the MILP
Master problem provides a lower bound on the optimal value of
(SPj). The Master problem finds a new values for Boolean variables
to generate and solve NLP subproblem.

The logic-based OA can be applied to each subproblem of the
augmented !-constraint method (SPj) when solving a bi-objective
discrete nonlinear problem to find efficient solutions; however, this

Ini$aliza$on	

MILP	 Master	

NLP	
Subproblem	

ZL≥ZU?	

count	 	 1…Q	

New Y

No

Yes

Analysis	
Feas/Infeas	

ϵ-OA

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

4 A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx

and
∑

ip
A
i + f2(xA) ≤ zU

2 − j!. In the above, we proved that "A can-
not be dominated by feasible solutions of the same subproblem.
So, suppose that "C is a feasible solution of problem (P), but is
not feasible for subproblem (SPj). Therefore, "C is feasible for
Eqs. (2)–(5), but it does not satisfy

∑
ip

C
i + f2(xC) ≤ zU

2 − j!. Sup-
pose that, on the contrary, "C dominates "A, thus

∑
ip

C
i + f2(xC) ≤∑

ip
A
i + f2(xA). Since

∑
ip

A
i + f2(xA) ≤ zU

2 − j!, then
∑

ip
C
i + f2(xC) ≤∑

ip
A
i + f2(xA) ≤ zU

2 − j!. It follows that
∑

ip
C
i + f2(xC) ≤ zU

2 − j!,
meaning that "C is feasible for subproblem (SPj). This is a contradic-
tion. Hence, any efficient solution of subproblem (SPj) is efficient
for problem (P). !

The efficient frontier that can be approximated by solving sub-
problems SPj’s for j = 1, . . ., Q provides useful trade-off information
between objectives and can be used by decision maker to choose
from the possible efficient alternatives. The impediment, however,
is solving these NP-hard subproblems, specially when Q is very
large. The state-of-the-art MINLP solvers, such as DICOPT, can be
used to solve the subproblems (SPj). Algorithm 1 represents this
method to produce efficient solutions for the bi-objective nonlin-
ear network synthesis problems (!-MINLP). In Section 6, we show
that !-MINLP using DICOPT is very slow in solving the 3 and 8 pro-
cess network synthesis examples. In the remaining of this paper,
we present an effective algorithm to find the efficient solutions for
very large values of Q in a short computing time.

Algorithm 1. The !-MINLP for the bi-objective discrete GDPs for
nonlinear convex network synthesis problems

4. Foundations of logic-based OA

In this section, we present the logic-based OA (Turkay and
Grossmann, 1996a) to solve the subproblems of the augmented
!-constraint method. The OA was first developed by Duran and
Grossmann (1986) to solve convex MINLPs. The logic-based OA
starts with solving a set covering problem to find the minimum
number of alternatives that cover all of the processing units. The
NLP subproblem is solved for each of these alternatives and the
best upper bound is obtained. The Maser problem is constructed by
linearizing the nonlinear functions, and a lower bound is found by
solving the Master problem. If the optimality gap is small enough,
the algorithm terminates and the solution of the NLP subprob-
lem is optimal, otherwise, the NLP subproblem is solved using
the Boolean variable values found by the Master problem. If the
remaining optimality gap is within tolerance limits, the algorithm
stops, otherwise the Master problem is constructed and solved. This
procedure continues until the lower and upper bounds converge.
The NLP subproblem of (SPj) for a fixed choice of Boolean variables,
Yi, is as follows.

min Zaug
U =

∑

i

ci + f1(x) − #
r

s (17)

s.t.
∑

i

pi + f2(x) + s = zU
2 − j!, (18)

g(x) ≤ 0, (19)

hi(x) ≤ 0

ci = $i

pi = %i

⎫
⎪⎪⎬

⎪⎪⎭
∀Yi = True, (20)

Bix = 0

ci = 0

pi = 0

⎫
⎪⎪⎬

⎪⎪⎭
∀Yi = False, (21)

x ∈ Rn, c≥0, p≥0. (22)

Solving the NLP subproblem provides a feasible solution and
an upper bound on the optimal value of (SPj). The solution of this
problem is used as the input to construct the MILP Master problem.
Suppose that L values have been obtained for x from solving the
NLP subproblems by the current iteration, i.e. xl, l = 1, . . ., L. Then,
the master problem is written as follows.

min Zaug
L =

∑

i

$iyi + ˛oa − #
r

s (23)

s.t. ˛oa≥f1(xl) + ∇f1(xl)
T
(x − xl) ∀l = 1, . . ., L (24)

g(xl) + ∇g(xl)
T
(x − xl) ≤ 0 ∀l = 1, . . ., L (25)

∑

i

%iyi + f2(xl) + ∇f2(xl)
T
(x − xl) + s

= zU
2 − j! ∀l = 1, . . ., L

(26)

∇hi(xl)
T
x ≤
(

−hi(xl) + ∇hi(xl)
T
xl
)

yi

∀l = 1, . . ., L, i ∈ D
(27)

Bix ≤ Miyi ∀i ∈ D (28)

Ay ≤ a (29)

˛oa ∈ R1, x ∈ Rn, y ∈ {0, 1}m. (30)

Eq. (29) represents the logic relations between yi’s. Solving the MILP
Master problem provides a lower bound on the optimal value of
(SPj). The Master problem finds a new values for Boolean variables
to generate and solve NLP subproblem.

The logic-based OA can be applied to each subproblem of the
augmented !-constraint method (SPj) when solving a bi-objective
discrete nonlinear problem to find efficient solutions; however, this

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

4 A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx

and
∑

ip
A
i + f2(xA) ≤ zU

2 − j!. In the above, we proved that "A can-
not be dominated by feasible solutions of the same subproblem.
So, suppose that "C is a feasible solution of problem (P), but is
not feasible for subproblem (SPj). Therefore, "C is feasible for
Eqs. (2)–(5), but it does not satisfy

∑
ip

C
i + f2(xC) ≤ zU

2 − j!. Sup-
pose that, on the contrary, "C dominates "A, thus

∑
ip

C
i + f2(xC) ≤∑

ip
A
i + f2(xA). Since

∑
ip

A
i + f2(xA) ≤ zU

2 − j!, then
∑

ip
C
i + f2(xC) ≤∑

ip
A
i + f2(xA) ≤ zU

2 − j!. It follows that
∑

ip
C
i + f2(xC) ≤ zU

2 − j!,
meaning that "C is feasible for subproblem (SPj). This is a contradic-
tion. Hence, any efficient solution of subproblem (SPj) is efficient
for problem (P). !

The efficient frontier that can be approximated by solving sub-
problems SPj’s for j = 1, . . ., Q provides useful trade-off information
between objectives and can be used by decision maker to choose
from the possible efficient alternatives. The impediment, however,
is solving these NP-hard subproblems, specially when Q is very
large. The state-of-the-art MINLP solvers, such as DICOPT, can be
used to solve the subproblems (SPj). Algorithm 1 represents this
method to produce efficient solutions for the bi-objective nonlin-
ear network synthesis problems (!-MINLP). In Section 6, we show
that !-MINLP using DICOPT is very slow in solving the 3 and 8 pro-
cess network synthesis examples. In the remaining of this paper,
we present an effective algorithm to find the efficient solutions for
very large values of Q in a short computing time.

Algorithm 1. The !-MINLP for the bi-objective discrete GDPs for
nonlinear convex network synthesis problems

4. Foundations of logic-based OA

In this section, we present the logic-based OA (Turkay and
Grossmann, 1996a) to solve the subproblems of the augmented
!-constraint method. The OA was first developed by Duran and
Grossmann (1986) to solve convex MINLPs. The logic-based OA
starts with solving a set covering problem to find the minimum
number of alternatives that cover all of the processing units. The
NLP subproblem is solved for each of these alternatives and the
best upper bound is obtained. The Maser problem is constructed by
linearizing the nonlinear functions, and a lower bound is found by
solving the Master problem. If the optimality gap is small enough,
the algorithm terminates and the solution of the NLP subprob-
lem is optimal, otherwise, the NLP subproblem is solved using
the Boolean variable values found by the Master problem. If the
remaining optimality gap is within tolerance limits, the algorithm
stops, otherwise the Master problem is constructed and solved. This
procedure continues until the lower and upper bounds converge.
The NLP subproblem of (SPj) for a fixed choice of Boolean variables,
Yi, is as follows.

min Zaug
U =

∑

i

ci + f1(x) − #
r

s (17)

s.t.
∑

i

pi + f2(x) + s = zU
2 − j!, (18)

g(x) ≤ 0, (19)

hi(x) ≤ 0

ci = $i

pi = %i

⎫
⎪⎪⎬

⎪⎪⎭
∀Yi = True, (20)

Bix = 0

ci = 0

pi = 0

⎫
⎪⎪⎬

⎪⎪⎭
∀Yi = False, (21)

x ∈ Rn, c≥0, p≥0. (22)

Solving the NLP subproblem provides a feasible solution and
an upper bound on the optimal value of (SPj). The solution of this
problem is used as the input to construct the MILP Master problem.
Suppose that L values have been obtained for x from solving the
NLP subproblems by the current iteration, i.e. xl, l = 1, . . ., L. Then,
the master problem is written as follows.

min Zaug
L =

∑

i

$iyi + ˛oa − #
r

s (23)

s.t. ˛oa≥f1(xl) + ∇f1(xl)
T
(x − xl) ∀l = 1, . . ., L (24)

g(xl) + ∇g(xl)
T
(x − xl) ≤ 0 ∀l = 1, . . ., L (25)

∑

i

%iyi + f2(xl) + ∇f2(xl)
T
(x − xl) + s

= zU
2 − j! ∀l = 1, . . ., L

(26)

∇hi(xl)
T
x ≤
(

−hi(xl) + ∇hi(xl)
T
xl
)

yi

∀l = 1, . . ., L, i ∈ D
(27)

Bix ≤ Miyi ∀i ∈ D (28)

Ay ≤ a (29)

˛oa ∈ R1, x ∈ Rn, y ∈ {0, 1}m. (30)

Eq. (29) represents the logic relations between yi’s. Solving the MILP
Master problem provides a lower bound on the optimal value of
(SPj). The Master problem finds a new values for Boolean variables
to generate and solve NLP subproblem.

The logic-based OA can be applied to each subproblem of the
augmented !-constraint method (SPj) when solving a bi-objective
discrete nonlinear problem to find efficient solutions; however, this

+ No good cuts

SOLUTIONS FOR SUB-PROBLEMS

Ø Theorem 1: The optimal solution found by the sub-problem in the
augmented ϵ-constraint method is efficient within the search region of
the sub-problem.

Ø Proof:

 2 cases are possible:
 1. ,so

 2. ,so

EFFICIENT SOLUTIONS

Ø Theorem 2: The efficient solution found by the sub-problem in the
augmented ϵ-constraint method is also efficient for the original
MOMINLP.

Ø Proof by contradiction:
ü  Consider xA as the optimal solution for a particular sub-problem.

Theorem 1 proves that it is efficient the same sub-problem.
ü  Assume that xC is feasible for the original MOOP but not the feasible

for the particular sub-problem where xA is optimal.
ü  Therefore, but
ü  Suppose that xC dominates xA meaning that with

at least one strict inequality
ü  Since ,then
ü  Therefore, xC must be feasible for the same sub-problem which

contradicts with
ü  assumption of xC being not feasible for the particular sub-problem
ü  xA being the optimal solution for the particular sub-problem

 xC ∈X

THEORETICAL ANALYSIS-BRIEF

Ø Theorem1 and Theorem 2 proves that as long as each sub-
problem is solved to optimality, then the augmented ϵ-constraint
method guarantees that every solution generated is contained
in the Pareto set.

Ø These theorems are valid for all deterministic optimization
problems.

Ø Computational Issues:
Ø  Infeasible Subproblems
Ø Feasible Subproblems

INFEASIBLE SUB-PROBLEMS

Ø  If there is sub-problem, , that is infeasible;

Ø Then, increasing the iteration count () would make the problem more
restrictive. So, the next iteration will be infeasible for all possible
combinations of these indices.

Ø Ex: Sub-problem for i2=3, i3=3 and i4=4 is infeasible.

Ø Any sub-problem generated such that i2≥3, i3≥3 and i4≥4 is also infeasible.

FEASIBLE SUB-PROBLEMS
Ø  If the sub-problem, , is optimal;

Ø Then,

 satisfies the same inequality.
Ø For any set of indices, , such that

the optimal solution is the same and we do not need to solve them again.
Ø Ex: Sub-problem for i2=2, i3=3 and i4=1 is optimal and each ϵ-constraint

until i2=4, i3=4 and i4=7 is feasible.

Ø Any sub-problem generated such that 2≥i2≥4, 3≥i3≥4 and 1≥i4≥7 have the
same optimal solution.

Ø 3 Process Example

Ø 8 Process Example

EXAMPLES

3

x1

x3 x5

x7

x6

1
x8

2
x2 x4

A

B

B

B

C

2

x1

x4 x5 x11

x12
4

x13

x19 6
x20

x23 x24

x14

x25

8
x17 x18

1
x2 x3

x6

x7
3

x8 x9

x10

x15
5

x16

x21
7

x22

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

2 A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx

efficient solutions to this problem. Cucek et al. (2012) reduced the
dimensionality of the criteria in MOMINLP of biomass energy sup-
ply chains based on similar behavior among criteria. Chakraborty
and Linninger (2002) presented combinatorial process synthesis
for developing plant-wide recovery and treatment policies with
conflicting objectives cost and environmental impact. A common
issue in all of the previous work is the straightforward use of exist-
ing methods, specially the traditional !-constraint (T-!-con), to
solve the MCO problems. In T-!-con, one of the objectives optimized
while the values of other criteria are bounded by a parameter, !.
Then, a set of efficient solutions are found by systematic variation of
! (Haimes et al., 1971; Hwang and Masud, 1979). Several methods
for selecting !-values are studied (Goicoechea et al., 1976; Stadler,
1988). The drawback of T-!-con is, however, the possibility of
generating weekly efficient solutions. The augmented !-constraint
method overcomes this impediment by including the slacks of the
constraints that are added due to the other criteria to the objective
function, weighted by a parameter ", to eliminate the possibility of
generating weekly dominated solutions (Mavrotas, 2009; Mavrotas
and Florios, 2013). In this paper, we investigate bi-objective non-
linear networks where two objective functions are simultaneously
minimized (without loss of generality), and develop an efficient
algorithm (!-OA), using augmented !-constraint and OA, to find
efficient solutions in a very short CPU time.

MINLPs are categorized as the most difficult problems as they
include both discrete and continuous variables and involve nonlin-
earity in objective function and constraints. Several methods have
been proposed to solve MINLPs including NLP-based branch and
bound (Nabar and Schrage, 1991), generalized Beneders decom-
position (Geoffrion, 1972), and OA (Duran and Grossmann, 1986).
The OA is suitable for convex MINLPs and its execution involves
repeatedly solving the NLP subproblem, generated by fixing the val-
ues of discrete variables, and the Master problem, constructed by
replacing the nonlinear functions by their linear approximations,
until the bounds from these two problems converge. In this paper,
we use logic-based OA to develop our !-OA algorithm to solve
bi-objective GDPs in the synthesis of nonlinear process networks.
The !-OA uses the results of the previously solved subproblems
to eliminate the unnecessary operations in subsequent iterations.
We conduct an experiment to compare the effectiveness of !-
OA with the straightforward use of OA to solve subproblems of
the augmented !-constraint method (!-con + OA), the augmented
!-constraint with MINLP solvers (!-MINLP), and T-!-con. We illus-
trate these four algorithms on 3 and 8 process networks and show
that !-OA is very effective than others. Moreover, compared to T-!-
con, our novel algorithm !-OA enhances the quality of the results
as it guarantees the efficiency of the solutions.

The design of this paper goes as follows. Section 2 presents
the bi-objective nonlinear process networks and illustrates on 3
and 8 process problems. The augmented !-constraint model of this
problem is given in Section 3. Section 4 outlines the foundation
of logic-based OA with respect to the bi-objective nonlinear pro-
cess networks problem. We propose the novel !-OA algorithm in
Section 5. A computational experiment is presented in Section 6 to
illustrate the efficiency of !-OA. This is followed by conclusion.

2. Bi-objective nonlinear process networks

The generalized disjunctive programming model of bi-objective
nonlinear process networks (P) is represented as follows.

min Z = (z1, z2)

=

(
∑

i

ci + f1(x),
∑

i

pi + f2(x)

)
(1)

s.t. g(x) ≤ 0, (2)
⎡

⎢⎢⎢⎢⎢⎣

Yi

hi(x) ≤ 0

ci = #i

pi = $i

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Yi

Bix = 0

ci = 0

pi = 0

⎤

⎥⎥⎥⎥⎥⎦
∀i ∈ D, (3)

%(Y) = True, (4)

x ∈ Rn, c≥0, p≥0, Y ∈ {True, False}m. (5)

The bi-objective optimization model involves continuous (x,
c, and p) and Boolean (Y) decision variables. The Boolean vari-
ables are defined for process units in the network and show the
existence of the corresponding unit. The objective function simul-
taneously minimizes two functions, z1 and z2. Eq. (2) represents
global inequalities that always hold independent of the values of
Boolean variables. Disjunctions (Eq. 3) are written for all processing
units; if the corresponding Boolean variable is “True”, then a par-
ticular relation among x’s hold and the relevant fixed costs (c and p)
are paid, otherwise the associated c, p, and x’s become zero. Here,
Bi = [bT

k], where bT
k = eT

k if xk = 0, and bT
k = 0T if xk /= 0. Eq. (4) is

the logic relations between Boolean variables based on the connec-
tions and interactions among units. In this model, f1(x), f2(x), g(x),
and hi(x) can be linear or nonlinear convex functions.

2.1. Example: 3-process network

In this section, we present the well-known 3-process network
synthesis example (Kocis and Grossmann, 1989) to illustrate the
bi-objective model given by Eqs. (1)–(5). This example consists of
3 processing units, as shown in Fig. 1. The raw material A should
be processed in either units 2 or 3 to produce B. The material B can
be also purchased from outside. Unit 1 processes B and produces C.
The variables xk, k = 1, . . ., 8, are the amount of material flows.

The objective function of this problem is to simultaneously mini-
mize z1 and z2. Note that we generate the second objective function,
z2, so that the solution corresponding to the best compromise
between these objectives is found.

min Z = (z1, z2)

z1 = c1 + c2 + c3 + x4 + 1.8x1 + 1.2x5 + 7x6 − 11x8

z2 = p1 + p2 + p3

+1.8x1 + 2x2 + 3x3 + x4 + 1.2x5 + 7x6 − 5x7 − 11x8

(6)

The material balance equations at mixing/splitting points, and
specifications on the flows are as follows. These relations are gen-
eral and hold independent of the values of Boolean variables.

x1 − x2 − x3 = 0,

x7 − x4 − x5 − x6 = 0,

x5 ≤ 5,

x8 ≤ 1

(7)

3

x1

x3 x5

x7

x6

1
x8

2
x2 x4

A

B

B

B

C

Fig. 1. Superstructure for the 3-process network synthesis.

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

2 A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx

efficient solutions to this problem. Cucek et al. (2012) reduced the
dimensionality of the criteria in MOMINLP of biomass energy sup-
ply chains based on similar behavior among criteria. Chakraborty
and Linninger (2002) presented combinatorial process synthesis
for developing plant-wide recovery and treatment policies with
conflicting objectives cost and environmental impact. A common
issue in all of the previous work is the straightforward use of exist-
ing methods, specially the traditional !-constraint (T-!-con), to
solve the MCO problems. In T-!-con, one of the objectives optimized
while the values of other criteria are bounded by a parameter, !.
Then, a set of efficient solutions are found by systematic variation of
! (Haimes et al., 1971; Hwang and Masud, 1979). Several methods
for selecting !-values are studied (Goicoechea et al., 1976; Stadler,
1988). The drawback of T-!-con is, however, the possibility of
generating weekly efficient solutions. The augmented !-constraint
method overcomes this impediment by including the slacks of the
constraints that are added due to the other criteria to the objective
function, weighted by a parameter ", to eliminate the possibility of
generating weekly dominated solutions (Mavrotas, 2009; Mavrotas
and Florios, 2013). In this paper, we investigate bi-objective non-
linear networks where two objective functions are simultaneously
minimized (without loss of generality), and develop an efficient
algorithm (!-OA), using augmented !-constraint and OA, to find
efficient solutions in a very short CPU time.

MINLPs are categorized as the most difficult problems as they
include both discrete and continuous variables and involve nonlin-
earity in objective function and constraints. Several methods have
been proposed to solve MINLPs including NLP-based branch and
bound (Nabar and Schrage, 1991), generalized Beneders decom-
position (Geoffrion, 1972), and OA (Duran and Grossmann, 1986).
The OA is suitable for convex MINLPs and its execution involves
repeatedly solving the NLP subproblem, generated by fixing the val-
ues of discrete variables, and the Master problem, constructed by
replacing the nonlinear functions by their linear approximations,
until the bounds from these two problems converge. In this paper,
we use logic-based OA to develop our !-OA algorithm to solve
bi-objective GDPs in the synthesis of nonlinear process networks.
The !-OA uses the results of the previously solved subproblems
to eliminate the unnecessary operations in subsequent iterations.
We conduct an experiment to compare the effectiveness of !-
OA with the straightforward use of OA to solve subproblems of
the augmented !-constraint method (!-con + OA), the augmented
!-constraint with MINLP solvers (!-MINLP), and T-!-con. We illus-
trate these four algorithms on 3 and 8 process networks and show
that !-OA is very effective than others. Moreover, compared to T-!-
con, our novel algorithm !-OA enhances the quality of the results
as it guarantees the efficiency of the solutions.

The design of this paper goes as follows. Section 2 presents
the bi-objective nonlinear process networks and illustrates on 3
and 8 process problems. The augmented !-constraint model of this
problem is given in Section 3. Section 4 outlines the foundation
of logic-based OA with respect to the bi-objective nonlinear pro-
cess networks problem. We propose the novel !-OA algorithm in
Section 5. A computational experiment is presented in Section 6 to
illustrate the efficiency of !-OA. This is followed by conclusion.

2. Bi-objective nonlinear process networks

The generalized disjunctive programming model of bi-objective
nonlinear process networks (P) is represented as follows.

min Z = (z1, z2)

=

(
∑

i

ci + f1(x),
∑

i

pi + f2(x)

)
(1)

s.t. g(x) ≤ 0, (2)
⎡

⎢⎢⎢⎢⎢⎣

Yi

hi(x) ≤ 0

ci = #i

pi = $i

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Yi

Bix = 0

ci = 0

pi = 0

⎤

⎥⎥⎥⎥⎥⎦
∀i ∈ D, (3)

%(Y) = True, (4)

x ∈ Rn, c≥0, p≥0, Y ∈ {True, False}m. (5)

The bi-objective optimization model involves continuous (x,
c, and p) and Boolean (Y) decision variables. The Boolean vari-
ables are defined for process units in the network and show the
existence of the corresponding unit. The objective function simul-
taneously minimizes two functions, z1 and z2. Eq. (2) represents
global inequalities that always hold independent of the values of
Boolean variables. Disjunctions (Eq. 3) are written for all processing
units; if the corresponding Boolean variable is “True”, then a par-
ticular relation among x’s hold and the relevant fixed costs (c and p)
are paid, otherwise the associated c, p, and x’s become zero. Here,
Bi = [bT

k], where bT
k = eT

k if xk = 0, and bT
k = 0T if xk /= 0. Eq. (4) is

the logic relations between Boolean variables based on the connec-
tions and interactions among units. In this model, f1(x), f2(x), g(x),
and hi(x) can be linear or nonlinear convex functions.

2.1. Example: 3-process network

In this section, we present the well-known 3-process network
synthesis example (Kocis and Grossmann, 1989) to illustrate the
bi-objective model given by Eqs. (1)–(5). This example consists of
3 processing units, as shown in Fig. 1. The raw material A should
be processed in either units 2 or 3 to produce B. The material B can
be also purchased from outside. Unit 1 processes B and produces C.
The variables xk, k = 1, . . ., 8, are the amount of material flows.

The objective function of this problem is to simultaneously mini-
mize z1 and z2. Note that we generate the second objective function,
z2, so that the solution corresponding to the best compromise
between these objectives is found.

min Z = (z1, z2)

z1 = c1 + c2 + c3 + x4 + 1.8x1 + 1.2x5 + 7x6 − 11x8

z2 = p1 + p2 + p3

+1.8x1 + 2x2 + 3x3 + x4 + 1.2x5 + 7x6 − 5x7 − 11x8

(6)

The material balance equations at mixing/splitting points, and
specifications on the flows are as follows. These relations are gen-
eral and hold independent of the values of Boolean variables.

x1 − x2 − x3 = 0,

x7 − x4 − x5 − x6 = 0,

x5 ≤ 5,

x8 ≤ 1

(7)

3

x1

x3 x5

x7

x6

1
x8

2
x2 x4

A

B

B

B

C

Fig. 1. Superstructure for the 3-process network synthesis.

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx 3

2

x1

x4 x5 x11

x12
4

x13

x19 6
x20

x23 x24

x14

x25

8
x17 x18

1
x2 x3

x6

x7
3

x8 x9
x10

x15
5

x16

x21 7
x22

Fig. 2. Superstructure for the 8-process network synthesis.

The disjunctions for the processing units:
⎡

⎢⎢⎢⎢⎢⎣

Y1

x8 = 0.9x7

c1 = 3.5

p1 = 3.5

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Y1

x7 = x8 = 0

c1 = 0

p1 = 0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

Y2

x4 = ln(1 + x2)

c2 = 1

p2 = 1

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Y2

x2 = x4 = 0

c2 = 0

p2 = 0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

Y3

x5 = 1.2 ln(1 + x3)

c3 = 1.5

p3 = 12

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Y3

x3 = x5 = 0

c3 = 0

p3 = 0

⎤

⎥⎥⎥⎥⎥⎦

(8)

The design specifications and logic propositions based on the con-
nections and interactions between units:

Y1 ⇒ Y2 ∨ Y3 ∨ (¬Y2 ∧ ¬Y3),

Y2 ⇒ Y1,

Y3 ⇒ Y1,

¬Y2 ∨ ¬Y3

(9)

Finally, the definition of variables as positive continuous and
Boolean:

xk≥0 ∀k = 1, . . ., 8,

ci, pi≥0 ∀i = 1, 2, 3,

Yi ∈ {True, False} ∀i = 1, 2, 3

(10)

2.2. Example: 8-process network

The superstructure for the 8-process network synthesis (Fig. 2,
Kocis and Grossmann, 1989) consists of 8 processing units and 25
continuous variables for the amount of material flows. The general-
ized disjunctive programming model for this example is available
in Appendix A.

3. Augmented !-constraint

The augmented !-constraint method converts MCO to a sin-
gle objective problem considering one criterion, usually the most
important one, as the objective function and including the oth-
ers into the set of constraints (Mavrotas, 2009). The objective

function also incorporates the slack variables for the newly added
constraints to eliminate the possibility of generating weekly
dominated solutions. In this section, we present the augmented
!-constraint model for the GDP of bi-objective nonlinear process
networks and prove the efficiency of the obtained solutions. Note
that this proof holds if the nonlinear functions (i.e. f1(x), f2(x), g(x),
and hi(x)) are convex.

In the augmented !-constraint method, the range of the sec-
ond objective (i.e. zU

2 − zL
2) is divided into Q equivalent intervals,

and the first objective is optimized for each. If the value of Q
is sufficiently large, solving the subproblems of the augmented
!-constraint method results in a fine approximation of the effi-
cient frontier. Note that, however, more computational effort is
required as Q increases. The jth subproblem (SPj) of the augmented
!-constraint method is written as follows (j = 0, . . ., Q).

min Zaug =
∑

i

ci + f1(x) − "
s
r

(11)

s.t.
∑

i

pi + f2(x) + s = zU
2 − j!, (12)

and Eqs. (2)–(5). (13)

where " is an adequately small number, usually between 10−3 and
10−6, s is the slack of the constraint that is added to the problem
because of the second objective, zL

2 and zU
2 are the lower and upper

bounds of the second objective, r is the range of the second objec-
tive, and ! is the length of each interval (i.e. ! = (zU

2 − zL
2)/Q). In

T-!-con, the objective function does not include the augmented
part ("(s/r)); hence, it is possible to generate weekly efficient solu-
tions.

Theorem 1. Solving subproblem (SPj) produces efficient solutions for
problem (P).

Proof. First, we prove that solving subproblem (SPj) produces a
solution that is efficient over the feasible region of the subproblem.
Suppose that #A = (xA, cA, pA, YA) and #B = (xB, cB, pB, YB) are feasible
for subproblem (SPj) and #A ≻ #B, i.e. #A dominates #B.

Zaug
A =

∑

i

cA
i + f1(xA) − "

r
(zU

2 − j! −
∑

i

pA
i − f2(xA)) (14)

Zaug
B =

∑

i

cB
i + f1(xB) − "

r
(zU

2 − j! −
∑

i

pB
i − f2(xB)) (15)

Then,

Zaug
A − Zaug

B =

(
∑

i

cA
i + f1(xA) −

∑

i

cB
i − f1(xB)

)

+"
r

(
∑

i

pA
i + f2(xA) −

∑

i

pB
i − f2(xB)

)

= zA
1 − zB

1 + "
r

(zA
2 − zB

2)

(16)

There are two possibilities:

• zA
1 ≤ zB

1 and zA
2 < zB

2. Consider Eq. (16). Since zA
1 − zB

1 ≤ 0, " > 0,
r > 0, and zA

2 − zB
2 < 0, then the right-hand-side of Eq. (16) is neg-

ative. Then, Zaug
A − Zaug

B < 0 and Zaug
A < Zaug

B . Therefore, only #A
can be found due to a better objective value.

• zA
1 < zB

1 and zA
2 = zB

2. In this case, Eq. (16) becomes Zaug
A − Zaug

B =
zA

1 − zB
1 < 0. Therefore, only #A can be found.

Now, we prove that the efficient solution #A cannot be dom-
inated by the feasible solutions of problem (P) that are outside
of the feasible region of the subproblem (SPj). Since #A is fea-
sible for subproblem (SPj), then #A is feasible for Eqs. (2)–(5)Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-

tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx 3

2

x1

x4 x5 x11

x12
4

x13

x19 6
x20

x23 x24

x14

x25

8
x17 x18

1
x2 x3

x6

x7
3

x8 x9
x10

x15
5

x16

x21 7
x22

Fig. 2. Superstructure for the 8-process network synthesis.

The disjunctions for the processing units:
⎡

⎢⎢⎢⎢⎢⎣

Y1

x8 = 0.9x7

c1 = 3.5

p1 = 3.5

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Y1

x7 = x8 = 0

c1 = 0

p1 = 0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

Y2

x4 = ln(1 + x2)

c2 = 1

p2 = 1

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Y2

x2 = x4 = 0

c2 = 0

p2 = 0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

Y3

x5 = 1.2 ln(1 + x3)

c3 = 1.5

p3 = 12

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Y3

x3 = x5 = 0

c3 = 0

p3 = 0

⎤

⎥⎥⎥⎥⎥⎦

(8)

The design specifications and logic propositions based on the con-
nections and interactions between units:

Y1 ⇒ Y2 ∨ Y3 ∨ (¬Y2 ∧ ¬Y3),

Y2 ⇒ Y1,

Y3 ⇒ Y1,

¬Y2 ∨ ¬Y3

(9)

Finally, the definition of variables as positive continuous and
Boolean:

xk≥0 ∀k = 1, . . ., 8,

ci, pi≥0 ∀i = 1, 2, 3,

Yi ∈ {True, False} ∀i = 1, 2, 3

(10)

2.2. Example: 8-process network

The superstructure for the 8-process network synthesis (Fig. 2,
Kocis and Grossmann, 1989) consists of 8 processing units and 25
continuous variables for the amount of material flows. The general-
ized disjunctive programming model for this example is available
in Appendix A.

3. Augmented !-constraint

The augmented !-constraint method converts MCO to a sin-
gle objective problem considering one criterion, usually the most
important one, as the objective function and including the oth-
ers into the set of constraints (Mavrotas, 2009). The objective

function also incorporates the slack variables for the newly added
constraints to eliminate the possibility of generating weekly
dominated solutions. In this section, we present the augmented
!-constraint model for the GDP of bi-objective nonlinear process
networks and prove the efficiency of the obtained solutions. Note
that this proof holds if the nonlinear functions (i.e. f1(x), f2(x), g(x),
and hi(x)) are convex.

In the augmented !-constraint method, the range of the sec-
ond objective (i.e. zU

2 − zL
2) is divided into Q equivalent intervals,

and the first objective is optimized for each. If the value of Q
is sufficiently large, solving the subproblems of the augmented
!-constraint method results in a fine approximation of the effi-
cient frontier. Note that, however, more computational effort is
required as Q increases. The jth subproblem (SPj) of the augmented
!-constraint method is written as follows (j = 0, . . ., Q).

min Zaug =
∑

i

ci + f1(x) − "
s
r

(11)

s.t.
∑

i

pi + f2(x) + s = zU
2 − j!, (12)

and Eqs. (2)–(5). (13)

where " is an adequately small number, usually between 10−3 and
10−6, s is the slack of the constraint that is added to the problem
because of the second objective, zL

2 and zU
2 are the lower and upper

bounds of the second objective, r is the range of the second objec-
tive, and ! is the length of each interval (i.e. ! = (zU

2 − zL
2)/Q). In

T-!-con, the objective function does not include the augmented
part ("(s/r)); hence, it is possible to generate weekly efficient solu-
tions.

Theorem 1. Solving subproblem (SPj) produces efficient solutions for
problem (P).

Proof. First, we prove that solving subproblem (SPj) produces a
solution that is efficient over the feasible region of the subproblem.
Suppose that #A = (xA, cA, pA, YA) and #B = (xB, cB, pB, YB) are feasible
for subproblem (SPj) and #A ≻ #B, i.e. #A dominates #B.

Zaug
A =

∑

i

cA
i + f1(xA) − "

r
(zU

2 − j! −
∑

i

pA
i − f2(xA)) (14)

Zaug
B =

∑

i

cB
i + f1(xB) − "

r
(zU

2 − j! −
∑

i

pB
i − f2(xB)) (15)

Then,

Zaug
A − Zaug

B =

(
∑

i

cA
i + f1(xA) −

∑

i

cB
i − f1(xB)

)

+"
r

(
∑

i

pA
i + f2(xA) −

∑

i

pB
i − f2(xB)

)

= zA
1 − zB

1 + "
r

(zA
2 − zB

2)

(16)

There are two possibilities:

• zA
1 ≤ zB

1 and zA
2 < zB

2. Consider Eq. (16). Since zA
1 − zB

1 ≤ 0, " > 0,
r > 0, and zA

2 − zB
2 < 0, then the right-hand-side of Eq. (16) is neg-

ative. Then, Zaug
A − Zaug

B < 0 and Zaug
A < Zaug

B . Therefore, only #A
can be found due to a better objective value.

• zA
1 < zB

1 and zA
2 = zB

2. In this case, Eq. (16) becomes Zaug
A − Zaug

B =
zA

1 − zB
1 < 0. Therefore, only #A can be found.

Now, we prove that the efficient solution #A cannot be dom-
inated by the feasible solutions of problem (P) that are outside
of the feasible region of the subproblem (SPj). Since #A is fea-
sible for subproblem (SPj), then #A is feasible for Eqs. (2)–(5)

Please cite this article in press as: Fattahi A, Turkay M. !-OA for the solution of bi-objective generalized disjunc-
tive programming problems in the synthesis of nonlinear process networks. Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.04.004

ARTICLE IN PRESSG Model
CACE-4944; No. of Pages 11

A. Fattahi, M. Turkay / Computers and Chemical Engineering xxx (2014) xxx–xxx 3

2

x1

x4 x5 x11

x12
4

x13

x19 6
x20

x23 x24

x14

x25

8
x17 x18

1
x2 x3

x6

x7
3

x8 x9
x10

x15
5

x16

x21 7
x22

Fig. 2. Superstructure for the 8-process network synthesis.

The disjunctions for the processing units:
⎡

⎢⎢⎢⎢⎢⎣

Y1

x8 = 0.9x7

c1 = 3.5

p1 = 3.5

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Y1

x7 = x8 = 0

c1 = 0

p1 = 0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

Y2

x4 = ln(1 + x2)

c2 = 1

p2 = 1

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Y2

x2 = x4 = 0

c2 = 0

p2 = 0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

Y3

x5 = 1.2 ln(1 + x3)

c3 = 1.5

p3 = 12

⎤

⎥⎥⎥⎥⎥⎦
∨

⎡

⎢⎢⎢⎢⎢⎣

¬Y3

x3 = x5 = 0

c3 = 0

p3 = 0

⎤

⎥⎥⎥⎥⎥⎦

(8)

The design specifications and logic propositions based on the con-
nections and interactions between units:

Y1 ⇒ Y2 ∨ Y3 ∨ (¬Y2 ∧ ¬Y3),

Y2 ⇒ Y1,

Y3 ⇒ Y1,

¬Y2 ∨ ¬Y3

(9)

Finally, the definition of variables as positive continuous and
Boolean:

xk≥0 ∀k = 1, . . ., 8,

ci, pi≥0 ∀i = 1, 2, 3,

Yi ∈ {True, False} ∀i = 1, 2, 3

(10)

2.2. Example: 8-process network

The superstructure for the 8-process network synthesis (Fig. 2,
Kocis and Grossmann, 1989) consists of 8 processing units and 25
continuous variables for the amount of material flows. The general-
ized disjunctive programming model for this example is available
in Appendix A.

3. Augmented !-constraint

The augmented !-constraint method converts MCO to a sin-
gle objective problem considering one criterion, usually the most
important one, as the objective function and including the oth-
ers into the set of constraints (Mavrotas, 2009). The objective

function also incorporates the slack variables for the newly added
constraints to eliminate the possibility of generating weekly
dominated solutions. In this section, we present the augmented
!-constraint model for the GDP of bi-objective nonlinear process
networks and prove the efficiency of the obtained solutions. Note
that this proof holds if the nonlinear functions (i.e. f1(x), f2(x), g(x),
and hi(x)) are convex.

In the augmented !-constraint method, the range of the sec-
ond objective (i.e. zU

2 − zL
2) is divided into Q equivalent intervals,

and the first objective is optimized for each. If the value of Q
is sufficiently large, solving the subproblems of the augmented
!-constraint method results in a fine approximation of the effi-
cient frontier. Note that, however, more computational effort is
required as Q increases. The jth subproblem (SPj) of the augmented
!-constraint method is written as follows (j = 0, . . ., Q).

min Zaug =
∑

i

ci + f1(x) − "
s
r

(11)

s.t.
∑

i

pi + f2(x) + s = zU
2 − j!, (12)

and Eqs. (2)–(5). (13)

where " is an adequately small number, usually between 10−3 and
10−6, s is the slack of the constraint that is added to the problem
because of the second objective, zL

2 and zU
2 are the lower and upper

bounds of the second objective, r is the range of the second objec-
tive, and ! is the length of each interval (i.e. ! = (zU

2 − zL
2)/Q). In

T-!-con, the objective function does not include the augmented
part ("(s/r)); hence, it is possible to generate weekly efficient solu-
tions.

Theorem 1. Solving subproblem (SPj) produces efficient solutions for
problem (P).

Proof. First, we prove that solving subproblem (SPj) produces a
solution that is efficient over the feasible region of the subproblem.
Suppose that #A = (xA, cA, pA, YA) and #B = (xB, cB, pB, YB) are feasible
for subproblem (SPj) and #A ≻ #B, i.e. #A dominates #B.

Zaug
A =

∑

i

cA
i + f1(xA) − "

r
(zU

2 − j! −
∑

i

pA
i − f2(xA)) (14)

Zaug
B =

∑

i

cB
i + f1(xB) − "

r
(zU

2 − j! −
∑

i

pB
i − f2(xB)) (15)

Then,

Zaug
A − Zaug

B =

(
∑

i

cA
i + f1(xA) −

∑

i

cB
i − f1(xB)

)

+"
r

(
∑

i

pA
i + f2(xA) −

∑

i

pB
i − f2(xB)

)

= zA
1 − zB

1 + "
r

(zA
2 − zB

2)

(16)

There are two possibilities:

• zA
1 ≤ zB

1 and zA
2 < zB

2. Consider Eq. (16). Since zA
1 − zB

1 ≤ 0, " > 0,
r > 0, and zA

2 − zB
2 < 0, then the right-hand-side of Eq. (16) is neg-

ative. Then, Zaug
A − Zaug

B < 0 and Zaug
A < Zaug

B . Therefore, only #A
can be found due to a better objective value.

• zA
1 < zB

1 and zA
2 = zB

2. In this case, Eq. (16) becomes Zaug
A − Zaug

B =
zA

1 − zB
1 < 0. Therefore, only #A can be found.

Now, we prove that the efficient solution #A cannot be dom-
inated by the feasible solutions of problem (P) that are outside
of the feasible region of the subproblem (SPj). Since #A is fea-
sible for subproblem (SPj), then #A is feasible for Eqs. (2)–(5)

Ø Example 1: 3 process

PARETO SOLUTIONS-1

-2

-1.5

-1

-0.5

0

0.5

-6 -4 -2 0 2 4 6 8

Obj.1

Obj.2

Efficient Frontier, 3-Process

(I)

(II)

(III)

65

75

85

95

105

115

125

240 260 280 300 320

Obj.1

Obj.2

Efficient Frontier, 8-Process

(I)

(II)

x7

x6

1
x8

a) Topology for section (I)

2
x1

x2 x4

x7

x6

1
x8

b) Topology for section (II)

3

x1

x3 x5

x7

x6

1
x8

c) Topology for section (III)

Ø Example 1: 8 process

PARETO SOLUTIONS-2

2

x1

x4 x5 x11

x12
4

x13

x19 6
x20

x23 x24

x14

a) Topology for section (I)

2

x1

x4 x5 x11

x12
4

x13

x19 6
x20

x23 x24

x14

x25

8
x17 x18

b) Topology for section (II)

-2

-1.5

-1

-0.5

0

0.5

-6 -4 -2 0 2 4 6 8

Obj.1

Obj.2

Efficient Frontier, 3-Process

(I)

(II)

(III)

65

75

85

95

105

115

125

240 260 280 300 320

Obj.1

Obj.2

Efficient Frontier, 8-Process

(I)

(II)

Ø The number of NLP subproblems and MILP master problems

ITERATIONS

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+01 1.E+02 1.E+03 1.E+04

N

LP
 S

ub
pr

ob
le

m
s

Q

Number of NLP Subproblems (3-Process)

ɸ-con+OA

ɸ-OA

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+01 1.E+02 1.E+03 1.E+04

M

as
te

r P
ro

bl
em

s

Q

Number of Master Problems (3-Process)

ɸ-con+OA

ɸ-OA

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+01 1.E+02 1.E+03 1.E+04

N

LP
 S

ub
pr

ob
le

m
s

Q

Number of NLP Subproblems (8-Process)

ɸ-con+OA

ɸ-OA

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+01 1.E+02 1.E+03 1.E+04

M

as
te

r P
ro

bl
em

s

Q

Number of Master Problems (8-Process)

ɸ-con+OA

ɸ-OA

Ø CPU time comparison

CPU TIMES

-1.E+02

1.E+02

3.E+02

5.E+02

7.E+02

9.E+02

1.E+03

1.E+03

2.E+03

2.E+03

2.E+03

1.E+01 1.E+02 1.E+03 1.E+04

CP
U

 ti
m

e
(s

)

Q

CPU time, 3-Process

ε-con+OA

ε-OA

ε-MINLP

T-ε-con

-1.E+02

4.E+02

9.E+02

1.E+03

2.E+03

2.E+03

3.E+03

3.E+03

1.E+01 1.E+02 1.E+03 1.E+04

CP
U

 ti
m

e
(s

)

Q

CPU time, 8-Process

ε-con+OA

ε-OA

ε-MINLP

T-ε-con

Ø Generation of the Pareto set for MOMINLP is
challenging

Ø The augmented ϵ-constraint method for nonlinear
process network synthesis

Ø Theoretical analysis
Ø The	 solu)on	 of	 each	 sub-‐problem	 is	 theore)cally	 guaranteed	
to	 be	 efficient	 provided	 that	 it	 is	 op)mal	

Ø Augmented	 penalty	 value	 is	 cri)cal	
Ø Algorithmic improvements

Ø Infeasible	 solu)ons	
Ø Feasible	 solu)ons	

Ø Computational performance on two benchmark problems

SUMMARY

Ø IBM: SUR Award + Faculty Award

Ø TUBITAK: 104M322 Project

Ø European Commission: InTraRegio Project (Contract: 286975)

Ø Paper is available online:

Fattahi, A. and M. Turkay (2014), ϵ-OA for the Solution of Bi-Objective
Generalized Disjunctive Programming Problems in the Synthesis of
Nonlinear Process Networks doi

ACKNOWLEDGEMENTS

