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A%, MULTI-OBJECTIVE OPTIMIZATION

» Multi-objective optimization problems (MOOP) involve
optimizing simultaneously N objective functions f,, f,,....fy
over a feasible set X.

max F(x)=(f(x),.... f (x))

S.t. xeX

» Many survey papers were published (Ulungu&Teghem, 1994;
Ehrgott&Gandibleux, 2000; Ehrgott, 2005)
» Research on solution algorithms:

YVV VYV

Continuous and convex: a variety of algorithms — maturing
Continuous and nonconvex: a few algorithms

Combinatorial: a number of papers in the last 5 years
Discrete-continuous — linear: a handful of papers in the last 3 years
Discrete-continuous — nonlinear: only 5 papers straighforward use

of algorithms developed for continuous and convex problems



TERMINOLOGY

» x strictly dominates x’
fn(x)>fn(x') Vn=1,...N

» x weakly dominates x’
fn(x)an(x') Vn=1,...,.N

» X is Pareto optimal or efficient
Vx e X that does not dominate x

x
Nadir point 4

Il 2 I/ 1 :

______________ . > Let x,x € X
/; : o Ideal point —/: » x dominates x’
| b L. ‘\' ! f(x)2f(x) Vn=1.,N andIne{l,..,N}
" v with £,(x)> f.(x)
I 2 2 :
' |
| |

Pareto set

S

» Ideal Point (Utopia Point): all objectives are optimized simultaneously
» Anti-ldeal Point: all objectives are at their worst

» Pareto set: entire set of non-dominated solutions

» Nadir Point: lower bound of each objective in the Pareto set



W% € CONSTRAINT APPROACH
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»Haimes et al., 1971
v Presented the e-constraint approach to solving MOOP.
v' The maximum and minimum values for all objectives are found separately
v" One of the objectives is retained and the rest of the objectives are
converted into constraints

v Avirtual grid is constructed to include all N-1 objective functions.
v Then the following sub-problem is solved iteratively for each i,

max f, (x)

S.z.
S (x)=Lb, +ie, Vi=2,..,.N
xe X

Lb;: the lower bound on the objective j
€. range of the objective j in the iteration 7,



Y AUGMENTED €-CONSTRAINT
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> APPROACH

» The e-constraint approach may find weakly efficient solutions.

»Mavrotas, 2009

v" Modified the e-constraint method by introducing a slack variable to the
each objective that is converted into a constraint.
v A penalty term with scalar ,u (10-3-10%) is added to the objective

max f(x)+u2—

J=2 ]
S.L.
fj(x)—sszbj+ijej Vi=2,...N
s.20 Vj=2,.,N

xe X
s;: slack variable for each objective j that is converted into a constraint

r;: the range of objective j
Lbj: the lower bound on the objective j
€. range of the objective j in the iteration i,



AN LITERATURE ON MOMINLP
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» T-e-con: Straightforward extension of e-constraint approach

» Chakraborty&Linninger (2002), Plant-wide waste management. 1.
Synthesis and multi-objective design

» Cucek, P.S. Varbanov, J.J. Klemes, Z. Kravanja (2012), Total footprints-
based multi-criteria optimisation of regional biomass energy supply chains

» Cucek, J.J. Klemes, P.S. Varbanov, Z. Kravanja (2102), Reducing the
dimensionality of criteria in multi-objective optimisation of biomass energy
supply chains

» Martinez, A.M. Eliceche (2008), Minimization of life cycle greenhouse
emissions and cost in the operation of steam and power plants

» Martinez, A.M. Eliceche (2011), Bi-objective minimization of environmental
impact and cost in utility plants

» Theoretical analysis of the problem (MOMINLP) and computational issues with
the striaghtforward extension of e-constraint approach are missing



AN LOGIC-BASED OA
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min Z = (Z],Zz)

— (Zci + f1(x), Zpi +f2(X)>

s.t. g(x) <0,
Yy, ] [ Y
hi(x) <0 Bix=0
v VieD,
Ci =V ;=0
pi =i pi=0
Q(Y) = True,

x € R", c>0, p>0, Y € {True, False}™.

Turkay&Grossmann, 1996

Logic-Based OA
Logic-Based Benders Decomposition

Initialization

MILP Master [

l,NewY

NLP
Subproblem

<>
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NLP Subproblems
min Z;° = ZC,- + f1(x) — %s

I :
s.t. Zp,- +fo(x)+s = zg — j€,
i

g(x) <0,
hi(x) <0
G=VYi %VY,=True,
Dbi =1
y,
Bix =0)
¢i=0 VY. = False,
pi=0
)

x e R", c>0, p>0.

MILP Master

. K
min qug = ZVLVi + ®oa — ?5

st aoa=fix )+ VA (x—x1) vi=1,.|.,

() +ved) (x—x)<0 Vi=1,...L
T
> ni+ )+ VHE) (x—x) +5
i
¥ —je VI=1,...,L
g I W
Vh(x) x < (~hix)+ Vhit)'X )
Vi=1,...,L,ieD
B'x <M;y; VYieD
Ay <a

®oa € R, x e R", y € {0, 1}"™.

+ No good cuts

%, NLP SUBPROMLEMS & MILP MASTER

€-0OA

—>| count 1...Q

v
Initialization

v

MILP Master [€

l,NewY

NLP
Subproblem

<>

Yes

Analysis
Feas/Infeas




V. SOLUTIONS FOR SUB-PROBLEMS
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» Theorem 1: The optimal solution found by the sub-problem in the
augmented e-constraint method is efficient within the search region of
the sub-problem.

> Proof: T4) i€
Za= fi(za) —|-qu] -

"“j

N .

(zg) — Lb; —1;€;

ZB:fl(xB)w}jff‘ By 4%
J

J=2

= Za— Zp = fi(za) — fi(zB) + .UZ Ji@a)

§=2

— fi(zB)
Tj

2 cases are possible: N fi@a) N fn) P P
1. fi(za) > fi(xp) and Z > Z —~ s0 ZA > 4B

rj J

2. fi(za) > fi(zp) and ZN f):A) — Ejvz fj(rl;B) SO0 Zy — Zp > (
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% EFFICIENT SOLUTIONS
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>

>
v
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Theorem 2: The efficient solution found by the sub-problem in the
augmented e-constraint method is also efficient for the original
MOMINLP.

Proof by contradiction:

Consider x , as the optimal solution for a particular sub-problem.
Theorem 1 proves that it is efficient the same sub-problem. 2o, -+ |1y

Assume that x - is feasible for the original MOOP but not the feasible
for the particular sub-problem where x , is optimal.

Therefore,x. € X but f;(z¢) > Lb, i+i€, j=2,---,N

Suppose that X dominates x, meaning that f, (xc) > fJ (CCA) with
at least one strict inequality )
Since fi(x4) = Lb; + 1;¢; then fi(zc) 2 fi(xa) = Lb; + i€
Therefore, x- must be feasible for the same sub-problem which
contradicts with

v' assumption of x being not feasible for the particular sub-problem

v" x, being the optimal solution for the particular sub-problem



. THEORETICAL ANALYSIS-BRIEF
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» Theorem1 and Theorem 2 proves that as long as each sub-
problem is solved to optimality, then the augmented e-constraint
method guarantees that every solution generated is contained
In the Pareto set.

» These theorems are valid for all deterministic optimization
problems.

» Computational Issues:
» Infeasible Subproblems
» Feasible Subproblems



INFEASIBLE SUB-PROBLEMS

> If there is sub-problem, 4, ... that is infeasible;

s AN

Bz € X such that f;(xz) > Lb; + zjej, Vi=2,---,N

» Then, increasing the iteration count (2].) would make the problem more
restrictive. So, the next iteration will be infeasible for all possible
combinations of these indices.

» Ex: Sub-problem for i,=3, ;=3 and i,=4 is infeasible.

fo +
JE! *
Ja ¥

;=0 1 2 3 4 5 6 7 8

> Any sub-problem generated such that i,>3, ;>3 and i,>4 is also infeasible.



FEASIBLE SUB-PROBLEMS

> |If the sub-problem, 22’ . is optimal;

,’ZN,

» Then, },:j = ~Imax {f](d\?) > Lb] + ij(:'j},Vj = 2, Tt ,N
9;

1j=1j,25+1,,
satisfies the same inequality. A ' - _
> For any set of indices, 22, - - , 2N, such that %; <i; <1, Vj=2,--- N
the optimal solution is the same and we do not need to solve them again.
» Ex: Sub-problem for i,=2, i;=3 and i,=1 is optimal and each e-constraint

until i,=4, i;=4 and i,=7 is feasible.

f2 ® D
f3 ® O
fa & D
;=0 1 2 3 4 5 6 7 8
» Any sub-problem generated such that 2>i,>4, 3>i,>4 and 1>i,>7 have the
same optimal solution.




e, EXAMPLES
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min  Z=(z1,22)

» 3 Process Example

X6 Z3=pP1+tP2+DP3
B +1.8X1 + 2X2 4+ 3x3 + x4 + 1.2x5 + 7Xxg — 5x7 — 11xg
X2 X4 X1 —Xp —Xx3 =0,

X7 —Xq4 — X5 —Xg =0,
X X7 X8

=3 -

Y; Y
xg = 0.9x7 x7=xg3=0
c1=3.5 v c1=0 ’
p1=35 p1=0
r Y, 1 -Y,
» 8 Process Example m=inll o) | e =x=0
=1 v =0 ’
X14 p2=1 p2=0
Y3 Y3
X2 R xs=12In(14x3) | |x=x5=0
X c3=1.5 v c3=0
—_— X21 22 X23 X24\
7 7 7 p3=12 p3=0
X4 Xs x”\ L
— 2 ] > Ve Ya Yy (Vs A Vo),
X5
Y2=>Y1,
3= Y1,
—'Yz\/—'Y?,
Y6 x>0 Vk=1,...,8,
X8 X

X X10 Y; € {True, False} Vi=1,2,3
a\%
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» Example 1: 3 process

0.5

Efficient Frontier, 3-Process
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Obj.1
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N ? ° Obj.2 ¢
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PARETO SOLUTIONS-1

X7 |I| Xs
A

a) Topology for section (I)

X6

X2 X4
12 |
X; X7 X

— 1 +—

b) Topology for section (II)

X6

1 7 8
—) {1 1
X X

N T

¢) Topology for section (III)




» Example 1: 8 process

PARETO SOLUTIONS-2
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a) Topology for section (I)

b) Topology for section (1)
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» The number of NLP subproblems and MILP master problems

ITERATIONS

Number of NLP Subproblems (3-Process) Number of Master Problems (3-Process)
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AN CPU TIMES
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» CPU time comparison

CPU time, 3-Process CPU time, 8-Process
2.E+03 3.E+03
2.E+03
=== c-cON+0A 3.8+03 === c-cON+0A

2.E+03 M ol

LEoz | ——EO0A [ | L R i 26403 | —o=—e0A
— et €-MINLP —_ e e-MINLP
» 1.E+03 I R 1 Ly SRR A n
- ~ 2.E+03 1ty
() e=p=T-c£-CON () e—p=T-c£-CON
£ 9.E+02 I =
- + 1E+03
-} 7.E+02 -
o o
Ok © 90

3.E+02

4.E+02
1.E+02
-1.E+02 -1.E+02
1.E+01 1.E+02Q 1.E+03 1.E+04 1.E+01 1.E+ozQ 1.E+03 1.E+04




A SUMMARY
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» Generation of the Pareto set for MOMINLP is
challenging
» The augmented e-constraint method for nonlinear

process network synthesis

» Theoretical analysis

» The solution of each sub-problem is theoretically guaranteed
to be efficient provided that it is optimal

» Augmented penalty value is critical

» Algorithmic improvements
» Infeasible solutions
» Feasible solutions

» Computational performance on two benchmark problems
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