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What and why?

MINLP model

Let P ⊆ Rn+d be a polytope and
f : Rn+d → R a nonlinear function.

min f (x , y)

s.t.

(x , y) ∈ P,

x ∈ Zd , y ∈ Rn.

What do we aim at?

Complexity results.

Algorithmic schemes
amenable to an analysis.

Why study this model?

(MILP) and (CO) are about
to become a technology.

understand specific class of
MINLPs: optimization over
continous relaxations is
“tractable”.

build a bridge to other areas
of mathematics.

The central question

Can we extend theory and
algorithms from MILP and NLO to
the mixed integer setting?
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Aspects of nonlinear discrete optimization

Convex
maximization

Polynomial
optimization

Convex minimization

Parametric non-linear optimization and W -mappings

A borderline case from the point of view of computational complexity

min f (Wx)

s.t. x ∈ P ∩ Zn

with W ∈ Zm×n where n is regarded as variable, but m as fixed.
(“Maps variable dimension to fixed dimension” [Onn, Rothblum ’05])
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The landscape of computational complexity

Variables
Objective
function Dimension two Fixed dimension Parametric

Convex max poly-time poly-time poly-time

NP-hard

Convex min poly-time poly-time poly-time

NP-hard

Polynomial poly-time FPTAS ?

NP-hard NP-hard ?
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Concave minimization or convex maximization

Observation

Let P be a rational polytope in Rn, and let f be such that for every
z̄ ∈ P ∩ Zn, the set {z ∈ P | f (z) ≥ f (z̄)} is convex. For fixed n,
min{f (x) | x ∈ P ∩ Zn} can be solved in polynomial time.

Proof

We can find the set V of the vertices of PI

(Cook, Hartman, Kannan, McDiarmid,
1992)

Let z̄ be the best vertex, and let
W := {z ∈ P | f (z) ≥ f (z̄)}
V ⊆W

As W is convex, PI = convV ⊆W

P
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State of the art for convex minimization: general dimension

[Westerlund, Pettersson 95] [Duran, Grossmann 86, Viswanathan, G.
’90, Fletcher, Leyffer ’94, Bonami et al. ’08]

(GP) min cT z s.t. z ∈ K , z ∈ Z =
{

(x , y) | x ∈ X ∩ Zn, y ∈ Y ⊆ Rd
}
.

X , Y polytopes, K = {z | gi (z) ≤ 0, ∀ i}, convex gi (first order oracle).

Source of inspiration: [Kelly ’60]

Generate sequences of points
z1 = (x1, y1), . . . , z l = (x l , y l) ∈ Z
from mixed integer relaxations:

z j = arg min cT z s.t. z ∈ Z ,

∇gi (zk)T (z − zk) ≤ 0, k < j

Modifications in (OA)

z j = (x j , y∗). Replace y∗ with y j :

y j = arg min
z∈K∩Z ,x=x j

cT z or

y j = arg min
y∈Y

(
max

i
{gi (x j , y)}

)
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State of the art for convex minimization: fixed dimension

Theorem [Lenstra ’83] [Grötschel, Lovász, Schrijver ’88]

For any fixed n ≥ 1, there exists an oracle-polynomial algorithm that, for
any convex set K ⊆ Rn with B(∗, r) ⊆ K ⊆ B(0,R) given by a weak
separation oracle, and for any rational ε > 0, either finds a point in
(K + B(0, ε)) ∩ Zn, or concludes that K ∩ Zn = ∅.

Theorem [Khachiyan, Porkolab ’00] and
improvements by [Heinz ’05], [Hildebrand, Köppe ’12] [Dadush ’13]

Let g1, . . . , gm ∈ Z[x1, . . . , xn] be quasi-convex polynomials of degree at
most δ whose coefficients have a binary encoding length of at most s.
There exists an algorithm for testing feasibility of

g1(x) ≤ 0, . . . , gm(x) ≤ 0, x ∈ Zn.

whose running time is polynomial in m, s, δ provided that n is constant.
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A general scheme for mixed integer convex minimization
[Baes, Oertel, Wagner, W.] [Yudin, Nemirovskii 79]

An augmentation oracle

For a mixed integer set F and x ∈ Rn either (a) return a point x̂ ∈ F
such that f (x̂) ≤ (1 + α)f (x) + δ or (b) assert non-existence.

Gradient Descent method (GDM) (N ∈ Z+, x0 = x̂0 ∈ F)

For k = 0, . . . ,N − 1, perform the following steps:

Determine xk+1 = xk − hk∇f (xk)

If f (xk+1) ≥ f (xk) set xk+1 = xk , ˆxk+1 = x̂k and continue.

If f (xk+1) < f (xk) query the oracle with input xk .

If the oracle output is (a), then update ˆxk+1.
If the oracle output is (b), then start gap closing :
For l ≤ f ∗ ≤ u and precision ε > 0, find x ∈ F such that

f (x)− f ∗ ≤ ε.
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Analysis and extensions [Baes, Oertel, Wagner, W.]

Theorem. For α = δ = 0 and f convex with Lipschitz-constant L:

If (GDM) does not terminate before N steps, then

f (xbest)− f ∗ ≤ L

√
δF
2

ln(N) + 2

2
√
N + 2− 2

.

The gap-closing algorithm can be implemented to run in oracle polynomial
time in ln(ε) and in ln(f (xbest)− f ∗).

Extensions

We can generalize GDM to Mirror-Descent Methods, for better
convergence properties.

Constrained problems: we need a projector and a separator from the
continuous feasible set.

We allow for α, δ > 0, without accumulation of errors during the
iterations (smallest affordable gap: (2 + α)(αf̂ ∗ + δ)).
Robert Weismantel June 2014 9 / 20



Implementation of the oracle: optimality condition

The continuous case
without constraints

Theorem. Let f be convex
and continously differentiable
on its domain. Let
x∗ ∈ dom f . Then, x∗

attains the value

min{f (x) | x ∈ dom f }

if and only if ∇f (x∗) = 0.

... and with constraints

Using KKT we are allowed to
use also constraints from F .

The constrained mixed integer case:
[Baes, Oertel, W.]

Theorem. For convex and continuously
differentiable f consider

min{f (x) | x ∈ F},

with F = P ∩ Zd × Rn. Let x̂ be the
continuous optimum and x0 ∈ F . Then,
x0 is optimal if and only if there exist
{x1, . . . , x t} ⊆ P such that

t ≤ 2d − 1 and x̂ ∈ int L,

the set int L is mixed-integer free,

f (x i ) ≥ f (x0) for i ≥ 1.

L = {x ∈ P | ∇f (x i )T (x − x i ) ≤ 0}.
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Implementation of the oracle II: [Oertel, Wagner, W.]

“MICO by MILPing”

Let K be a convex set presented
by a first order oracle.

Replace the ellispoid type
method by a polytope shrinking
algorithm.

The steps for testing K ∩ Zn = ∅:

Step 1: Let P = {x | Ax ≤ b}
be a polytope containing K .

Step 2: If Pλ ∩ Zn = ∅,
generate subproblems.

Step 3: Let x ∈ Pλ ∩ Zn.
If x 6∈ K , separate x .

The ingredients:

For convex compact G , the

centroid cG =
∫
G xdx

vol(G) .

Gλ := λ(G − cG ) + cG .

Extension of a theorem of
Grünbaum 1960 (λ = 0)

Let G be a compact convex set,
let H be a halfspace and let
0 < λ < 1. If Gλ ∩ H 6= ∅, then

vol (G ∩ H)

vol (G )
≥ (1−λ)n(

n

n + 1
)n.
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Analysis of the polytope-shrinking algorithm:

Iterations k until vol(P) ≤ 1
n!

:

k ≤
n
[
log(2B) + log(n)

]
(1− λ)n( n

n+1)n
.

Good news about the computation of x ∈ Pλ ∩ Zn:

For n fixed, Pλ can be efficiently computed by solving a mixed integer
linear program in dimension n + 1:

t∗ = max t

aTi x + ω(P, ai)t ≤ bi ∀i
x ∈ Zn, t ≥ 0.

(x∗, t) feasible implies (a) x∗ ∈ P1−t and

(x∗, t) feasible implies (b) x∗ ∈ {x | x + t(P − P) ⊆ P}.
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Polynomials in few integer variables

Integer Polynomial Programming (IPP)

min{f k(x) subject to x ∈ P ∩ Zn},

where f k is a polynomial function of degree k , with integer coefficients
and P is a polytope in Rn given by an outer description.

About the encoding of (IPP)

polyhedron P polynomial f k(x)

inequality description f k(x) =
∑k

i=1

∑
z∈Zn

+,‖z‖1=i azx
z

in binary encoding. ∀1 ≤ i ≤ k and ∀z ∈ Zn
+, ‖z‖1 = i

the input is the integer az
in binary encoding.
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Polynomiality results in two integer variables

Polynomiality results in dimension 2

Theorem [Del Pia, W. ’13]. (IPP) can be solved in polynomial time if
k = 2.

Theorem [Hildebrand, Del Pia, W., Zemmer ’14] (IPP) can be solved
in polynomial time if k = 3.

Theorem [Hildebrand, Del Pia, W., Zemmer ’14] (IPP) can be solved
in polynomial time for arbitrary, but fixed k , provided that the
polynomial is homogeneous, i.e., all monomials have equal degree.

n=1 n=2

k=1 P P
k=2 P P
k=3 P P
k=4 P NPH

k general P NPH

Exclusion operator

Let C be convex and P a
polyhedron. In polynomial time
in the encoding of P one can
determine whether or not
P \ C ∩ Zn is empty.

Robert Weismantel June 2014 14 / 20



Polynomiality results in two integer variables

Polynomiality results in dimension 2

Theorem [Del Pia, W. ’13]. (IPP) can be solved in polynomial time if
k = 2.

Theorem [Hildebrand, Del Pia, W., Zemmer ’14] (IPP) can be solved
in polynomial time if k = 3.

Theorem [Hildebrand, Del Pia, W., Zemmer ’14] (IPP) can be solved
in polynomial time for arbitrary, but fixed k , provided that the
polynomial is homogeneous, i.e., all monomials have equal degree.

n=1 n=2

k=1 P P
k=2 P P
k=3 P P
k=4 P NPH

k general P NPH

Exclusion operator

Let C be convex and P a
polyhedron. In polynomial time
in the encoding of P one can
determine whether or not
P \ C ∩ Zn is empty.

Robert Weismantel June 2014 14 / 20



From dimension two to fixed dimension

Problem type

max f (x1, . . . , xn)

s.t. (x1, . . . , xn) ∈ P ∩ Zn,

where

P is a polytope,

f is a polynomial
function non-negative
over P ∩ Zn,

the dimension n is fixed.

Generating functions

gP(z1, . . . , zn) =
∑

α∈P∩Zn

zα

0 1 2 3 4

gP(z) = z0 + z1 + z2 + z3 + z4

=
1− z5

1− z
for z 6= 1

Theorem (De Loera, Hemmecke, Koeppe, W. 2006)

Let n be fixed. There exists FPTAS for this problem.
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W -mappings

The setting: min {f (Wx) : Ax ≤ b, x ∈ Zn}
Given

Matrices A ∈ Zm×n and W ∈ Zd×n, a vector b ∈ Zm

We assume to have access to a fiber oracle.

Given y ∈ Zd . The oracle returns x ∈ F = {x ∈ Zn : Ax ≤ b},
such that Wx = y , or states that no such x exists.

A function f : Qd → Q presented by a integer minimization oracle.

(Query: y∗ ← arg min{f (y) : By ≤ c , y ∈ Λ})

Why and what?

Why do we need these oracles?

Under which conditions on the input is this problem tractable?
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Assumptions about min f (Wx) subject to x ∈ F .

W is in unary representation.

We can model the Partition Problem:
For w1, · · · ,wn ∈ Z+ and
D = 1

2

∑n
i=1 wi , solve

min (wT x − D)2

s.t. x ∈ {0, 1}n.

d is fixed

leverage algorithms for
minimization in fixed dimension.

The tractability question:

Conditions on F and A, b, resp. ?

No access to a fiber oracle is
typically hopeless.

Theorem [Lee, Onn, W. ’10]
There is a universal constant ρ
such that no polynomial time
algorithm can compute a
ρn-best solution of the
nonlinear optimization problem
min {f (Wx) : x ∈ F} over any
independence system F
presented by a linear
optimization oracle, not even
with W a fixed integer 2× n
matrix.
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W mappings with small subdeterminants

The assumptions summarized

Let A ∈ Zm×n, W ∈ Zd×n, b ∈ Zm and f : Rd → R.

Let d be a fixed constant.

Let ∆ denote the maximum sub-determinant of A and W .

Theorem [Adjiashvili, Oertel, W. ’14]

There is an algorithm that solves the non-linear optimization problem

min {f (Wx) : Ax ≤ b, x ∈ Zn}.

The number of calls of the optimization and fiber oracles is polynomial in
n and ∆.

Robert Weismantel June 2014 18 / 20



W mappings with small subdeterminants

The assumptions summarized

Let A ∈ Zm×n, W ∈ Zd×n, b ∈ Zm and f : Rd → R.

Let d be a fixed constant.

Let ∆ denote the maximum sub-determinant of A and W .

Theorem [Adjiashvili, Oertel, W. ’14]

There is an algorithm that solves the non-linear optimization problem

min {f (Wx) : Ax ≤ b, x ∈ Zn}.

The number of calls of the optimization and fiber oracles is polynomial in
n and ∆.

Robert Weismantel June 2014 18 / 20



W mappings with small subdeterminants

The assumptions summarized

Let A ∈ Zm×n, W ∈ Zd×n, b ∈ Zm and f : Rd → R.

Let d be a fixed constant.

Let ∆ denote the maximum sub-determinant of A and W .

Theorem [Adjiashvili, Oertel, W. ’14]

There is an algorithm that solves the non-linear optimization problem

min {f (Wx) : Ax ≤ b, x ∈ Zn}.

The number of calls of the optimization and fiber oracles is polynomial in
n and ∆.

Robert Weismantel June 2014 18 / 20



W mappings with small subdeterminants

The assumptions summarized

Let A ∈ Zm×n, W ∈ Zd×n, b ∈ Zm and f : Rd → R.

Let d be a fixed constant.

Let ∆ denote the maximum sub-determinant of A and W .

Theorem [Adjiashvili, Oertel, W. ’14]

There is an algorithm that solves the non-linear optimization problem

min {f (Wx) : Ax ≤ b, x ∈ Zn}.

The number of calls of the optimization and fiber oracles is polynomial in
n and ∆.

Robert Weismantel June 2014 18 / 20



W mappings with small subdeterminants

The assumptions summarized

Let A ∈ Zm×n, W ∈ Zd×n, b ∈ Zm and f : Rd → R.

Let d be a fixed constant.

Let ∆ denote the maximum sub-determinant of A and W .

Theorem [Adjiashvili, Oertel, W. ’14]

There is an algorithm that solves the non-linear optimization problem

min {f (Wx) : Ax ≤ b, x ∈ Zn}.

The number of calls of the optimization and fiber oracles is polynomial in
n and ∆.

Robert Weismantel June 2014 18 / 20



Special properties on F make the problem tractable.

A first polynomial time algorithm.

Let F =
{
x ∈ {0, 1}n | aT x ≤ a0

}
be a knapsack set and W ∈ Zd×n

encoded in unary with d fixed.

The dual problem: γ(w0) := min{aT x subject to Wx = w0}.
Dynamic programming / shortest path techniques apply to the dual.

Choose argmin {f (w0) subject to γ(w0) ≤ a0}.

Theorem (Lee, Onn, W. ’07)

For every fixed m and p, there is an algorithm that, given a1, . . . , ap ∈ Z,
W ∈ {a1, . . . , ap}m×n, and a function f : Rn → R, finds a matroid base B
minimizing f (WχB) in time polynomial in n and 〈a1, . . . , ap〉.

(... can be solved using iterated matroid intersection algorithms.)
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Open problems

Integer convex maximization

For which classes of concave functions can we solve the mixed integer
version of the problem?

Integer polynomial optimization

Quadratic functions in three integer variables?

For which classes of polynomials can we solve the mixed integer
version of the problem?

Integer convex minimization

In the mixed integer setting: for x ∈ Zn, the precision used to
compute y∗(x) should depend on x : adaptive precision scheme.

A mixed integer gradient method: x 7→ x + λk∇f (x)?

For which classes of convex functions is there an oracle polynomial
algorithm if equipped with a general CO- and MILP- oracle?
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