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What and why?

MINLP model

Let P C R"9 be a polytope and
f: R" _ R a nonlinear function.

min  f(x,y)

s.t.
(x,y) € P,
xeZ9 yeR"

Robert Weismantel June 2014 2 /20



What and why?

MINLP model Why study this model?
Let P C R"™9 be a polytope and e (MILP) and (CO) are about
f : R"¥ — R a nonlinear function. to become a technology.

@ understand specific class of

min  f(x,y) MINLPs: optimization over
s.t. continous relaxations is
(x,y) € P, “tractable”.
x€eZ9 yeR" @ build a bridge to other areas

/ of mathematics.

The central question

Can we extend theory and
algorithms from MILP and NLO to
the mixed integer setting?
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What and why?

MINLP model Why study this model?

Let P C R" be a polytope and e (MILP) and (CO) are about
f : R"¥ — R a nonlinear function. to become a technology.
o @ understand specific class of
min  f(x,y) MINLPs: optimization over
Shis continous relaxations is
(x,y) € P, “tractable”.
x€eZ9 yeR" @ build a bridge to other areas

/ of mathematics.

What do we aim at?

o Complexity results.

The central question

Can we extend theory and
algorithms from MILP and NLO to
) the mixed integer setting?

@ Algorithmic schemes
amenable to an analysis.
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Aspects of nonlinear discrete optimization

Convex Polynomial T —
... L. Convex minimization
maximization optimization

Parametric non-linear optimization and W-mappings
A borderline case from the point of view of computational complexity

min  f(Wx)
st. xePnZ"

with W € Z™*" where n is regarded as variable, but m as fixed.
(“Maps variable dimension to fixed dimension” [Onn, Rothblum '05])
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The landscape of computational complexity

Variables
Objective
function Dimension two Fixed dimension Parametric
Convex max  poly-time poly-time poly-time
NP-hard
Convex min  poly-time poly-time poly-time
NP-hard

Polynomial  poly-time

NP-hard
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Concave minimization or convex maximization

Observation

Let P be a rational polytope in R”, and let f be such that for every
zZe PNZ" theset {z € P|f(z)>f(Z)} is convex. For fixed n,
min{f(x) | x € PNZ"} can be solved in polynomial time.
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Concave minimization or convex maximization

Observation

Let P be a rational polytope in R”, and let f be such that for every
zZe PNZ" theset {z € P|f(z)>f(Z)} is convex. For fixed n,
min{f(x) | x € PNZ"} can be solved in polynomial time.

@ We can find the set V of the vertices of P,
(Cook, Hartman, Kannan, McDiarmid,
1992)

@ Let Z be the best vertex, and let
W:={zeP|f(z) >f(2)}

e VC W

@ As W is convex, P =convV C W
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State of the art for convex minimization: general dimension

[Westerlund, Pettersson 95] [Duran, Grossmann 86, Viswanathan, G.
'90, Fletcher, Leyffer '94, Bonami et al. '08]

(GP) mincTzst. ze K,ze Z={(x,y) [ xeXNZ", yeYC Rd}.
X, Y polytopes, K = {z | gi(z) <0, Vi}, convex g; (first order oracle).

Source of inspiration: [Kelly '60]

Generate sequences of points
b= x4y, 2 = (X, yhez
from mixed integer relaxations:

Z —argmin ¢c"zst. z€ Z,
Vei()(z—2") <0, k<

v
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State of the art for convex minimization: general dimension

[Westerlund, Pettersson 95] [Duran, Grossmann 86, Viswanathan, G.
'90, Fletcher, Leyffer '94, Bonami et al. '08]

(GP) mincTzst. ze K,ze Z={(x,y) [ xeXNZ" y e YQRd}.

X, Y polytopes, K = {z | gi(z) <0, Vi}, convex g; (first order oracle).

Modifications in (OA)

7= (xj,y*). Replace y* with y/ :
v =arg  min , czor
zeKNZ ,x=x/

v/ = arg min (max{gi(Xj,Y)})
yeYy i

v
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State of the art for convex minimization: fixed dimension

Theorem [Lenstra '83] [Grotschel, Lovasz, Schrijver '88]

For any fixed n > 1, there exists an oracle-polynomial algorithm that, for
any convex set K C R” with B(x,r) C K C B(0, R) given by a weak
separation oracle, and for any rational € > 0, either finds a point in

(K + B(0,e))NZ", or concludes that KN Z" = 0.

Theorem [Khachiyan, Porkolab '00] and

improvements by [Heinz '05], [Hildebrand, Koppe '12] [Dadush '13]

Let g1,...,8m € Z[x1, ..., xn| be quasi-convex polynomials of degree at
most & whose coefficients have a binary encoding length of at most s.
There exists an algorithm for testing feasibility of

gl(X) < Oa-' 'agm(X) < 07 x€Z".

whose running time is polynomial in m, s, § provided that n is constant.

v
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A general scheme for mixed integer convex minimization
[Baes, Oertel, Wagner, W.] [Yudin, Nemirovskii 79]

An augmentation oracle

For a mixed integer set F and x € R” either (@) return a point X € F
such that (%) < (14 «)f(x) + 0 or (b) assert non-existence.

Gradient Descent method (GDM) (N € Z, xo = X € F)

For k=0,...,N — 1, perform the following steps:

e Determine xy 1 = xx — h V1 (xk)
o If f(xki1) > F(xk) set xxr1 = Xk, Xkr1 = Xk and continue.
°

If f(xk+1) < f(xk) query the oracle with input x.
o If the oracle output is (a), then update x4 1.
o If the oracle output is (b), then start gap closing :
For | < f* < u and precision € > 0, find x € F such that

F(x) — " < e.

v
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Analysis and extensions [Baes, Oertel, Wagner, W.]

Theorem. For = =0 and f convex with Lipschitz-constant L:
If (GDM) does not terminate before N steps, then

. 1) In(N) + 2
f(Xbest) - f S L 7]: NIE/T)2

The gap-closing algorithm can be implemented to run in oracle polynomial
time in In(e) and in In(f(xpest) — 7*).

Extensions

| A\

@ We can generalize GDM to Mirror-Descent Methods, for better
convergence properties.

@ Constrained problems: we need a projector and a separator from the
continuous feasible set.

o We allow for «,d > 0, without accumulation of errors during the
iterations (smallest affordable gap: (2 + «a)(af* + 9)).
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Implementation of the oracle: optimality condition

The continuous case

without constraints
Theorem. Let f be convex
and continously differentiable
on its domain. Let

x* € dom f. Then, x*
attains the value

min{f(x) | x € dom f}

if and only if Vf(x*) =0.

. and with constraints

Using KKT we are allowed to
use also constraints from F.
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Implementation of the oracle: optimality condition

. The constrained mixed integer case:
The continuous case B Oertel W
without constraints [Baes, Oertel, W]
ST T — T.heorer_n. For convex and continuously
differentiable f consider

and continously differentiable
on its domain. Let
x* € dom f. Then, x*
Zitls e valle with F = PN Z9 x R, Let & be the
. continuous optimum and x° € F. Then,
in{{ed) | o € com b x¥ is optimal if and only if there exist
1 t

if and only if VF(x*) =0. | {x7s---,x'} C P such that
o t<2¢—1and %€intL,

. and with constraints @ the set int L is mixed-integer free,
Using KKT we are allowed to o f(x') > f(xO) for i > 1.

use also constraints from F. L={xeP| Vf(xi)T(x _ xi) <0}

min{f(x) | x € F},

4
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Implementation of the oracle II: [Oertel, Wagner, W.]

“MICO by MILPing"

@ Let K be a convex set presented
by a first order oracle.
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Implementation of the oracle Il

: [Oertel, Wagner, W]

The ingredients:

“MICO by MILPing"

@ Let K be a convex set presented
by a first order oracle.

@ Replace the ellispoid type
method by a polytope shrinking
algorithm.

Robert Weismantel

@ For convex compact G, the

. d
centroid cg = {g/?c);

o G = )\(G = CG) + CG.
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Implementation of the oracle Il

: [Oertel, Wagner, W]

“MICO by MILPing"

@ Let K be a convex set presented
by a first order oracle.

@ Replace the ellispoid type
method by a polytope shrinking
algorithm.

The steps for testing KN Z" = ():

o Step 1: Let P = {x | Ax < b}
be a polytope containing K.
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The ingredients:

@ For convex compact G, the

S xdx
vol(G) "

o G = )\(G = CG) + CG.

centroid cg =
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Implementation of the oracle Il:

[Oertel, Wagner, W.]

“MICO by MILPing"

@ Let K be a convex set presented
by a first order oracle.

@ Replace the ellispoid type
method by a polytope shrinking
algorithm.

The steps for testing KN Z" = ():
o Step 1: Let P = {x | Ax < b}
be a polytope containing K.
o Step 2: If PA,NZ" =0,
generate subproblems.

Robert Weismantel

The ingredients:

@ For convex compact G, the

S xdx
vol(G) "

o G = )\(G = CG) + CG.
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Implementation of the oracle II: [Oertel, Wagner, W.]

“MICO by MILPing” The ingredients:

@ Let K be a convex set presented @ For convex Compact G, the

by a first order oracle. centroid cg = s
~ vol(G)*
@ Replace the ellispoid type . G o A(G Cvo)(+)c
method by a polytope shrinking A= )+ ¢
algorithm.

The steps for testing KN Z" = ():
o Step 1: Let P = {x | Ax < b}
be a polytope containing K.
o Step 2: If PA,NZ" =0,
generate subproblems.
o Step 3: Let x € P, NZ".
If x ¢ K, separate x.
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Implementation of the oracle Il:

[Oertel, Wagner, W.]

“MICO by MILPing"

@ Let K be a convex set presented
by a first order oracle.

@ Replace the ellispoid type
method by a polytope shrinking
algorithm.

The steps for testing KN Z" = ():
o Step 1: Let P = {x | Ax < b}
be a polytope containing K.
o Step 2: If PA,NZ" =0,
generate subproblems.
@ Step 3: Let xe Py\NZ".

If x ¢ K, separate x.

Robert Weismantel

The ingredients:

@ For convex compact G, the

S xdx
vol(G) "

() G)\ = )\(G — CG) + CG-

centroid cg =

Extension of a theorem of
Griinbaum 1960 (A = 0)

Let G be a compact convex set,
let H be a halfspace and let
0< A<l If G\NH#D, then

vol (G N H) h, N
vol (G) Z(1_)\)(n—i-1

P

v
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Analysis of the polytope-shrinking algorithm:

1

Iterations k until vol(P) < —:

n[log(2B) + log(n)]
TG
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Analysis of the polytope-shrinking algorithm:

1

Iterations k until vol(P) < —:

n[log(2B) + log(n)]
T NGR)

Good news about the computation of x € P\ N Z":

o For n fixed, Py can be efficiently computed by solving a mixed integer
linear program in dimension n + 1:

t* =max t
a,-Tx~|—w(P,ai)t§ b; Vi
xelZ", t>0.

(x*, t) feasible implies (a) x* € P;_; and

(]
o (x*,t) feasible implies (b) x* € {x | x + t(P — P) C P}.

v
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Polynomials in few integer variables

Integer Polynomial Programming (IPP)

min{f¥(x) subject to x € PN Z"},

where ¥ is a polynomial function of degree k, with integer coefficients
and P is a polytope in R” given by an outer description.

About the encoding of (IPP)
polyhedron P | polynomial f¥(x)

inequality description || X(x) = Y5, Dozezn |zf,=i 92X
in binary encoding. || V1<i<kandVzeZ,|z|, =1
the input is the integer a,
in binary encoding.
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Polynomiality results in two integer variables

Polynomiality results in dimension 2

@ Theorem [Del Pia, W. '13]. (IPP) can be solved in polynomial time if
k=2

@ Theorem [Hildebrand, Del Pia, W., Zemmer '14] (IPP) can be solved
in polynomial time if kK = 3.

@ Theorem [Hildebrand, Del Pia, W., Zemmer '14] (IPP) can be solved
in polynomial time for arbitrary, but fixed k, provided that the
polynomial is homogeneous, i.e., all monomials have equal degree.

[n=t[n=2]
k=1 P P
k=2 P P
k=3 P P
k=4 P NPH

k general P NPH
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Polynomiality results in two integer variables

Polynomiality results in dimension 2

@ Theorem [Del Pia, W. '13]. (IPP) can be solved in polynomial time if
k=2

@ Theorem [Hildebrand, Del Pia, W., Zemmer '14] (IPP) can be solved
in polynomial time if kK = 3.

@ Theorem [Hildebrand, Del Pia, W., Zemmer '14] (IPP) can be solved
in polynomial time for arbitrary, but fixed k, provided that the
polynomial is homogeneous, i.e., all monomials have equal degree.

[ n=1] n=2| Exclusion operator

k=1 P P Let C be convex and P a
k=2 P polyhedron. In polynomial time
k=3 P in the encoding of P one can
k=4 P NPH determine whether or not

k general P | NPH P\ CNZ"is empty.
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From dimension two to fixed dimension

Problem ype

gp(z,...,z0)= Y  2°

max f(x1,...,Xn) acePNZ"
st. (x1,...,X) € PNZ",

—— 00— O
4

where 0 1 2 3
@ P is a polytope,
@ f is a polynomial gp(z2) =22+ + 22+ 22+
function non-negative
over PNZ",

@ the dimension n is fixed.

Theorem (De Loera, Hemmecke, Koeppe, W. 2006)
Let n be fixed. There exists FPTAS for this problem.
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From dimension two to fixed dimension

Problem ype

gp(z,...,z0)= Y  2°

max f(x1,...,Xn) acePNZ"
st. (x1,...,X) € PNZ",

—— 00— O
where 0 1 2 3 4

@ P is a polytope,

@ f is a polynomial gp(z) =2 + z1 + 224+ 23+
function non-negative 1 _
over PNZ", 1= forz;él

@ the dimension n is fixed.

Theorem (De Loera, Hemmecke, Koeppe, W. 2006)
Let n be fixed. There exists FPTAS for this problem.

Robert Weismantel June 2014
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W-mappings

The setting: min {f(Wx) : Ax<b, xe€ Z"}

Given
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o Matrices A € Z™<" and W € Z9%", a vector b € Z™
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Given y € Z9. The oracle returns x € F = {x € Z" : Ax < b},
such that Wix = y, or states that no such x exists.

@ A function f : Q9 — Q presented by a integer minimization oracle.
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W-mappings

The setting: min {f(Wx) : Ax<b, xe€ Z"}

Given
o Matrices A € Z™<" and W € Z9%", a vector b € Z™

@ We assume to have access to a fiber oracle.

Given y € Z9. The oracle returns x € F = {x € Z" : Ax < b},
such that Wix = y, or states that no such x exists.

@ A function f : Q9 — Q presented by a integer minimization oracle.

(Query:  y*«argmin{f(y) : By <c,y€A})

@ Why do we need these oracles?

@ Under which conditions on the input is this problem tractable?
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Assumptions about min f subject to x € F.

We can model the Partition Problem:

For wy, - ,w, € Z; and
D =137, w, solve

min  (w'x — D)?

st. xe€{0,1}".

A\

dis
@ leverage algorithms for
minimization in fixed dimension.
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Assumptions about min f(Wx) subject to x € F.

We can model the Partition Problem:

For wy, - --
D =

, Wp € Z+ and
230 w;, solve
min  (w'x — D)?

st. xe€{0,1}".

A\

dis

leverage algorithms for
minimization in fixed dimension.

Robert Weismantel

No access to a fiber oracle is
typically hopeless.

Theorem [Lee, Onn, W. '10]
There is a universal constant p
such that no polynomial time
algorithm can compute a
pn-best solution of the
nonlinear optimization problem
min {f(Wx) : x € F} over any
independence system F
presented by a linear
optimization oracle, not even
with W a fixed integer 2 X n
matrix.
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Assumptions about min f(Wx) subject to x € F.

We can model the Partition Problem:

For wy, - ,w, € Z; and
D =137, w, solve

min  (w'x — D)?

st. xe€{0,1}".

dis
@ leverage algorithms for
minimization in fixed dimension.

The tractability question:

Conditions on F and A, b, resp. ?

Robert Weismantel

No access to a fiber oracle is
typically hopeless.

Theorem [Lee, Onn, W. '10]
There is a universal constant p
such that no polynomial time
algorithm can compute a
pn-best solution of the
nonlinear optimization problem
min {f(Wx) : x € F} over any
independence system F
presented by a linear
optimization oracle, not even
with W a fixed integer 2 X n
matrix.
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W mappings with small subdeterminants

The assumptions summarized
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W mappings with small subdeterminants
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o Let AcZ™" WeZ9" beZ™and f:R?Y = R.
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@ Let A denote the maximum sub-determinant of A and W.
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W mappings with small subdeterminants

The assumptions summarized
o Let AcZ™" WeZ9" beZ™and f:R?Y = R.

@ Let d be a fixed constant.

@ Let A denote the maximum sub-determinant of A and W.

Theorem [Adjiashvili, Oertel, W. '14]

There is an algorithm that solves the non-linear optimization problem

min {f(Wx) : Ax < b, x e Z"}.

The number of calls of the optimization and fiber oracles is polynomial in
nand A.

v
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Special properties on F make the problem tractable.

A first polynomial time algorithm.

Let F = {x €{0,1}" | a"x < ap} be a knapsack set and W € Z9*"
encoded in unary with d fixed.

o The dual problem: ~(wp) := min{a”x subject to Wx = wp}.
@ Dynamic programming / shortest path techniques apply to the dual.
@ Choose argmin {f(wp) subject to v(wp) < ap}-

Robert Weismantel
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Special properties on F make the problem tractable.

A first polynomial time algorithm.

Let F = {x €{0,1}" | a"x < ap} be a knapsack set and W € Z9*"
encoded in unary with d fixed.

o The dual problem: ~(wp) := min{a”x subject to Wx = wp}.
@ Dynamic programming / shortest path techniques apply to the dual.
@ Choose argmin {f(wp) subject to v(wp) < ap}-

Theorem (Lee, Onn, W. '07)

For every fixed m and p, there is an algorithm that, given a1,...,a, € Z,

W e {a1,...,ap}™*", and a function f: R” — R, finds a matroid base B
minimizing f(Wx?) in time polynomial in n and (a1,...,a,).

(... can be solved using iterated matroid intersection algorithms.)
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Open problems

Integer convex maximization

@ For which classes of concave functions can we solve the mixed integer
version of the problem?

Robert Weismantel June 2014 20 / 20



Open problems

Integer convex maximization

@ For which classes of concave functions can we solve the mixed integer
version of the problem?

Integer polynomial optimization

@ Quadratic functions in three integer variables?

@ For which classes of polynomials can we solve the mixed integer
version of the problem?

Robert Weismantel June 2014 20 / 20



Open problems

Integer convex maximization

@ For which classes of concave functions can we solve the mixed integer
version of the problem?

Integer polynomial optimization

@ Quadratic functions in three integer variables?

@ For which classes of polynomials can we solve the mixed integer
version of the problem?

.

Integer convex minimization

@ In the mixed integer setting: for x € Z", the precision used to
compute y*(x) should depend on x: adaptive precision scheme.

o A mixed integer gradient method: x — x + A\(Vf(x)?

@ For which classes of convex functions is there an oracle polynomial
algorithm if equipped with a general CO- and MILP- oracle?

v
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