Aspects on solving convex and nonconvex MINLP problems

TAPIO WESTERLUND

CENTER OF EXCELLENCE IN OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY, FINLAND

MINLP 2014 WORKSHOP CARNEGIE MELLON UNIVERSITY, PITTSBURGH, USA JUNE 4, 2014

Contents

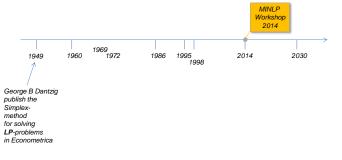
- 1. Introduction a short background to MINLP
- 2. Aspects on algorithms for convex MINLP problems
- 3. A new algorithm for solving convex MINLP problems
- 4. Aspects on frameworks for nonconvex MINLP problems
- 5. A reformulation algorithm for solving C^2 MINLP problems
- 6. Summary

1. Introduction – a short background to MINLP

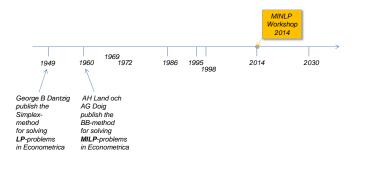
A short background to MINLP

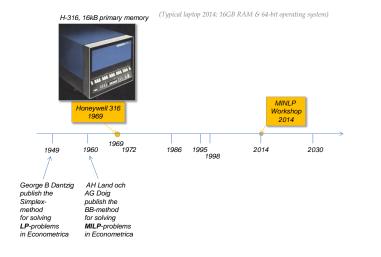
Some mile stones

4 | 89



IIIDIACE AND

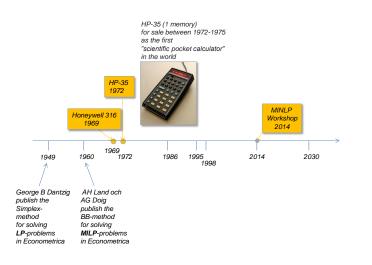




7 | 89

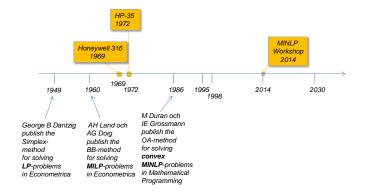
111000000

1. Introduction – a short background to MINLP

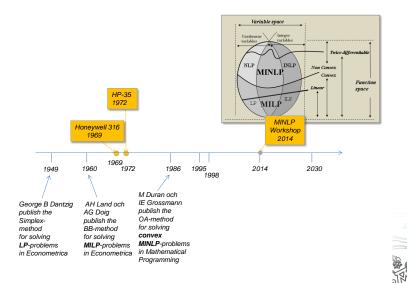


8 89

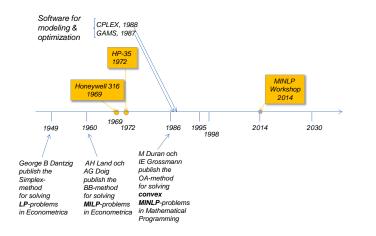
1110 Serles



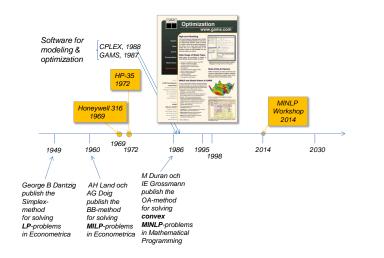
IIIG SAL S



IIIDISCHE SE



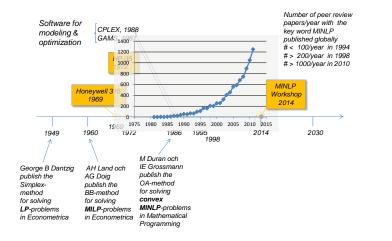
IIIGISCAL SH



12|89

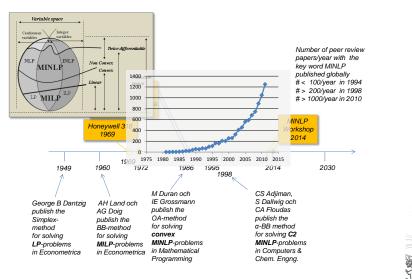
1110 Sector

50

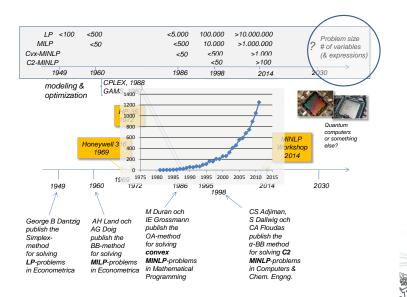


13 89

1110 Serles



IIIGING & Co

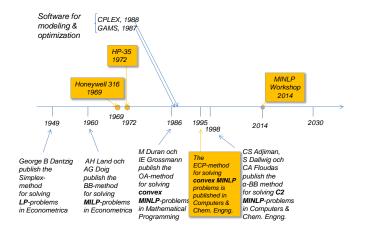


15 89

1110 Serles

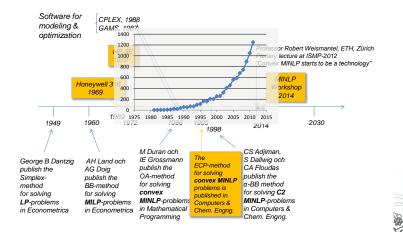
58

Harzing's Publ le Edit View								_0>
uthor impact	General citation	search - Per	form a general citat	on search				? 🖬 🗉
ound impact	Author(s):							Lookup
eneral citations	Publication:					_		Lookup Direct
ultiquery center	Al of the words: MINLP OR "Mixed Integer Nonlinear Programs"							Clear Al
eb browser	Any of the words				riogrand			Clear Al
		_			Help			
	None of the words:							
sip contents	The phrase:			_				1 Steeley
ap contents bat's new?	Year of publicat	ion betweer	0 and	2014	Title wi	ords only		The Publisher Preside Blenck
nats new r Minute intro	Data source:	God						1000
P FAD	Results							
	Papers:	695	Papers/author:	365.92	h-index:	46	MINLP OR "Mixed Integer Nonlinear Programs" to 2014: al	Copy results
P web site	Citations:	10336	Cites/year:	224.70	g-index:	91	Query date: 2014-04-28	
	Years:		Cites/auth/year:	100.58	hc-index:	31	Papers: 695 Citations: 10336	Copy >
	Cites/paper:	14.87	hī,annual:	0.67	hI,norm:	31	Years: 16	Check all
	Otes -	Per year	Rank Authors				Title Year Adication	Check all
	🗹 h 822	29.36					An outer-approximation algorithm for a class of mi 1997 Mathematical programming	Check selection
	🗹 h 570	23.75	0 17 M Tawarmalani, NV Sahinidis				A combined penalty function and outer-approximat 390 Computers & Chemical Engineering	
	🗹 h 393	39.30					Global optimization of mixed-integer nonlinear prog. 2004 Mathematical programming	Uncheck all
	☑ h 356 ☑ h 335	17.80	20 R Fletche				Solving mixed integer nonlinear programs by outer 1994 Mathematical programming	Uncheck 0 cites
	Im 335 Im b 269	55.83 12.23	22 P Bonami 3 I Ouesad			ornu	An algorithmic framework for convex mixed integral. 2008 Discrete An LP/NLP based branch and bound algorithm for c 1992 Computers & chemical engineering	check selection
	$\square h 251$	12.23	2 T Wester				An EXPINE based branch and bound algorithm role 1992 Computers & Chemical Engineering	THECK SELECTION
	P h 213	42.60			erti. F Margot		Branching and bounds tighteningtechniques for no 2009 Cotimization Methods &	Help
	P h 196	10.89	10 M Türkay				Logic-based MINLP algorithms for the optimal nt 1996 Computers & Chemical Engineering	Trop
	🗹 h 193	7.42	9 GR Kocis	IE Grossma	inn		Global optimization of nonconvex mixed-integ no 1988 Industrial & Engineering Chemistry	
	🗹 h 193	9.65	31 B Borche	s, JE Mitche	all i		An improved branch and bound algorithm for exe 1994 Computers & Operations Research	
	🗹 h 190	9.50	6 AR Ciric,				Synthesis of nonequilibrium reactive distillation wo 1994 AIChE Journal	
	☑ h 179	7.16	12 CA Floud				Global optimum search for nonconvex NLP and TN 1989 Computers & Chemical Engineering	
		6.44	13 GR Kocis				A modeling and decomposition strategy for the II 1989 Computers & chemical engineering A simulated annealing approach to the solution of 1997 Computers & chemical	
		8.53 8.29			tdo, SF de Aze xulakis, CA Flou		A simulated annealing approach to the solution d	
	V h 141	6.09	4 CS Adjim 15 NV Sahini			1005	MINLP model for cyclic multiproduct scheduling on c. 1997 Computers & chemical	
	M h 125	31.25	47 K Abhish				Filmint: An outer approximation-based solver for c 2010 INFORMS Journal on	
	☑ h 121	7.56			ez, F Castells		A rigorous MINLP model for the optimal synthesis a 198 Research and Design	
	🗹 h 115	7.19	18 JM Zamo				A global MINLP optimization algorithm for the synth 1990. Computers & Chemical Engineering	
	•							



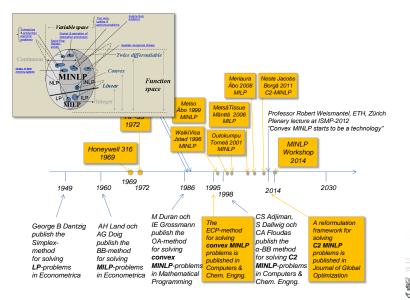
Sa

1110 Serles



1110 Serles

50



19 89

1110 SCAL

2. Aspects on algorithms for convex MINLP problems

2. Aspects on algorithms for convex MINLP problems -

Convex functions

Problem (P1)

minimize f(x)subject to $g(x) \le 0$,

where *f* and *g* are convex functions.

21 | 89

Convex functions or convex sets

Problem (P1)

Problem (P2)

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g(x) \leq 0, \end{array}$

where *f* and *g* are convex functions.

minimize f(x)subject to $x \in C$.

where *f* is a convex function, $C = \{x | g(x) \le 0\}$, and *g* are convex/quasiconvex functions.

22 89

Smooth or nonsmooth functions

23 89

Does the convergence properties of a considered "convex MINLP" solver still hold true if the functions are not differentiable but convex/quasiconvex?

	convex	quasiconvex
smooth twice differentiable (C^2)	?	?
smooth once differentiable (C^1)	?	?
nonsmooth continuous	?	?
locally Lipschitz continuous	?	?

2. Aspects on algorithms for convex MINLP problems ------

Nonsmooth functions in MINLP

24 89

Question: Is it possible to only replace gradients with subgradients in order to handle nonsmooth functions rigourously in algorithms for differentiable convex problems? Answer: Not for all convex MINLP algorithms!

- Yes, e.g., for ECP
- ▶ No, for certain versions of OA, *e.g.*, the linear OA¹:

Algorithm 1 (Linear Outer Approximation). Initialization: y^0 is given; set i = 0, $T^{-1} = \emptyset$, $S^{-1} = \emptyset$ and $UBD = \infty$. REPEAT

- (1) Solve the subproblem $NLP(y^i)$, or the feasibility problem $F(y^i)$ if $NLP(y^i)$ is infeasible, and let the solution be x^i .
- (2) Linearize the objective and (active) constraint functions about (x^i, y^i) . Set $T^i = T^{i-1} \cup \{i\}$ or $S^i = S^{i-1} \cup \{i\}$ as appropriate.
- (3) IF (NLP(y^i) is feasible and $f^i \le UBD$) THEN

update current best point by setting $x^* = x^i$, $y^* = y^i$, UBD = f^i .

(4) Solve the current relaxation M⁴ of the master program M, giving a new integer assignment yⁱ⁺¹ to be tested in the algorithm. Set i = i + 1. UNTL(M⁴ is infeasible).

¹Fletcher, R. and Leyffer, S., Solving mixed integer nonlinear programs by outer approximation, Mathematica Programming 66, pp. 327–349, 1994.

A convex nonsmooth example where the gradient is replaced by a subgradient²

minimize
$$2x - y$$

subject to $g(x, y) \le 0$
 $y - 4x - 1 \le 0$
 $0 \le x \le 2, y \in Y = \{0, 1, 2, 3, 4, 5\},$

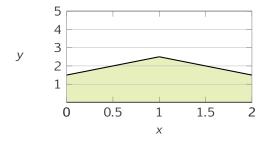
(E)

where

$$g(x,y) = \max\left\{-\frac{3}{2} - x + y, -\frac{7}{2} + y + x\right\}.$$

²Eronen, V.-P., Mäkelä, M. M. and Westerlund, T., On the generalization of ECP and OA methods to nonsmoot convex MINLP problems, Optimization, pp. 1–17, iFirst, available online, 2012.

Solving with the linear outer approximation



Initialization: $y^0 = 3$

Step 1: Solve the subproblem $NLP(y^0)$ or the feasibility problem $F(y^0)$ if $NLP(y^0)$ is infeasible, and let the solution be x^0 .

26 | 89

2. Aspects on algorithms for convex MINLP problems ------ 27 | 89

► There are no feasible points in the problem $NLP(y^0)$, thus the feasibility problem F_{y^0} will be solved:

minimize
$$\mu$$

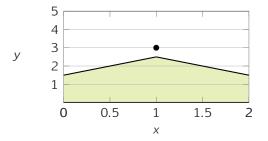
subject to $\max\left\{\frac{3}{2} - x, -\frac{1}{2} + x\right\} \le \mu$
 $2 - 4x \le 0$
 $0 \le x \le 2.$ (F_{y^0})

• The solution of F_{y^0} is $x^0 = 1$ with $\mu = 1/2$.

Step 2: Linearize g at the point $(x^0, y^0) = (1, 3)$ for the next relaxed MILP master problem M^0 .

▶ Both the functions -3/2 - x + y and -7/2 + y + x have the same value 1/2 at the point (x⁰, y⁰) and thus the subdifferential is

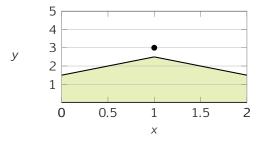
$$\partial g(1,3) = \left\{ (\alpha,1)^T | \alpha \in [-1,1] \right\}.$$



Since we may select an abitrary subgradient we may choose, *e.g.*, $\xi(x^0, y^0) = (1, 1)^T$. Thus the new linear constraint is

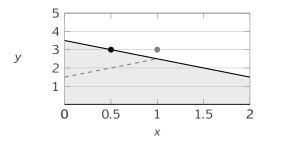
$$\frac{1}{2} + (1,1)(x-1,y-3)^T \le 0 \quad \Rightarrow \quad x+y-\frac{7}{2} \le 0.$$

2. Aspects on algorithms for convex MINLP problems ------- 29 | 89



Step 3: Update the current best point if $NLP(y^0)$ is feasible, but since $NLP(y^0)$ was not feasible go to Step 4.

Step 4: Create and solve the current relaxation M^0 of the master program giving a new integer assignment y^1 .



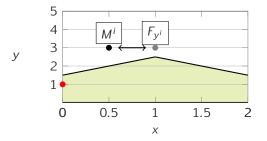
minimize
$$2x - y$$

subject to $x + y - 7/2 \le 0$
 $y - 4x - 1 \le 0$
 $0 \le x \le 2, y \in Y.$

► The solution point of (M^0) is (1/2, 3). Set i = i + 1, $y^1 = 3$. Repeat steps 1–4: Until M^i is infeasible.

30 89

 (M^{0})



- ▶ Hence $y^1 = y^0$ and $F_{y^1} \equiv F_{y^0}$. Thus LOA may generate an infinite loop between points (1, 3) and (1/2, 3).
- ▶ Both of them are infeasible but the problem (*E*) has a feasible point (0, 1) for example, where the objective function 2x y has the value -1.

3. A new algorithm for solving convex MINLP problems

- - A new interior point based algorithm for solving convex MINLP problems to global optimality is introduced.
 - Roots:
 - ▶ Kelley's cutting plane algorithm 1960³
 - ▶ The extended cutting plane (ECP) algorithm 1995⁴
 - Cutting planes are replaced with supporting hyperplanes using a line search procedure.
 - Two LP preprocessing steps are utilized to quickly get a tight linear relaxation of the part of the feasible region defined by the convex/quasiconvex constraints.
 - An interior point is required for the line search.

³Kelley, Jr., J., The cutting-plane method for solving convex programs, Journal of the SIAM, vol. 8(4), pp. 703–712, 1960.

⁴Westerlund, T. and Pettersson, F., An extended cutting plane method for solving convex MINLP problems, Computers & Chemical Engineering 19, pp. 131–136, 1995.

The MINLP problem

The algorithm finds the optimal solution x* to the following convex MINLP problem:

$$x^* = \operatorname*{arg\,min}_{x \in C \cap L \cap Y} c^T x$$

(P)

where $x = [x_1, x_2, ..., x_N]^T$ belongs to the compact set

$$X = \left\{ x \mid \underline{x}_i \leq x_i \leq \overline{x}_i, i = 1, \dots, N \right\} \subset \mathbb{R}^n,$$

the feasible region is defined by $C \cap L \cap Y$,

$$C = \{x | g_m(x) \le 0, m = 1, ..., M, x \in X\},\$$

$$L = \{x | Ax \le a, Bx = b, x \in X\},\$$

$$Y = \{x | x_i \in \mathbb{Z}, i \in I_{\mathbb{Z}}, x \in X\},\$$

and *C* is a convex set.

Steps in the interior point supporting hyperplane algorithm

NLP: If an interior point is not given, obtain a feasible, relaxed interior point (satisfying *C*) by solving a NLP problem.

- LP1: Solve simple LP problems (initially in *X*) and conduct a line search procedure to obtain supporting hyperplanes giving a first linear relaxation of the convex set *C*. Optional.
- LP2: Continue with a corresponding procedure as in LP1 but now also including the linear constraints in *L*. Optional.
- MILP: Finally include the integer requirements and solve MILP problems using a corresponding procedure to find the optimal solution to (P).

NLP-step

- ► A point in *C* is required as an endpoint for the line searches to be conducted in the LP1-, LP2- and MILP-steps.
- Assuming that (P) has a solution, the internal point can be obtained from the following NLP problem:

$$\tilde{x}_{\text{NLP}} = \underset{x \in X}{\operatorname{arg\,min}} F(x), \qquad (P-\text{NLP})$$

where $F(x) := \underset{m=1,\dots,M}{\max} \{g_m(x)\}.$

- F is convex/quasiconvex since it is the maximum of convex/quasiconvex functions.
- (P-NLP) may be nonsmooth (if M > 1) even if g_m is smooth.
- ► The point \tilde{x}_{NLP} need not be optimal but then fulfill $F(\tilde{x}_{NLP}) < 0$.
- Can be solved, e.g., with the accelerated gradient method in⁵.

⁵Nestorov, Y., Introductory lectures on convex optimization: A basic course, Kluwer Academic Publisher 20

LP1-step

Starting from k = 1, $\Omega_0 = X$, the problem

$$\tilde{x}_{LP}^{k} = \underset{\Omega_{k-1}}{\operatorname{arg\,min}} c^{T} x$$

(P-LP1)

is repeatedly solved, and supporting hyperplanes (SHs)

$$l_k := F(x^k) + \xi_F(x^k)^T(x - x^k) \le 0$$

are generated and added to Ω_k . The point x^k is obtained by a line search for $F(x^k) = 0$ between the internal point \tilde{x}_{NLP} and the solution point to (P-LP1) \tilde{x}_{LP}^k :

$$x^k = \lambda \tilde{x}_{\mathsf{NLP}} + (1 - \lambda) \tilde{x}_{\mathsf{LP}}^k, \quad \lambda \in [0, 1].$$

ξ_F(x^k)^T is a gradient or subgradient of F at x^k.
 If not F(x̃^k_{LP}) < ε_{LP1} or a maximum number of SHs have been generated, then k is increased and (P-LP1) resolved.

LP2-step

This step is otherwise identical to LP1, with the exception that the linear constraints in L are now also included, *i.e.*,

$$\tilde{x}_{LP}^k = \underset{\Omega_{k-1} \cap L}{\operatorname{arg\,min}} c^T x$$

► (P-LP2) is repeatedly solved until F(x̃^k_{LP}) < ε_{LP2} or a maximum number of SHs have additionally been generated.

MILP-step

- Finally, in order to also fulfill the integer requirements of problem (P), a MILP step is performed.
- This step is otherwise identical to LP2, with the exception that the integer requirements in Y are now additionally considered, *i.e.*,

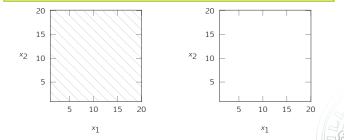
$$\tilde{x}_{\text{MILP}}^k = \operatorname*{arg\,min}_{\Omega_{k-1} \cap L \cap Y} c^T x.$$

(P-MILP)

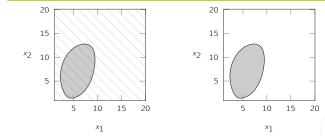
- ► (P-MILP) is repeatedly solved until $F(\tilde{x}_{\text{MILP}}^k) < \epsilon_{\text{MILP}}$.
- Intermediate (P-MILP) problems do not need to be solved to optimality, but in order to guarantee an optimal solution of (P), the final MILP solution must be optimal.

minimize
$$c^T x = -x_1 - x_2$$

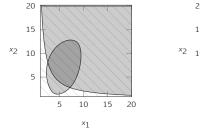
subject to $1/x_1 + 1/x_2 - x_1^{0.5} x_2^{0.5} + 4 \le 0$
 $0.15(x_1 - 8)^2 + 0.1(x_2 - 6)^2 + 0.025e^{x_1} x_2^{-3} - 5 \le 0$
 $2x_1 - 3x_2 - 2 \le 0$
 $1 \le x_1 \le 20, \quad 1 \le x_2 \le 20, \quad x_1 \in \mathbb{R}, \quad x_2 \in \mathbb{Z}.$

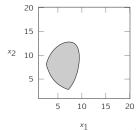


$$\begin{array}{ll} \text{minimize} & c^{T}x = -x_{1} - x_{2} \\ \text{subject to} & 1/x_{1} + 1/x_{2} - x_{1}^{0.5}x_{2}^{0.5} + 4 \leq 0 \\ & 0.15(x_{1} - 8)^{2} + 0.1(x_{2} - 6)^{2} + 0.025e^{x_{1}}x_{2}^{-3} - 5 \leq 0 \\ & 2x_{1} - 3x_{2} - 2 \leq 0 \\ & 1 \leq x_{1} \leq 20, \quad 1 \leq x_{2} \leq 20, \quad x_{1} \in \mathbb{R}, \quad x_{2} \in \mathbb{Z}. \end{array}$$

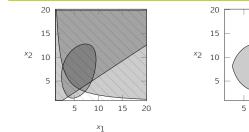


$$\begin{array}{ll} \text{minimize} & c^{T}x = -x_{1} - x_{2} \\ \text{subject to} & 1/x_{1} + 1/x_{2} - x_{1}^{0.5}x_{2}^{0.5} + 4 \leq 0 \\ & 0.15(x_{1} - 8)^{2} + 0.1(x_{2} - 6)^{2} + 0.025e^{x_{1}}x_{2}^{-3} - 5 \leq 0 \\ & 2x_{1} - 3x_{2} - 2 \leq 0 \\ & 1 \leq x_{1} \leq 20, \quad 1 \leq x_{2} \leq 20, \quad x_{1} \in \mathbb{R}, \quad x_{2} \in \mathbb{Z}. \end{array}$$





$$\begin{array}{ll} \text{minimize} & c^{T}x = -x_{1} - x_{2} \\ \text{subject to} & 1/x_{1} + 1/x_{2} - x_{1}^{0.5}x_{2}^{0.5} + 4 \leq 0 \\ & 0.15(x_{1} - 8)^{2} + 0.1(x_{2} - 6)^{2} + 0.025e^{x_{1}}x_{2}^{-3} - 5 \leq 0 \\ & 2x_{1} - 3x_{2} - 2 \leq 0 \\ & 1 \leq x_{1} \leq 20, \quad 1 \leq x_{2} \leq 20, \quad x_{1} \in \mathbb{R}, \quad x_{2} \in \mathbb{Z}. \end{array}$$

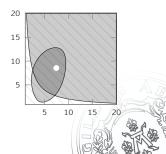


10 *x*1 15 20

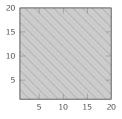
NLP step - find an interior point

$$\begin{split} \tilde{x}_{\mathsf{NLP}} &= \mathop{\arg\min}_{(x_1,x_2)\in X} F(x_1,x_2), \\ (x_1,x_2)\in X \end{split}$$
 where $F(x_1,x_2) := \max\{g_1(x_1,x_2), \ g_2(x_1,x_2)\}. \end{split}$

- The problem can be found using a suitable NLP solver.
- Not required to be the optimal point
- The optimal point here is (7.45,8.54)



• Assume initially that $\Omega_0 = X$.

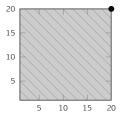


- 42 | 89

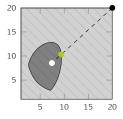
• Assume initially that $\Omega_0 = X$.

 \blacktriangleright k = 1, solve LP in Ω ,

$$\tilde{x}_{LP}^k = \underset{\Omega_{k-1}}{\operatorname{arg\,min}} c^T x.$$



- 42 | 89

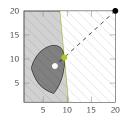


$$x^k = \lambda \tilde{x}_{\mathsf{NLP}} + (1 - \lambda) \tilde{x}_{\mathsf{LP}}^k.$$

 Assume initially that Ω₀ = X.
 k = 1, solve LP in Ω,
 x̃^k_{LP} = argmin c^Tx. Ω_{k-1}
 Do line search

$$x^k = \lambda \tilde{x}_{NLP} + (1 - \lambda) \tilde{x}_{LP}^k.$$

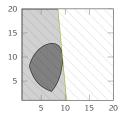
• Generate supporting hyperplane in x^k and add to Ω .



42 89

•
$$\Omega_1 = \{x | l_1(x) \le 0, x \in X\}.$$

 $l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$

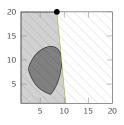


•
$$\Omega_1 = \{x | l_1(x) \le 0, x \in X\}.$$

 $l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$

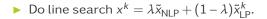
 \blacktriangleright k = 2, solve LP in Ω ,

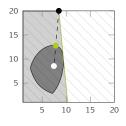
$$\tilde{x}_{LP}^k = \operatorname{argmin}_{\Omega_{k-1}} c^T x.$$



•
$$\Omega_1 = \{x | l_1(x) \le 0, x \in X\}.$$

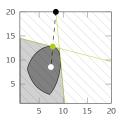
 $l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$
• $k = 2$, solve LP in Ω ,
 $\tilde{x}_{LP}^k = \arg\min_{\Omega_{k-1}} c^T x.$





-43|89

$$\tilde{x}_{LP}^k = \operatorname{argmin}_{\Omega_{k-1}} c^T x.$$

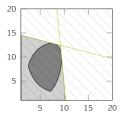


► Do line search
$$x^k = \lambda \tilde{x}_{NLP} + (1 - \lambda) \tilde{x}_{LP}^k$$
.

• Generate supporting hyperplane in x^k and add to Ω .

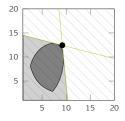
•
$$\Omega_2 = \{x | l_j(x) \le 0, j \in \{1, 2\}, x \in X\}$$

 $l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$
 $l_2(x) = 0.332x_1 + 1.30x_2 - 19.2$



•
$$\Omega_2 = \{x | l_j(x) \le 0, j \in \{1, 2\}, x \in X\}$$

 $l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$
 $l_2(x) = 0.332x_1 + 1.30x_2 - 19.2$

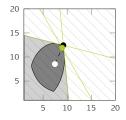


•
$$k = 3$$
, solve LP in Ω ,

$$\tilde{x}_{LP}^k = \operatorname{argmin}_{\Omega_{k-1}} c^T x.$$

•
$$\Omega_2 = \{x | l_j(x) \le 0, j \in \{1, 2\}, x \in X\}$$

 $l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$
 $l_2(x) = 0.332x_1 + 1.30x_2 - 19.2$



44 | 89

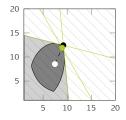
$$\blacktriangleright$$
 k = 3, solve LP in Ω ,

$$\tilde{x}_{LP}^k = \operatorname{argmin}_{\Omega_{k-1}} c^T x.$$

Do line search, generate supporting hyperplane and add to Ω.

•
$$\Omega_2 = \{x | l_j(x) \le 0, j \in \{1, 2\}, x \in X\}$$

 $l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$
 $l_2(x) = 0.332x_1 + 1.30x_2 - 19.2$



•
$$k = 3$$
, solve LP in Ω ,

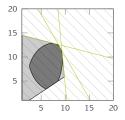
$$\tilde{x}_{LP}^k = \operatorname{argmin}_{\Omega_{k-1}} c^T x.$$

- Do line search, generate supporting hyperplane and add to Ω.
- ► Terminate LP1-step since $F(\tilde{x}_{LP}^k) < \epsilon_{LP1}$.

LP2 – Iteration 4

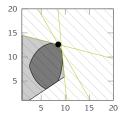
•
$$\Omega_3 = \{x | l_j(x) \le 0, j \in \{1, 2, 3\}, x \in X\}$$

 $l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$
 $l_2(x) = 0.332x_1 + 1.30x_2 - 19.2$
 $l_3(x) = 1.66x_1 + 0.951x_2 - 26.2$



•
$$\Omega_3 = \{x | l_j(x) \le 0, j \in \{1, 2, 3\}, x \in X\}$$

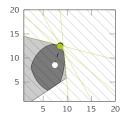
 $l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$
 $l_2(x) = 0.332x_1 + 1.30x_2 - 19.2$
 $l_3(x) = 1.66x_1 + 0.951x_2 - 26.2$



► k = 4, solve LP now in $\Omega \cap L$,

$$\tilde{x}_{LP}^k = \arg\min_{\Omega_{k-1} \cap L} c^T x.$$

$$\Omega_3 = \{x | l_j(x) \le 0, \ j \in \{1, 2, 3\}, \ x \in X\}$$
$$l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$$
$$l_2(x) = 0.332x_1 + 1.30x_2 - 19.2$$
$$l_3(x) = 1.66x_1 + 0.951x_2 - 26.2$$

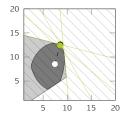


► k = 4, solve LP now in $\Omega \cap L$,

$$\tilde{x}_{LP}^k = \arg\min_{\Omega_{k-1} \cap L} c^T x.$$

Do line search, generate supporting hyperplane and add to Ω.

$$\Omega_3 = \{x | l_j(x) \le 0, \ j \in \{1, 2, 3\}, \ x \in X\}$$
$$l_1(x) = 3.26x_1 + 0.313x_2 - 33.9$$
$$l_2(x) = 0.332x_1 + 1.30x_2 - 19.2$$
$$l_3(x) = 1.66x_1 + 0.951x_2 - 26.2$$

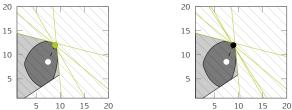


► k = 4, solve LP now in $\Omega \cap L$,

$$\tilde{x}_{LP}^k = \arg\min_{\Omega_{k-1} \cap L} c^T x.$$

- ► Do line search, generate supporting hyperplane and add to Ω .
- ► Terminate LP2-step since $F(\tilde{x}_{LP}^k) < \epsilon_{LP2}$.

MII P k = 5



MILP step

- ▶ In this step the integer requirements in Y are also considered, *i.e.*, initially k = 5, $\Omega = \Omega_{k-1} \cap L \cap Y$.
- The MILP steps are required to guarantee an integer-feasible solution.

Solution and comparisons to other solvers

 Solving the MINLP problem with the supporting hyperplane algorithm gives the following solution

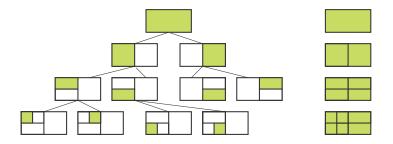
Туре	Iteration	Obj. funct.	<i>x</i> ₁	<i>x</i> 2	$F(x_1, x_2)$
LP1	1	-40.0000	20.0000	20.0000	30 359
LP1	2	-28.4720	8.47199	20.0000	14.9321
LP1 3 -		-21.6378	9.19722	12.4406	0.957382
LP2	2.2 . 21.1000		8.56022 12.603	12.6037	0.229455
MILP			8.90647	12	0.00442134
MILP	6	-20.9036	8.90362	12	4.22619 · 10 ⁻⁶

Solution times compared to some other MINLP solvers:

Solver	Iterations	Time (s)	Implementation
New algorithm	6	0.7	Prototype in Mathematica + CBC
ECP	21	1.5	GAMS 24.2 + CPLEX
DICOPT	11	1.5	GAMS 24.2 + CONOPT + CPLEX
	1	1	- A Wat

4. Aspects on frameworks for nonconvex MINLP problems

Convex relaxation: branching vs reformulation



- Branching: n convex subproblems (the subproblems with the green domains are solved using a branching strategy)
- Reformulation: the entire nonconvex MINLP problem is reformulated to a convex relaxed MINLP problem solved sequentially.

4. Aspects on frameworks for nonconvex MINLP problems ------

Convex envelopes of functions or sets for tight convex relaxations

Does a convex envelope c(x) = conv g(x) of a nonconvex function g in an inequality constraint g(x) ≤ 0 give the tightest convex relaxation of g(x) ≤ 0 when replacing it with c(x) ≤ 0?

50 89

Convex relaxations and envelopes in literature

Tuy 1998

"A nonconvex inequality constraint $g(x) \le 0$, $x \in X$, where X is a convex set in \mathbb{R}^n , can often be handled by replacing it with a convex inequality constraint $c(x) \le 0$ where c(x) is a convex minorant of g(x) on X. The latter inequality is then called a convex relaxation of the former. Of course, the tightest relaxation is obtained when $c(x) = \operatorname{conv} g(x)$, the convex envelope, *i.e.*, the largest convex minorant, of g(x)."

Let's see...

52 89

Could it be possible to find some function q, other than c(x) = conv g(x), with the property:

$$N \subset C_q \subset C_c$$
,

where

$$N = \{x | g(x) \le 0\}$$
$$C_q = \{x | q(x) \le 0\}$$
$$C_c = \{x | c(x) \le 0\}$$

for all $x \in X$ such that C_a would still be a convex set?

4. Aspects on frameworks for nonconvex MINLP problems ------

The convex envelope of a function

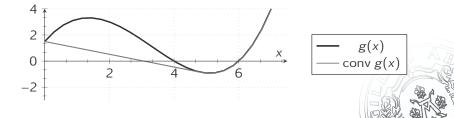
53 89

Consider the function

$$g(x) = 0.00506x^4 + 0.09553x^3 - 1.2774x^2 + 2.8821x + 1.5x^3 - 1.2774x^2 + 1.5x^3 - 1.2774x^2 - 1.5x^3 - 1.5x^$$

The convex envelope of the nonconvex function g(x) on the interval [0,7] is given by

$$\operatorname{conv} g(x) = \begin{cases} -0.488764x + 1.5 & \text{if } 0 \le x \le 4.8312, \\ g(x) & \text{if } 4.8312 < x \le 7. \end{cases}$$



4. Aspects on frameworks for nonconvex MINLP problems ------

The α BB underestimator, Floudas (2000)

54 89

Convex underestimator for twice-differentiable functions

A function $g(\mathbf{x}) \in C^2$ has the convex underestimator

$$\hat{g}(\mathbf{x}) = g(\mathbf{x}) + \sum_{i} \alpha(\underline{x}_{i} - x_{i})(\overline{x}_{i} - x_{i})$$

for $x_i \in [\underline{x}_i, \overline{x}_i] \ \forall i$ if and only if the parameter α fulfills

$$\alpha \geq \max\left\{0, -\frac{1}{2}\min_{i}\lambda_{i}\right\}$$

where the λ_i 's are the eigenvalues of the Hessian of $g(\mathbf{x})$ on the interval $[\underline{x}_i, \overline{x}_i]$. Different methods for calculating the α -values are available, *e.g.*, the scaled Gerschgorin method. 4. Aspects on frameworks for nonconvex MINLP problems -

The α BB underestimator, illustration

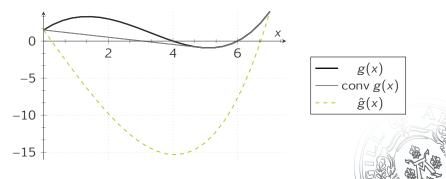
▶ For example for the function

 $g(x) = 0.00506x^4 + 0.09553x^3 - 1.2774x^2 + 2.8821x + 1.5,$

55 89

where $0 \le x \le 7$, the α BB underestimator becomes

$$\hat{g}(x) = g(x) + 1.2774(0-x)(7-x).$$

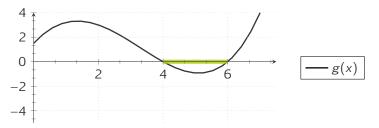


4. Aspects on frameworks for nonconvex MINLP problems ------

Convex envelope of the level set

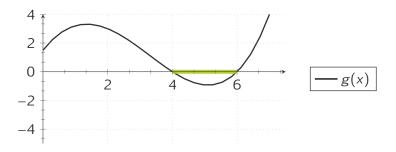
56 89

Observe that the convex envelope of a function g(x) is the tightest convex relaxation of the function in question, but does not generally give the tightest convex relaxation of a level set L = {x | g(x) ≤ α} (in this case α = 0).



- ▶ The tightest convex relaxation of *L* is conv *L*, *i.e.*, the convex hull of *L*.
- The convex envelope of the set L is given by the border of its convex hull.

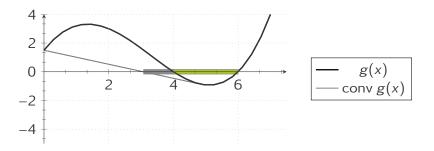
Convex relaxations of the level set $L = \{x | g(x) \le 0\}$



► The level sets $L_{\alpha}^{g} = \{x | g(x) \le \alpha\}$ are:

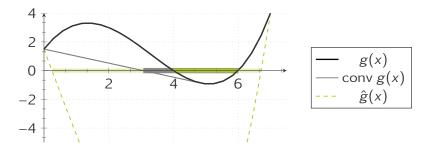
$$L_{\alpha=0}^{g} = [4, 6]$$

4. Aspects on frameworks for nonconvex MINLP problems ------ 57 | 89



► The level sets $L_{\alpha}^{g} = \{x | g(x) \le \alpha\}$ are:

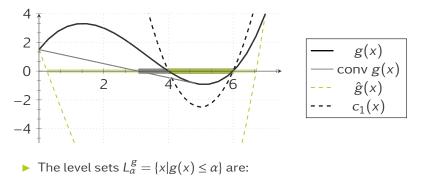
 $L_{\alpha=0}^{g} = [4, 6]$ $L_{\alpha=0}^{\operatorname{conv} g} = [3.069, 6]$



► The level sets $L_{\alpha}^{g} = \{x | g(x) \le \alpha\}$ are:

$$L_{\alpha=0}^{g} = [4,6] \qquad L_{\alpha=0}^{conv \, g} = [3.069,6]$$
$$L_{\alpha=0}^{\hat{g}} = [0.248,6.713]$$

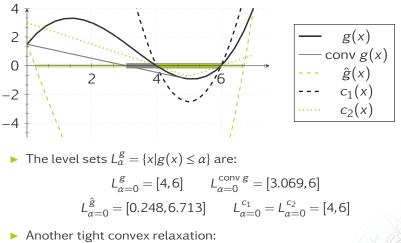
57 89



$$L_{\alpha=0}^{g} = [4,6] \qquad L_{\alpha=0}^{\text{conv }g} = [3.069,6]$$
$$L_{\alpha=0}^{\hat{g}} = [0.248, 6.713] \qquad L_{\alpha=0}^{c_{1}} = [4,6]$$

• A possible tight convex relaxation: $c_1(x) = \frac{5}{2}(x-4)(x-6)$.

57 89



$$c_2(x) = \max\left\{-\frac{3}{4}(x-4), \frac{3}{4}(x-6)\right\}.$$

4. Aspects on frameworks for nonconvex MINLP problems ------- 58 | 89

A nonconvex size constraint in two dimensions

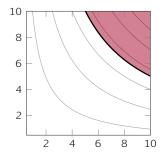
Consider the inequality constraint

$$g(\mathbf{x}) \leq 0$$
,

where

$$g(\mathbf{x}) = 50 - x_1 \cdot x_2, \quad 0.5 \le x_1, \ x_2 \le 10.$$

▶ The contour plot of the constraint function g is



4. Aspects on frameworks for nonconvex MINLP problems ------- 59 | 89

McCormick convex relaxation

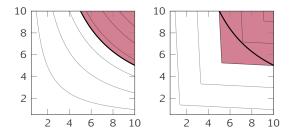
▶ The convex envelope of the negative bilinear term $-x_1x_2$ is

$$\max\{-\overline{x}_1x_2 - \underline{x}_2x_1 + \overline{x}_1\underline{x}_2, -\underline{x}_1x_2 - \overline{x}_2x_1 + \underline{x}_1\overline{x}_2\}$$

where the bounds of the variables are $\underline{x}_i \leq x_i \leq \overline{x}_i$.

▶ If $0.5 \le x_1$, $x_2 \le 10$, we then obtain

conv
$$g(\mathbf{x}) = 50 - \max\{-10 \cdot x_1 - 0.5 \cdot x_2 + 5, -0.5 \cdot x_1 - 10 \cdot x_2 + 5\}$$



Left: The level set $L_{\alpha=0}^{g}$. *Right:* The level set $L_{\alpha=0}^{\operatorname{conv} g}$.

▶ Observe that, although $L_{\alpha=0}^{g}$ is a convex set, replacing $g(\mathbf{x}) \leq 0$ with conv $g(\mathbf{x}) \leq 0$ does not give the tightest convex relaxation of $L_{\alpha=0}^{g}$.

A convex reformulation

By reformulating

$$g(\mathbf{x}) = 50 - x_1 \cdot x_2$$

at $g(\mathbf{x}) = 0$ we can, in this case, obtain the following convex constraints exactly defining the border of the level set $L_{\alpha=0}^{g}$:

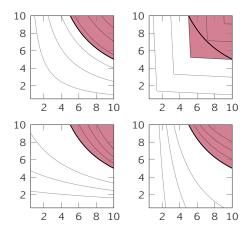
$$c_1(\mathbf{x}) = \frac{50}{x_2} - x_1$$
 and $c_2(\mathbf{x}) = \frac{50}{x_1} - x_2$.

Since c₁(x) and c₂(x) exactly define the border of L^g_{α=0}, it follows that

$$L_{\alpha=0}^{c_1} \equiv L_{\alpha=0}^{c_2} \equiv L_{\alpha=0}^g.$$

61 89

The level sets for the convex reformulation



Upper left: The level set $L_{\alpha=0}^{g}$. Upper right: The level set $L_{\alpha=0}^{conv g}$ Lower left: The level set $L_{\alpha=0}^{c_1}$. Lower right: The level set $L_{\alpha=0}^{c_2}$.

3D illustration of the relaxations

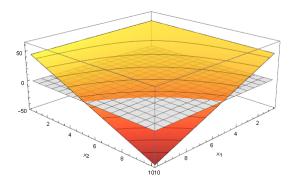


Illustration of g(x)

-63|89

3D illustration of the relaxations

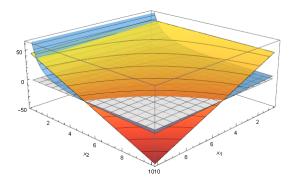


Illustration of g(x) and $c_1(x)$

-63|89

3D illustration of the relaxations

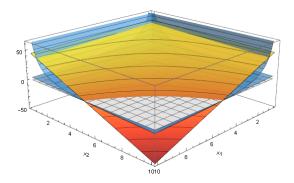


Illustration of g(x), $c_1(x)$ and $c_2(x)$

-63|89

Introduction

- A framework for reformulating nonconvex (twice-differentiable – C²) mixed integer nonlinear programming (MINLP) problems to convex form is presented.
 - ▶ The framework is an extension to a previously introduced reformulation technique for signomial problems.
 - For C²-constraints, convex reformulations are made in an extended variable-space using variants of the αBB quadratic convex underestimator.
 - With the framework, a nonconvex problem can be reformulated to a larger convex MINLP problem solved in one step or to a sequence of smaller relaxed MINLP problems solved iteratively.

The considered problem-type

Nonconvex problem

min. $f(\mathbf{x})$ s.t. $\mathbf{q}(\mathbf{x}) + \mathbf{h}(\mathbf{x}) \le 0$ $\underline{\mathbf{x}} \le \mathbf{x} \le \overline{\mathbf{x}}$

- f(x) is a convex function
- q(x) are convex functions
- h(x) are nonconvex twice-differentiable (C²) functions
- the variables in x are reals, binaries or integers
- Nonconvex twice-differentiable functions (incl. signomials) can be convexified using an αBB-type reformulation.

Convex underestimation of C^2 -functions

► A convex underestimator for twice-differentiable functions in a box-domain from, *e.g.*, Floudas (2000).

Convex underestimation of C^2 -functions

► A convex underestimator for twice-differentiable functions in a box-domain from, *e.g.*, Floudas (2000).

Theorem

A function $g(x) \in C^2$ has the convex underestimator

$$\hat{g}(\mathbf{x}) = g(\mathbf{x}) + \sum_{i} \alpha(\underline{x}_{i} - x_{i})(\overline{x}_{i} - x_{i})$$

for $x_i \in [\underline{x}_i, \overline{x}_i] \ \forall i \text{ if and only if the parameter } \alpha \text{ fulfills}$ $\alpha \ge \max\left\{0, -\frac{1}{2}\min_i \lambda_i\right\}$

where the λ_i 's are the eigenvalues of the Hessian matrix of g(x) on the interval $[\underline{x}_i, \overline{x}_i]$.

Several methods for calculating the α -values are available

Gerschgorin's circle theorem

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with entries a_{ij} and define $R_i = \sum_{j \neq i} |a_{ij}|$. Every eigenvalue of A lies within at least one of the Gerschgorin disks

 $D(a_{ii}, R_i) = \{x : |x - a_{ii}| \le R_i\}.$

----- 68 | 89

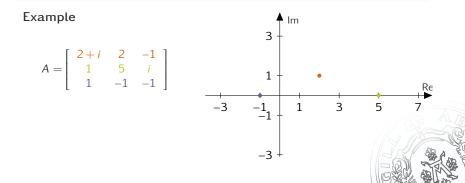
Gerschgorin's circle theorem

68 89

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with entries a_{ij} and define $R_i = \sum_{j \neq i} |a_{ij}|$. Every eigenvalue of A lies within at least one of the Gerschgorin disks

 $D(a_{ii}, R_i) = \{x : |x - a_{ii}| \le R_i\}.$



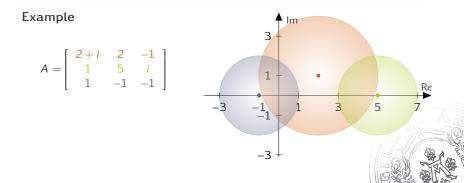
Gerschgorin's circle theorem

68 89

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with entries a_{ij} and define $R_i = \sum_{j \neq i} |a_{ij}|$. Every eigenvalue of A lies within at least one of the Gerschgorin disks

 $D(a_{ii}, R_i) = \{x : |x - a_{ii}| \le R_i\}.$



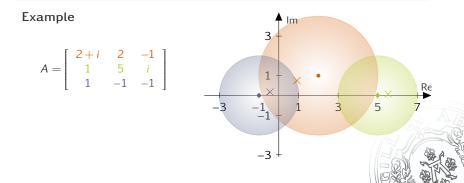
Gerschgorin's circle theorem

68 89

Theorem

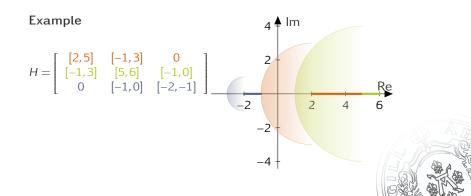
Let $A \in \mathbb{C}^{n \times n}$ with entries a_{ij} and define $R_i = \sum_{j \neq i} |a_{ij}|$. Every eigenvalue of A lies within at least one of the Gerschgorin disks

 $D(a_{ii}, R_i) = \{x : |x - a_{ii}| \le R_i\}.$



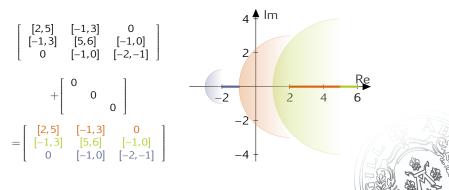
Extending Gerschgorin's circle theorem to interval matrices

- The circle theorem can be extended to interval matrices by considering the worst case.
- Positive-semidefiniteness is wanted, therefore "worst case" should be interpreted as lowest eigenvalue.



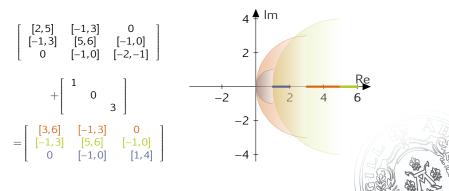
Diagonal α BB using the Gerschgorin Method

- ► The function is underestimated by adding the perturbation $-\sum_{i} \alpha_{i}(\overline{x}_{i} x_{i})(x_{i} \underline{x}_{i}).$
- ► To guarantee positive-semidefiniteness we set the constraints $h_{ii} R_i + 2\alpha_i \ge 0, i = 1, 2, ..., n.$



Diagonal α BB using the Gerschgorin Method

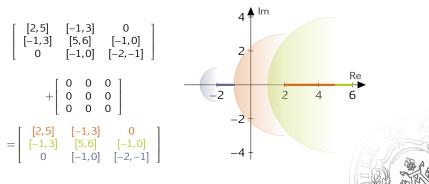
- ► The function is underestimated by adding the perturbation $-\sum_{i} \alpha_{i}(\overline{x}_{i} x_{i})(x_{i} \underline{x}_{i}).$
- ► To guarantee positive-semidefiniteness we set the constraints $h_{ii} R_i + 2\alpha_i \ge 0, i = 1, 2, ..., n.$



Diagonal and off-diagonal αBB

- The function can also be underestimated by adding $-\sum_{i} \alpha_i (\overline{x}_i - x_i) (x_i - \underline{x}_i) + \sum_{i} \sum_{j>i} \beta_{ij} x_i x_j$ as in Skjäl et al. (2012).
- To guarantee positive-semidefiniteness we can then manipulate the diagonal and off-diagonal elements of the resulting Hessian matrix: the radius and midpoint of each Gerschgorin circle will be altered in the constraints

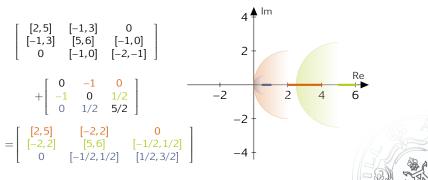
$$\underline{h_{ii}} + 2\alpha_i - \sum_{j \neq i} \left| h_{ij}' + \beta_{ij} \right| \ge 0 \ \forall i, h_{ij}' \in [\underline{h_{ij}}, \overline{h_{ij}}].$$



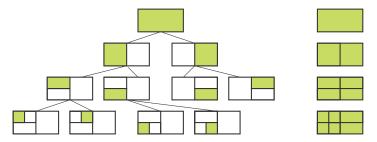
Diagonal and off-diagonal αBB

- The function can also be underestimated by adding $-\sum_{i} \alpha_i (\overline{x}_i - x_i) (x_i - \underline{x}_i) + \sum_{i} \sum_{j>i} \beta_{ij} x_i x_j$ as in Skjäl et al. (2012).
- To guarantee positive-semidefiniteness we can then manipulate the diagonal and off-diagonal elements of the resulting Hessian matrix: the radius and midpoint of each Gerschgorin circle will be altered in the constraints

$$\underline{h_{ii}} + 2\alpha_i - \sum_{j \neq i} \left| h'_{ij} + \beta_{ij} \right| \ge 0 \ \forall i, h'_{ij} \in [\underline{h_{ij}}, \overline{h_{ij}}].$$



Branching vs reformulation



- Branching: n convex subproblems (the subproblems with the green domains are solved using a branching strategy)
- Reformulation: a sequence of convex MINLP problems are solved (the whole domain is considered in each iteration)

Including αBB in the reformulation framework

► To be able to reformulate the problem in subdomains without branching, a convex quadratic function αx^2 is added to and a variable \widehat{W} subtracted from the nonconvex C^2 constraint, *i.e.*,

$$\underbrace{h(x) + \alpha x^2 - \widehat{W}}_{= 0.1} \leq 0.$$

convex

Including αBB in the reformulation framework

► To be able to reformulate the problem in subdomains without branching, a convex quadratic function αx^2 is added to and a variable \widehat{W} subtracted from the nonconvex C^2 constraint, *i.e.*,

$$\underbrace{h(x) + \alpha x^2 - \widehat{W}}_{\text{convex}} \leq 0.$$

▶ If α is large enough, then the reformulated constraint will be convex.

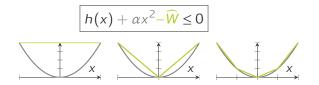
Including αBB in the reformulation framework

► To be able to reformulate the problem in subdomains without branching, a convex quadratic function αx^2 is added to and a variable \widehat{W} subtracted from the nonconvex C^2 constraint, *i.e.*,

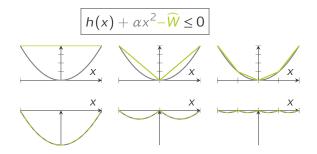
$$\underbrace{h(x) + \alpha x^2 - \widehat{W}}_{\text{convex}} \leq 0.$$

- ► If α is large enough, then the reformulated constraint will be convex.
- ► If $\alpha x^2 \widehat{W} \le 0$, then the reformulated constraint underestimates the original one.

The convex reformulation in subdomains

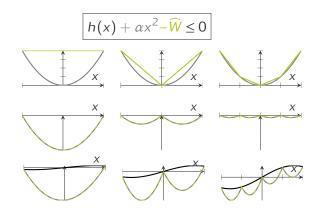


The convex reformulation in subdomains



- ► If α in αx^2 is large enough then $h(x) + \alpha x^2 \widehat{W}$ will be convex.
- ► If \widehat{W} is given by a PLF of αx^2 then h(x) is also underestimated in each subdomain since $\alpha x^2 \widehat{W} \le 0$.

The convex reformulation in subdomains

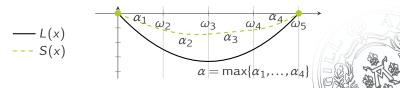


The spline α BB underestimator

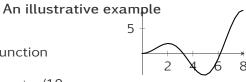
The spline αBB-underestimator is a smooth convex piecewise polynomial expression

$$S(x) = \begin{cases} \alpha_1 x^2 + \beta_1 x + \gamma_1 & \text{if } x \in [\omega_1, \omega_2] \\ \alpha_2 x^2 + \beta_2 x + \gamma_2 & \text{if } x \in [\omega_2, \omega_3] \\ \vdots & \vdots \\ \alpha_{K-1} x^2 + \beta_{K-1} x + \gamma_{K-1} & \text{if } x \in [\omega_{K-1}, \omega_K], \end{cases}$$

► The α_k 's ensure convexity. The β_k and γ_k for $k \in \{2, ..., K-1\}$ ensure smoothness and continuity, and β_1 , γ_1 gives $S(\omega_1) = S(\omega_K) = 0$.



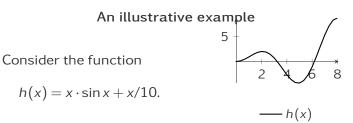
5. A reformulation algorithm for solving C^2 MINLP problems — 76 | 89



$$---h(x)$$

Consider the function

 $h(x) = x \cdot \sin x + x/10.$



The convex underestimators are then

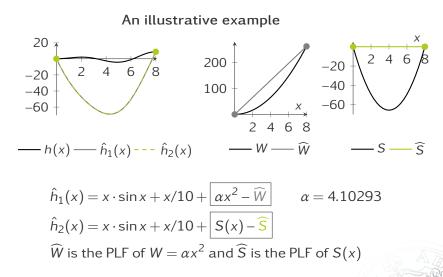
$$\hat{h}_1(x) = x \cdot \sin x + x/10 + \alpha x^2 - \widehat{W}$$

for the reformulated αBB understimator using constant α and

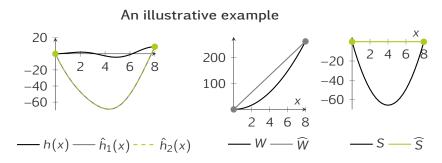
$$\hat{h}_2(x) = x \cdot \sin x + x/10 + S(x) - \widehat{S}$$

for the reformulated spline α BB underestimator, where \widehat{W} is the PLF of $W = \alpha x^2$ and \widehat{S} is the PLF of the spline function S(x).

5. A reformulation algorithm for solving C^2 MINLP problems ------ 77 | 89

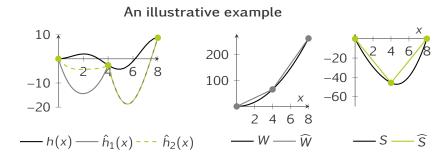


5. A reformulation algorithm for solving C^2 MINLP problems ------ 77 | 89



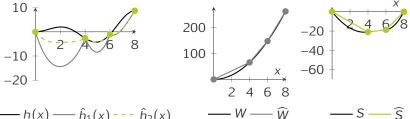
 $W(x) = 4.1x^2$ $S(x) = 4.1x^2 - 32.8x, 0 \le x \le 8$

5. A reformulation algorithm for solving C^2 MINLP problems — 77 | 89



$$W(x) = 4.1x^2 \qquad S(x) = \begin{cases} 1.6x^2 - 17.8x & 0 \le x \le 4\\ 4.1x^2 - 37.8x + 40.0 & 4 \le x \le 8 \end{cases}$$

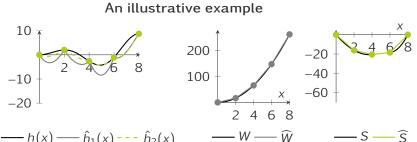
5. A reformulation algorithm for solving C^2 MINLP problems —



$$- h(x) - \hat{h}_1(x) - \hat{h}_2(x) -$$

$$W(x) = 4.1x^{2} \qquad S(x) = \begin{cases} 1.6x^{2} - 11.7x & 0 \le x \le 4\\ 1.1x - 25.6 & 4 \le x \le 6\\ 4.1x^{2} - 48.1x + 122.1 & 6 \le x \le 8 \end{cases}$$

5. A reformulation algorithm for solving C^2 MINLP problems — ----- 77 | 89



$$- h(x) - \hat{h}_1(x) - \hat{h}_2(x)$$

$$W(x) = 4.1x^{2} \qquad S(x) = \begin{cases} 1.3x^{2} - 10.7x & 0 \le x \le 2\\ 1.6x^{2} - 11.8x + 1.1 & 2 \le x \le 4\\ 1.1x - 24.5 & 4 \le x \le 6\\ 4.1x^{2} - 48.2x + 123.2 & 6 \le x \le 8 \end{cases}$$

5. A reformulation algorithm for solving C^2 MINLP problems — 78 | 89

Generalization to N dimensions

The formulation can easily be extended from one to N dimensions by using the underestimators

$$h(\mathbf{x}) + \sum_{i=1}^{N} \left(\alpha_i x_i^2 - \widehat{W}_i \right) \le 0, \quad \mathbf{x} = (x_1, x_2, \dots, x_N), \quad \text{or}$$
$$h(\mathbf{x}) + \sum_{i=1}^{N} \left(S_i(x_i) - \widehat{S}_i \right) \le 0, \quad \mathbf{x} = (x_1, x_2, \dots, x_N).$$

when using the reformulated versions of the original α BB and spline α BB underestimators respectively.

5. A reformulation algorithm for solving C^2 MINLP problems — 78 | 89

Generalization to N dimensions

The formulation can easily be extended from one to N dimensions by using the underestimators

$$h(\mathbf{x}) + \sum_{i=1}^{N} \left(\alpha_i x_i^2 - \widehat{W}_i \right) \le 0, \quad \mathbf{x} = (x_1, x_2, \dots, x_N), \quad \text{or}$$
$$h(\mathbf{x}) + \sum_{i=1}^{N} \left(S_i(x_i) - \widehat{S}_i \right) \le 0, \quad \mathbf{x} = (x_1, x_2, \dots, x_N).$$

when using the reformulated versions of the original α BB and spline α BB underestimators respectively.

► Here \widehat{W}_i is the PLF of $W_i = \alpha_i x_i^2$ and \widehat{S}_i is the PLF of S_i .

5. A reformulation algorithm for solving C^2 MINLP problems ------ 79 | 89

Reformulation or implementation in a global optimization algorithm

- The underestimator can be used for reformulation or directly implemented in a global optimization algorithm, *e.g.*, αGO, for solving nonconvex MINLP problems with C²-constraints, *c.f.*, Lundell et al. (2013).
- A sequence of overestimated convex MINLP problems is solved (see Eronen et al. (2012) for convex MINLP methods) until the solution fulfills the constraints in the original nonconvex problem.
- ► The feasible region of the overestimated convexified problem is reduced in each iteration by improving the PLFs of $W = \alpha_i x_i^2$ or S(x).

5. A reformulation algorithm for solving C^2 MINLP problems –

The original nonconvex MINLP problem

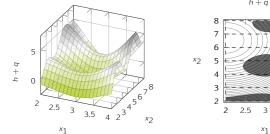
minimize
$$f(x_1, x_2) = (2x_1 - 4)^2 + (x_2 - 13/2)^2$$

subject to
$$\underbrace{x_1 \cos^2 x_2 + x_2 \sin^2 x_1 - 3/x_2}_{h(x_1, x_2)} + \underbrace{x_1/2 - 5/2}_{q(x_1)} \leq 0,$$
$$\underbrace{x_1 \cos^2 x_2 + x_2 \sin^2 x_1 - 3/x_2}_{x_1 < R} + \underbrace{x_1/2 - 5/2}_{q(x_1)} \leq 0,$$

5. A reformulation algorithm for solving C^2 MINLP problems -

minimize
$$f(x_1, x_2) = (2x_1 - 4)^2 + (x_2 - 13/2)^2$$

subject to
$$\underbrace{x_1 \cos^2 x_2 + x_2 \sin^2 x_1 - 3/x_2}_{h(x_1, x_2)} + \underbrace{x_1/2 - 5/2}_{q(x_1)} \leq 0,$$
$$\underbrace{x_1 \cos^2 x_2 + x_2 \sin^2 x_1 - 3/x_2}_{q(x_1)} + \underbrace{x_1/2 - 5/2}_{q(x_1)} \leq 0,$$



 $h + q \leq 0$

3.5

4

5. A reformulation algorithm for solving C^2 MINLP problems — 81 | 89

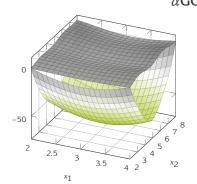
The reformulated MINLP problem

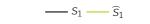
minimize
$$f(x_1, x_2) = (2x_1 - 4)^2 + (x_2 - 13/2)^2$$

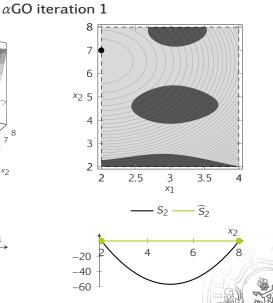
subject to $x_1 \cos^2 x_2 + x_2 \sin^2 x_1 - 3/x_2 + x_1/2 - 5/2$
 $+S_1(x_1) + S_2(x_2) - \widehat{S}_1 - \widehat{S}_2 \le 0,$
 $\widehat{S}_1 = \text{PLF}(S_1(x_2), V_1; \Omega_1), \widehat{S}_2 = \text{PLF}(S_2(x_2), V_2; \Omega_2),$
 $2 \le x_1 \le 4, 2 \le x_2 \le 8, x_1 \in \mathbb{R}, x_2 \in \mathbb{Z},$
 V_i and Ω_i are sets including the variables
and breakpoints in PLF_i of $S_i(x_1)$

This reformulated problem is convex in the extended variable space consisting of the original variables x₁ and x₂, as well as, those needed for the PLFs in V₁ and V₂.

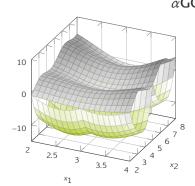
5. A reformulation algorithm for solving C^2 MINLP problems ———— 82 | 89



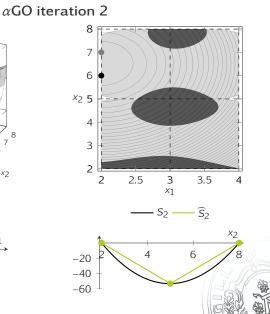




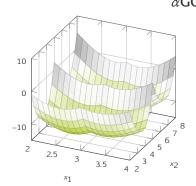
5. A reformulation algorithm for solving C^2 MINLP problems ———— 83 | 89

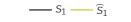


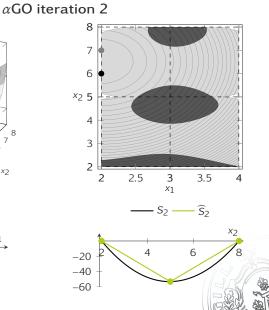




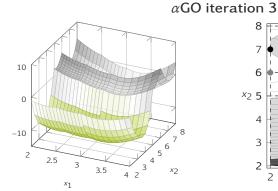
5. A reformulation algorithm for solving C^2 MINLP problems — 83 | 89

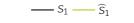


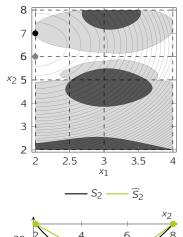




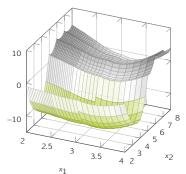
5. A reformulation algorithm for solving C^2 MINLP problems ———— 84 | 89

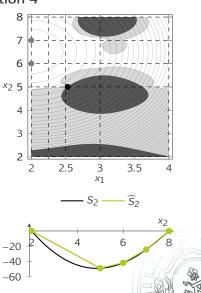


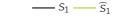


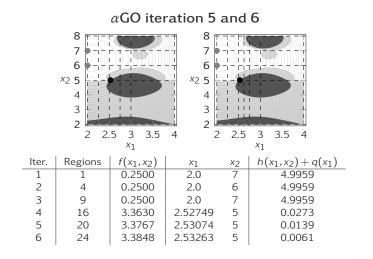


5. A reformulation algorithm for solving C^2 MINLP problems ———— 85 | 89









- 86 | 89

Summary

- 1. Introduction a short background to MINLP
- 2. Some aspects on convex MINLP algorithms
 - Convex functions and convex sets
 - Smooth and nonsmooth functions
- 3. A new algorithm for solving convex MINLP problems
- 4. Aspects on solving nonconvex MINLP problems
 - Convex relaxations in BB and relaxation frameworks
 - Convex envelopes of functions or level sets
- 5. A reformulation algorithm for solving C^2 MINLP problems

Some references

C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier.

A global optimization method, αBB , for general twice-differentiable constrained NLPs – I. Theoretical advances.

Computers and Chemical Engineering, 22(9):1137-1158, 1998.

M. A. Duran and I. E. Grossmann.

An outer-approximation algorithm for a class of mixed-integer nonlinear programs. *Mathematical Programming*, 36(3):307–339, 1986.

V.-P. Eronen, M. M. Mäkelä, and T. Westerlund.

Extended cutting plane method for a class of nonsmooth nonconvex MINLP problems. *Optimization*, (available online):1–21, 2013.

A. Lundell, A. Skjäl, and T. Westerlund.

A reformulation framework for global optimization. Journal of Global Optimization, 57(1):115–141, 2013.

. Nesterov.

Introductory lectures on convex optimization: A basic course. Kluwer Academic Publishers, 2004.

T. Westerlund and F. Pettersson.

An extended cutting plane method for solving convex MINLP problems. *Computers & Chemical Engineering*, 19:131–136, 1995.

The end of the presentation

Thank you for listening!

The presentation including relevant references will be available at www.abo.fi/ose

